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1. Introduction

The best way to improve system reliability is the redundancy technique. A typical
form of redundancy is a k-out-of-n configuration. A k-out-of-n (1 ≤ k ≤ n) system is a
system that consists of n components. It may be described in two ways, depending on the
definition of the parameter k, as follows. The parameter k may represent the number of
system components that must function in order for the entire system to function, referred
to as a k-out-of-n : G system. Alternatively, k may represent the number of components
in the system that must fail before the entire system fails, referred to as a k-out-of-n : F
system [1]. In this paper, we use the second description, omitting the symbol “F”. Here,
it is possible to remark that for k = 1, the model looks like a series system and for k = n
becomes a system in parallel.

Due to the wide applications of such a system in many spheres of human activity, in-
cluding engineering, telecommunication, medicine, biology, etc., many papers are devoted
to its investigation. There is an extensive literature on the study of such systems (see, for
example, Trivedi [2], Kuo and Zuo [3], Eryilmaz [4], and the bibliographies therein). Fur-
thermore, the investigation of such systems has received significant attention; for example,
in [5,6], redundant k-out-of-n systems with several types of failures were studied.

In the 1980s, Ushakov [7,8] proposed the method of universal generating functions for
the investigation of heterogeneous systems. This has recently become very popular and
has found various applications (see, for example, [9]).
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The development of technology puts forward new problems for researchers. In [10],
the reliability investigation of a tethered telecommunication platform was proposed in
the framework of a k-out-of-n model. For that, the authors showed that the failures of the
system depend not only on the number of failed components, but also on their location
in the system. For example, a high-altitude platform based on an eight-rotor copter stops
functioning due to two adjacent engines’ failure. Such an example can be modeled as a
consecutive 2-out-of-8 system. A consecutive k-out-of-n system is a system with n linearly
(circularly) connected components that fails iff at least k consecutive components in the
system fail. Such systems have wide applications not only in telecommunications, but also
in management, the oil and gas industry, construction, and others.

The study of a consecutive k-out-of-n system was carried out in the case of a non-
repairable system, for example, with the help of order statistics [11], under a probabilistic
approach [3]. Time-dependent and reliability measures of a consecutive repairable k-out-of-
n system with an exponentially distributed life and repair time were considered in [12,13] in
the case of one repair facility. In [14], this model was expanded to r repairmen. A k-out-of-n
system with repair under a T-policy was investigated in [15].

In real practice, component failure can be the cause of both system failure and an
increase or redistribution of the load on the components remaining in operation. In
the literature, the second case is defined as a load-sharing k-out-of-n system and can
be interpreted differently. In [16], for example, the accelerated failure-time model was
used to investigate a non-repairable load-sharing k-out-of-n system with non-identical
components and an arbitrary failure time distribution. In this research, a component failure
results in a higher load, thereby inducing a higher failure rate in each of the surviving
components. In [17], such a system was considered by a model for load sharing through
the exponentially conditional survival functions of ordered failure times. A load-sharing
k-out-of-n : G system with equal components and arbitrary lifetime distributions under the
equal load-sharing rule in the context of semi-Markov embedded processes was treated
in [18].

However, the failure of any component can lead to an increase in the load on the remain-
ing ones and, consequently, to a decrease in their residual lifetime. The papers [10,19,20]
explored various aspects of this problem. Nevertheless, the problem of the effect of failed
components on the residual lifetime of the surviving ones remains unresolved. In this
paper, we study the main characteristics of the reliability of k-out-of-n systems in condi-
tions when the failure of one of the system components leads to a redistribution of the
load on the remaining components and, consequently, to a proportional change in their
residual lifetime.

One of the ways to model the reliability of the system components and the whole
system, as well as their changes in connection with the redistribution of the load because
of the failure of one of the components, is to use the hazard rate function. Different ways
of hazard rate function modeling and the effects of a component failure on the residual
lifetimes of operating components and the whole system are possible.

Some models of hazard rate functions are shown below:

• Power: α(u) = a0 + a1uγ, which for a0 = 0 leads to a Gnedenko–Weibull distribution
of the system components’ lifetime:

R(t) = exp
{
− a1

γ + 1
tγ+1

}
;

• Its special case is a linear one α(u) = a0 + a1u, with a0 = 0; the foregoing is known as
the Rayleigh density function;

• Logarithmic: α(u) = a0 + a1 log u, etc.

In this way, various models to study the effect of system component failures on the
residual lifetime of the remaining components in operation can be constructed:
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1. After the i-th failure (failure of the i-th component), all surviving components “age”
for some time ci, which corresponds to a jump in the components’ hazard rate function
with the value of its shift to the time ci taking place. In terms of the system components’
hazard rate function, this means that on the semi-interval [Si, Si+1) between the i-th
and (i + 1)-th failures, the components’ hazard rate function has the form

αi(u) = αi−1(ci + u). (1)

2. At the i-th failure (failure of the i-th component), the aging of surviving components
accelerates with some coefficient ci > 1. In terms of the components’ hazard rate
function, this means that after the failure of the i-th component, it is multiplied by the
corresponding coefficient ci:

αi(u) = ciαi−1(u) with Si ≤ u < Si+1.

3. At the i-th failure (failure of the i-th component), the lifetime of the surviving compo-
nents accelerates with some coefficient ci > 1. In terms of the components’ hazard
rate function, this means that after the i-th failure, it takes the form

αi(u) = αi−1(ciu).

4. At the i-th failure (failure of the i-th component), the lifetimes of all surviving compo-
nents instantaneously decrease for some value ci. In terms of the components’ hazard
rate function, this means that after the i-th failure, it makes a jump in the value of ci
and takes the form

αi(u) = ci + αi−1(u).

Other models of the impact of component failure and changes in the hazard function
of surviving are also possible. In this paper, we focus only on the first model.

One of the fundamental issues in the study of system reliability is the sensitivity
analysis of it characteristics to the shape of its components’ lifetime distribution. In several
of our works (see, for example, [21,22] and the bibliographies therein), analytical and
numerical methods were used to study this problem. In this paper, the first step of the
sensitivity analysis is given with the help of a numerical experiment.

The paper is organized as follows. The problem statement, main notations, and
assumptions are given in the next section. Then, in Section 3, the main results and the
general algorithm for the problem solution are given. Section 4 is devoted to the numerical
examples. The paper ends with the conclusion, where some ideas for further investigations
are proposed.

2. The Problem Set and Notations

Consider a k-out-of-n system, which consists of n components and fails iff at least k
of them fail. As the failure of one of the components leads to increasing the load on all
others, the residual lifetime decreases. Denote by Ai (i = 1, 2, . . . , n) the lifetimes of the
system components that are supposed to be independent and identically distributed (iid)
random variables (rvs) and by A(t) = P{Ai ≤ t} their common cumulative distribution
function (cdf).

We model the components and the whole system reliability in terms of their hazard
rate functions. It is well known that the reliability function of a component r(t) = 1− A(t)
is connected with its hazard rate function α(t) by the following expression:

α(t) =
a(t)

1− A(t)
,
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where a(t) is a probability density function (pdf) of rvs Ai. In terms of the hazard rate
function, the cdf A(t) of the component lifetime has a form

A(t) = 1− exp
{
−
∫ t

0
α(u)du

}
.

It is supposed that after any component’s failure, the load on all other components
increases, which leads to a decrease in their residual lifetimes. As mentioned in the Intro-
duction, different models for describing the effects of component failures on the residual
lifetimes of surviving components in terms of their hazard rate function are possible.

In this paper, we focus on the first type of model, in which the i-th failure (failure
of i-th component, i = 1, k− 1) leads to a change in any rest of the components’ hazard
rate functions according to Formula (1), where the value ci defines the time for which all
surviving components “age” after the i-th component failure.

For the system reliability study, denote by j the system state in which j components
are in the failure state and by E = {0, 1, 2, . . . , k} the system set of states. It is supposed
that in the initial time, all components are in UP states, which means that the initial system
state is j = 0.

The problem of the paper is to calculate the main system reliability characteristics
such as:

- Reliability function;
- Mean lifetime;
- Variance and coefficient of variation.

3. Calculation of the Residual System Reliability Function after the Failure of Any of
Its Components
3.1. Main Results

To calculate the system reliability function after each component failure, denote by:

• I0 = {1, 2, . . . , n} the initial set of components;
• S1 = min{Ai : i ∈ I0} the time of the first failure, i1 = arg min{Ai : i ∈ I0} the

number of the first failed component, I1 = I0 \ {i1};
• Analogously by induction, Sl the moment of the l-th failure, il the number of failed

components in this time, and Il = Il−1 \ {il} the set of components remaining in
operation (surviving) after this step:

Sl = min{Ai : i ∈ Il−1}, il = arg min{Ai : i ∈ Il−1}, Il = Il−1 \ {il}.

It is well known that the reliability function of any component with a hazard rate
function α0(u) = α(u) equals

r1(t) = exp
{
−
∫ t

0
α0(u)du

}
.

For the k-out-of-n system, the system hazard rate function in the initial time with
such components is λ0(u) = nα0(u). Further, it is supposed that λi(u) = (n− i)αi(u), i =
0, k− 1, where i is the number of failures (number of failed components). Therefore, the
system reliability function up to the first failure S1 is as follows:

R1(t) = P{min [Ai : i = 1, n] > t} = exp
{
−
∫ t

0
λ0(u)du

}
. (2)

According to the rule (1), the hazard rate functions of every surviving component are
shifted by the constant c1. Thus, they are equal to α1(t) = α0(c1 + t) as t > S1. Analogously,
at the moment of time Sl of the l-th component’s failure, two events occur:

- The failed component il leaves the set of working ones, Il = Il−1 \ {il};
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- The hazard rate function αl−1(u) of components i ∈ Il−1 is replaced by αl(u) =
αl−1(cl + u).

In the above notations, the following results hold.

Lemma 1. For any i ∈ I1, the conditional (with respect to the time of the first failure S1) reliability
function of any of the surviving components equals:

r2(t | S1) = P{Ai > t | S1} = exp
{
−
∫ t

S1

α1(u)du
}

. (3)

Proof. Due to the independence of the components’ lifetimes for any component i ∈ I1
and for t ≥ S1, the following chain of equalities holds:

P{Ai > t | S1} =
P{Ai > t, Ai > S1}

P{Ai > S1}
=

P{Ai > t}
P{Ai > S1}

=

=
exp

{
−
∫ t

0 α0(u)du
}

exp
{
−
∫ S1

0 α0(u)du
} = exp

{
−
∫ t

S1

α0(u)du
}

= exp
{
−
∫ t

S1

α1(u)du
}

.

Here, the last equality follows from the fact that in the failure time S1, the hazard rate
functions of all surviving components are changed from α0(u) to α1(u).

Lemma 2. The lifetimes of any components surviving after the first failure are conditionally (with
respect to the moment of the first failure S1) independent, and their joint reliability function for any
i, j ∈ I1 is determined as follows:

P{Ai > x, Aj > y | S1} = exp
{
−
∫ x

S1

α1(u)du
}
× exp

{
−
∫ y

S1

α1(v)dv
}

. (4)

Proof. By using the same argumentation as in the proof of Lemma 1, consider the appropri-
ate conditional probability (with respect to the time S1) strictly before the first component
failure for any i, j ∈ I1:

P{Ai > x, Aj > y | S1} =
P{Ai > x, Aj > y, Ai > S1, Aj > S1}

P{Ai > S1, Aj > S1}
=

=
P{Ai > x, Aj > y}

P{Ai > S1, Aj > S1}
=

P{Ai > x}
P{Ai > S1}

×
P{Aj > y}
P{Aj > S1}

=

=
exp

{
−
∫ x

0 α0(u)du
}

exp
{
−
∫ S1

0 α0(u)du
} × exp

{
−
∫ y

0 α0(v)dv
}

exp
{
−
∫ S1

0 α0(v)dv
} =

= exp
{
−
∫ x

S1

α1(u)du
}
× exp

{
−
∫ y

S1

α1(v)dv
}

.

In the last equality, as before, we should replace the hazard rate function α0(.) with
α1(.), which ends the proof.

Lemma 3. The conditional (with respect to the first failure time) system reliability function equals:

R2(t | S1) = P{S2 > t| S1} = exp
{
−
∫ t

S1

λ1(u)du
}

. (5)
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Proof. According to Lemma 1, all surviving after the first failure components are indepen-
dent and have the same hazard rate function α1(u). Therefore, for the conditional (with
respect to the first failure time) system reliability function, it holds that

R2(t | S1) = P{S2 > t | S1} = P{min[Aq : q ∈ I1] > t | S1} =

= exp
{
−
∫ t

S1

(n− 1)α1(u)du
}

= exp
{
−
∫ t

S1

λ1(u)du
}

.

Similar to the properties of survival after the first failure components, they are also
performed after each of the subsequent ones:

Lemma 4. 1. The conditional (with respect to the l-th component’s failure time Sl) reliability
function of any of the surviving components i ∈ Il equals:

rl+1(t | Sl) = P{Ai > t | Sl} = exp
{
−
∫ t

Sl

αl(u)du
}

. (6)

2. The lifetimes of survival after the l-th failure components are conditionally independent (with
respect to the moment of time Sl), and their joint reliability function for any i, j ∈ Il is
determined as follows:

P{Ai > x, Aj > y | Sl} = exp
{
−
∫ x

Sl

αl(u)du
}
× exp

{
−
∫ y

Sl

αl(v)dv
}

. (7)

3. The conditional reliability function of a system after the l-th failure (with respect to its failure
time Sl) equals:

Rl+1(t | Sl) = P{Sl+1 > t | Sl} = exp
{
−
∫ t

Sl

λl(u)du
}

. (8)

Proof. In the moment of time Sl of the l-th component’s failure for any of the surviving
components i ∈ Il as t ≥ Sl , it holds that

P{Ai > t | Sl} =
P{Ai > t, Ai > Sl}

P{Ai > Sl}
=

P{Ai > t}
P{Ai > Sl}

=

=
exp

{
−
∫ t

0 αl−1(u)du
}

exp
{
−
∫ Sl

0 αl−1(u)du
} = exp

{
−
∫ t

Sl

αl−1(u)du
}

= exp
{
−
∫ t

Sl

αl(u)du
}

.

The final equality uses the same reasons as in Lemma 1 for changing the hazard rate
function from αl−1(u) to αl(u), proving the first point of the lemma. All other points are
proven analogously.

The above results deal with some component conditional failure time (with respect
to the previous one). Based on these results, the next theorem considers the appropriate
unconditional reliability functions.

Theorem 1. Reliability functions up to the l-th failure (l = 1, . . . , k− 1) are recursively deter-
mined by the following relations:

Rl+1(t) = −
∫ t

0
Rl+1(t | x)dRl(x) + Rl(t), (9)
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where for the recursion beginning with the function R1(x) is determined from (2), and for its
continuation, the function Rl(t | x) is determined from (8):

R1(t) = exp
{
−
∫ t

0
λ0(u)du

}
, Rl+1(t | x) = exp

{
−
∫ t

x
λl(u)du

}
.

Proof. To prove the theorem, we use the total probability formula. According to it, the
conditional probability Rl+1(t | Sl) is defined only over the domain {Sl ≤ t}. Therefore, to
calculate the unconditional one, we should integrate it over the domain {Sl ≤ t} given
by the first term in (9). The second term represents the probability P{Sl > t} of the
complement set {Sl > t}.

Based on the previous results, the following general procedure for the system reliability
function calculation can be proposed.

3.2. The General Procedure of System Reliability Function Calculation

The following general Algorithm 1 is supposed to be used for the solution of the
stated problem.

Algorithm 1 : General algorithm for calculation of reliability function
Beginning. Determine: integers n, k, real ci; distribution A(t) of components lifetime
and/or their hazard rate function α(t), as well as the procedure of their changing after
system component failure.
Step 1. Put C0 = 0, α0(t) = α(t), λ0(t) = nα0(t), and according to (2), calculate the
reliability function up to the first failure time S1 = min{Ai : i ∈ I0} and i1 = arg min{Ai :
i ∈ I0}:

R1(t) = exp
{
−
∫ t

0
λ0(u)du

}
.

Step 2. For l from 1 to k− 1, calculate

Il = Il−1 \ {il}, Cl = Cl−1 + cl , αl(u) = αl−1(cl + u) = α(Cl + u),

λl(u) = (n− l)αl(u) = (n− l)α(Cl + u).

Step 3. Taking into account Expression (8), the conditional system reliability function of
the next failure time Sl+1 = min{Ai : i ∈ Il} for t > Sl equals

Rl+1(t | Sl) = exp
{
−
∫ t

Sl

λl(u)du
}

Calculate its unconditional form:

Rl+1(t) = −
∫ t

0
exp

{
−
∫ t

Sl

λl(u)du
}

dRl(Sl) + P{Sl > t}.

Step 4. For l = k− 1, the needed system characteristics will be found;
• System reliability function:

R(t) = Rk(t)

• System lifetime expectation:

E[Sk] =
∫ ∞

0
R(t)dt,

• Variance:

Var[Sk] = −
∫ ∞

0
(t− E[Sk])

2dR(t).

Stop.
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3.3. An Example: 2-out-of-n System
3.3.1. Exponential Distribution, by Algorithm 1

Consider the case when the system’s components’ lifetime has an exponential distri-
bution A(t) ∼ Exp(α), and:

C0 = 0, α0(t) = α(t) = α, λ0(t) = nα0(t) = nα.

Thus, for k = 2, by using the Algorithm 1, we find:

R1(t) = exp
{
−
∫ t

0
λ0(u)du

}
= e−nαt.

C1 = C0 + c1 = c1, α1(u) = α1−1(c1 + u) = α(C1 + u) = α,

λ1(u) = (n− 1)α1(u) = (n− 1)α.

Considering that

R2(t; S1) = exp
{
−
∫ t

S1

λ1(u)du
}

= e−(n−1)α(t−S1)

calculate

R2(t) = −
∫ t

0
e−(n−1)α(t−x)dR1(S1 ≤ x ≤ t) + P{S1 > t} =

= −
∫ t

0
e−(n−1)α(t−x)(−nα)e−nαxdx + e−nαt =

= nαe−(n−1)αt
∫ t

0
e−αxdx + e−nαt =

= ne−(n−1)αt(1− e−αt) + e−nαt =

= ne−(n−1)αt − (n− 1)e−nαt. (10)

3.3.2. Markov Case

To confirm the obtained expression, consider a three-state Markov process, in which
each state means the number of failed components. In this case, the system of Kolmogorov
differential equations takes the form:

d
dt

π0(t) = −nαπ0(t),

d
dt

π1(t) = −(n− 1)απ1(t) + nαπ0(t),

d
dt

π2(t) = (n− 1)απ1(t).

The last of these equations is solved by simple integration. Then, passing the first two
to the Laplace transforms and taking into account the initial conditions π0(0) = 1, π1(0) =
0, we obtain

(s + nα)π̃0(s) = 1,

(s + (n− 1)α)π̃1(s)− nαπ̃0(s) = 0,

from which it follows that

π̃0(s) = (s + nα)−1, π̃1(s) =
nα

(s + nα)(s + (n− 1)α)
.
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Passing to the inverse Laplace transform, we obtain

π0(t) = nαe−(n−1)αt, π1(t) = n
(

e−(n−1)αt − e−nαt
)

.

The system reliability function will be calculated as

R2(t) = 1− π2(t) = 1− (n− 1)α
∫ t

0
π1(u)du =

= ne−(n−1)αt − (n− 1)e−nαt.

This outcome corresponds to the reliability function of a two-out-of-n system calcu-
lated using the proposed algorithm (Formula (10)).

4. Numerical Experiment

As is known, the exponential distribution has no memory. Thus, the example in
Section 3.3 does not show the effect of the load redistribution on surviving components
after a failure. Thus, consider the Gnedenko–Weibull (GW) distribution as the distribution

of the system’s components’ lifetime, A(t) ∼ GW
(

θ,
a

Γ(1 + θ−1)

)
. Here, a is the timeof

the component’s failure, θ is the shape parameter of the GW distribution calculated based

on the preset value of the coefficient of variation, and v =
σ

a
= a−1 ·

√
Γ(1 + 2 · θ−1)

Γ(1 + θ−1)2 − 1,

where σ is the standard deviation.
The hazard rate function for the GW distribution has the following form:

α(t) = θ

(
Γ(1 + θ−1)

a

)θ

tθ−1.

According to the Algorithm 1, calculate the reliability function of a 2-out-of-3 system
with the GW distribution of its components’ lifetime and present the result graphically.

Suppose that the mean lifetime of the component a = 1. If θ = 1, the GW distribution
transforms into an exponential one with the mean timea and the coefficient of variation
v = 1. In this case, its reliability function has the form of (10). Therefore, cases 0 < v < 1
and v > 1 are of interest. Since calculating the coefficient θ through the value v is quite
difficult, we define the parameter θ so that v ≈ 0.5 and v ≈ 2. Thereby, define θ = 2,
then the coefficient of variation v = 0.5227. Assume that the aging time of the surviving
components after failure is some percentage of the average lifetime of the components,
c1 = 0.1; 0.5; 0.75; 1 from a.

Since the 2-out-of-3 system fails due to the failure of two components, we have only
one constant that defines the aging time of surviving components. Therefore, hereafter,
we suppose c1 = c. Figure 1 presents the reliability function of the 2-out-of-3 system with
different c. According to this figure, the higher reliability coincides with the lower value of
c.

Other reliability characteristics of the 2-out-of-3 system calculated according to the
definitions from the algorithm are presented in Table 1. These characteristics correspond
to the system reliability behavior shown in Figure 1. The lower value of c leads to the
higher value of the system lifetime expectation E[S2]. Moreover, with an increase in c, the
coefficient of variation of the system v[S2] grows and tends to the value of the coefficient of
variation of each system element v ≈ 0.5.
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Figure 1. Reliability function with GW distribution of the components’ lifetime with v = 0.5227.

Table 1. System reliability characteristics.

c = 0.1 c = 0.5 c = 0.75 c = 1

E[S2] 0.9309 0.8324 0.7932 0.7639
Var[S2] 0.1238 0.1130 0.1081 0.1045

v[S2] 0.3780 0.4038 0.4145 0.4231

To study the reliability of a system, a characteristic such as a quantile is often used.
This measure shows how long the system will be reliable with a fixed probability. The
quantiles qγ = R−1(γ) of the reliability function are presented in Figure 2. In this case,
black bottoms correspond to γ = 0.999, whereas gray bottoms correspond to γ = 0.99.

Figure 2. Reliability function with v = 0.5227 and quantiles.
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All the values for quantiles γ = 0.999; 0.99; 0.9 are presented in Table 2.

Table 2. Quantiles of reliability function.

c = 0.1 c = 0.5 c = 0.75 c = 1

q0.999 0.13 0.09 0.08 0.074
q0.99 0.249 0.192 0.174 0.16
q0.9 0.495 0.415 0.386 0.364

It can be seen from Tables 1 and 2 that the system reliability ≥ 0.9 for all considered
values c is achieved with qγ ≈ 1

2 · E[S2]. That is, the system is in an operational state for about
half of its average lifetime with a probability 0.9. For more details, see Table 3. The ratio of the
mean system lifetime to the quantile q0.99 by averaging from c is E[S2]/q0.99 ≈ 4.35, and for
q0.999, it holds E[S2]/q0.999 ≈ 9.16.

Table 3. The ratio of E[S2]/qγ.

c = 0.1 c = 0.5 c = 0.75 c = 1

E[S2]/q0.999 7.16 9.25 9.92 10.32
E[S2]/q0.99 3.74 4.34 4.56 4.77
E[S2]/q0.9 1.88 2.01 2.05 2.09

It is known that for the GW distribution, the behavior of its hazard rate function
depends on the shape parameter θ, which affects the coefficient of variation. For the GW
distribution, the value of the coefficient of variation v > 1 leads to the value of parameter
θ < 1. This leads to a decrease in the hazard rate function. Thus, the distribution becomes
“rejuvenating”. Since this situation does not correspond to practical problems, we consider
the case v > 1 only as a curious example. Consider θ = 0.54. The coefficient of variation
in this case is v = 2.0133. With the same values c, the graph of the reliability function is
presented in Figure 3. According to the graph, the relationship between reliability and c is
inverse to the previous case. The higher reliability coincides with the higher value c.

Figure 3. Reliability function with GW distribution of the components’ lifetime with v = 2.01325.
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Despite the different behavior of the curves in Figures 1 and 3 in the vicinity of the
point t = 1, the reliability of the system for different values v converges to a small interval
(Figure 4). The black lines correspond to v = 0.5227, and the blue ones are for v = 2.0133.
The figure shows that for t = 1 with c = 0.5, the reliability function takes the same value
with different v. The difference between the values of R(1) with c = 0.75, 1 increases as c
increases, but with the lower value c = 0.1, the difference between R(1) is greatest.

Figure 4. Reliability function on t = 0.9, 1.

5. Conclusions

In this paper, a k-out-of-n system was considered in which the failure of any of its
components leads to increasing the load on all others, which leads to a decrease in their
residual lifetimes. The components and the whole system reliability are modeled in terms
of their hazard rate functions. After any component failure, all surviving components “age”
for some time ci depending on the number of the remaining components.

The method and the algorithm for the system reliability function and its two moments
were proposed. The obtained results were verified in the case of an exponential distribution
for the system components’ lifetime, in which an analytical solution was obtained with the
usual finite state Markov process. Some numerical experiments with Gnedenko–Weibull
system components were proposed.

A more detailed analysis of the sensitivity problems and some real applications of the
model will be presented in the future.
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