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Abstract: This paper deals with the leader-following synchronization of first-order, semi-linear,
complex spatio-temporal networks. Firstly, two sorts of complex spatio-temporal networks based on
hyperbolic partial differential equations (CSTNHPDEs) are built: one with a single weight and the
other with multi-weights. Then, a new distributed controller is designed to address CSTNHPDE with
a single weight. Sufficient conditions for the synchronization and exponential synchronization of
CSTNHPDE are presented by showing the gain ranges. Thirdly, the proposed distributed controller
addresses of CSTNHPDE with multi-weights, and gain ranges are obtained for synchronization and
exponential synchronization, respectively. Finally, two examples show the effectiveness and good
performance of the control methods.
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1. Introduction

The synchronization of complex networks, a group dynamical behavior, aims to drive
nodes to perform a designated task synchronously. It has been applied to many engineering
aspects, such as intelligent traffic [1,2], circuit systems [3], image processing [4–6], smart grids [7],
secure communication [8,9], multi-agent systems [10], rumor propagation [11], data security [12],
biological systems [13], etc.

A number of important works discuss the synchronization of complex networks [14–18].
This literature shows node dynamics depending only on time. In practice, the dynamics of all
processes are spatio-temporal [19–21]. As a consequence, it is necessary to study complex spatio-
temporal networks (CSTNs), which is with spatio-temporal characteristics [22]. Wu et al. studied
the synchronization of CSTNs with space-independent coefficients and space-dependent coeffi-
cients, with or without spatio-temporal disturbance [23]. Huang et al. proposed a fuzzy synchro-
nization method for nonlinear CSTNs with reaction—diffusion terms [24]. Luo et al. studied
event-triggered control for the finite-time synchronization of reaction–diffusion CSTNs [25].
Yang et al. studied the boundary control of fractional-order CSTNs [26]. Zheng et al. researched
synchronization analysis for fractional-order CSTNs with time delays [27]. Shen et al. studied
the H∞ synchronization of Markov jump CSTNs using an observer-based method [28]. Ka-
balan et al. studied boundary control for the synchronization of leader–follower CSTNs with
in-domain coupling [29].

Most references are modeled by parabolic PDEs, while there are few methods study-
ing hyperbolic PDEs. There are many hyperbolic PDEs systems in practice, including
shallow-water systems [30], epidemic models [31], district heating networks [32], heat
exchangers [33], and reactor models [34]. Therefore, it is important to study the synchro-
nization of hyperbolic PDEs-based CSTNs (HPDECSTNs).
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Chueshov presented invariant manifolds and nonlinear master–slave synchronization
hyperbolic and parabolic CSTNs [35]. Li studied the synchronization, exact synchroniza-
tion and approximate synchronization of HPDECSTNs [36]. Li and Lu researched exact-
boundary synchronization for a kind of first-order hyperbolic system [37]. Lu proposed
a local exact-boundary synchronization for a kind of first-order, quasi-linear hyperbolic
system [38]. However, technical difficulties remain regarding the synchronization of a semi-
linear, first-order HPDECSTNs when the convection coefficient is symmetric semi-negative
definite or semi-positive definite, which motivate this paper. Multi-weights exist in many
physical networks [39–43]. As a result, HPDECSTN with multi-weights is important and
remains challenging.

This paper mainly studies the leader-following synchronization control of a semi-
linear HPDECSTN with two sorts of boundary conditions in a one-dimensional space. This
paper’s contributions are as follows: (1) Two sorts of HPDECSTN models are built, one
with a single weight and the other with multi-weights. (2) A new distributed controller is
designed to address CSTNHPDE with a single weight. Sufficient conditions for the syn-
chronization and exponential synchronization of CSTNHPDE are presented by providing
the gain ranges. (3) The proposed distributed controller addresses CSTNHPDE with multi-
weights and gain ranges, obtained for synchronization and exponential synchronization,
respectively. (4) Two examples show the effectiveness and good performance of the control
methods.

Notations: Let IN denote the identity matrix with Nth order, P > 0 (P < 0) denote
symmetric positive definite (negative definite), and λmax(min)(·) denote the maximum
(minimum) eigenvalue.

2. Problem Formulation

This paper first studies a class of leader-following, semi-linear, hyperbolic PDE-based,
complex spatio-temporal networks (HPDECSTNs) with a single weight. The following
node is assumed to be

∂zi(ζ, t)
∂t

=
∂zi(ζ, t)

∂ζ
+ Azi(ζ, t) + B f (zi(ζ, t)) + c

N

∑
j=1

gijΓzj(ζ, t) + ui(ζ, t),

zi(L, t) = 0,

zi(ζ, 0) = z0
i (ζ), i ∈ {1, 2, · · · , N},

(1)

where (ζ, t) ∈ [0, L]× [0, ∞) are space and time, respectively. zi(ζ, t) and ui(ζ, t) ∈ Rn are
the state and control input, respectively. 0 < L ∈ R is a constant. A ∈ Rn×n, B ∈ Rn×n,
and Γ ∈ Rn×n are constant matrices. f (·) is a nonlinear function. The coupling strength

c > 0 is a constant. G = (gij)N×N satisfies gii = −
N
∑

j=1,j 6=i
gij.

The leader node is assumed to be
∂s(ζ, t)

∂t
=

∂s(ζ, t)
∂ζ

+ As(ζ, t) + B f (s(ζ, t)),

s(L, t) = 0,

s(ζ, 0) = s0(ζ),

(2)

where s(ζ, t) ∈ Rn is the state.
This paper aims to study a distributed controller ui(ζ, t), driving HPDECSTN (1) to

the leader node (2), designed as

ui(ζ, t) = di(s(ζ, t)− zi(ζ, t)), (3)

where di are the control gains to be determined.
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Definition 1. HPDECSTN (1) reaches synchronization, if

lim
t→∞
||zi(ζ, t)− s(ζ, t)|| = 0, i ∈ {1, 2, · · · , N}. (4)

Definition 2. Given ρ > 0, HPDECSTN (1) reaches exponential synchronization, if there is a real
number σ > 0 such that

||zi(ζ, t)− s(ζ, t)|| ≤ σ exp (−2ρt)||z0
i (ζ)− s0(ζ)||, i ∈ {1, 2, · · · , N}. (5)

Assumption 1. For any ζ1, ζ2 ∈ R, then 0 < X ∈ R, satisfying

| f (ζ1)− f (ζ2)| ≤ X |ζ1 − ζ2|. (6)

3. Synchronization of HPDECSTNs with a Single Weight

Let the synchronization error be ei(ζ, t) ∆
= zi(ζ, t)− s(ζ, t). The error system of between

HPDECSTN (1) and (2)) yields
∂e(ζ, t)

∂t
=

∂e(ζ, t)
∂ζ

+ (IN ⊗ A)e(ζ, t) + (IN ⊗ B)F(e(ζ, t)) + (G⊗ Γ)e(ζ, t) + u(ζ, t),

e(L, t) = 0,

e(ζ, 0) = e0(ζ),

(7)

where e0
i (ζ)

∆
= z0

i (ζ) − s0(ζ), u(t) ∆
= [uT

1 (t), uT
2 (t), · · · ,

uT
N(t)]

T , e(ζ, t) ∆
= [eT

1 (ζ, t), eT
2 (ζ, t), · · · , eT

N(ζ, t)]T , F(ei(ζ, t)) ∆
= f (zi(ζ, t)) − f (s(ζ, t)),

and F(e(ζ, t)) ∆
= [FT(e1(ζ, t)), FT(e2(ζ, t)), · · · , FT(eN(ζ, t))]T .

Theorem 1. Suppose Assumption 1 holds. HPDECSTN (1) reaches synchronization under the
controller (2), if

di > λmax(Ψ), (8)

where Ψ , IN ⊗ A+AT

2 + 0.5IN ⊗ BBT + 0.5χ2 INn + 0.5c(G⊗ Γ + GT ⊗ ΓT).

Proof. Choose the Lyapunov functional candidate as follows:

V(t) =0.5
∫ L

0
eT(ζ, t)e(ζ, t)dζ. (9)

One has

V̇(t) =
∫ L

0
eT(ζ, t)

∂e(ζ, t)
∂t

dζ

=
∫ L

0
eT(ζ, t)

∂e(ζ, t)
∂ζ

dζ

+
∫ L

0
eT(ζ, t)(IN ⊗ A + cG⊗ Γ)e(ζ, t)dζ

+
∫ L

0
eT(ζ, t)F(e(ζ, t))dζ −

∫ L

0
eT(ζ, t)(D⊗ In)e(ζ, t)dζ,

(10)

where D ∆
= diag{d1, d2, · · · , dN}.
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By integrating by parts, ∫ L

0
eT(ζ, t)

∂e(ζ, t)
∂ζ

dζ

=eT(ζ, t)e(ζ, t)|ζ=L
ζ=0

−
∫ L

0

∂eT(ζ, t)
∂ζ

e(ζ, t)

=− eT(0, t)e(0, t)

−
∫ L

0
eT(ζ, t)

∂e(ζ, t)
∂ζ

dζ

≤−
∫ L

0
eT(ζ, t)

∂e(ζ, t)
∂ζ

dζ,

(11)

which implies ∫ L

0
eT(ζ, t)

∂e(ζ, t)
∂ζ

dζ ≤ −0.5eT(0, t)e(0, t). (12)

Under Assumption 1,∫ L

0
eT(ζ, t)BF(e(ζ, t))dζ

≤0.5
∫ L

0
eT(ζ, t)BBTe(ζ, t)dζ + 0.5

∫ L

0
FT(ζ, t)F(ζ, t)dζ

=
∫ L

0
eT(ζ, t)(0.5IN ⊗ BBT + 0.5χ2 INn)e(ζ, t)dζ.

(13)

The substitution of (11)–(13) into (10) yields,

V̇(t) 6
∫ L

0
eT(ζ, t)(Ψ− D⊗ In)e(ζ, t)dζ, (14)

where Ψ , IN ⊗ A+AT

2 + 0.5IN ⊗ BBT + 0.5χ2 INn + cG⊗ Γ and D = diag{d1, d2, · · · , dN}.
It is obvious that (8) implies

Ψ− D⊗ In < 0. (15)

The substitution of (15) into (14) yields, V̇(t) 6 −λmin(D⊗ In −Ψ)||e(·, t)||, for all
non-zero e(ζ, t), implying synchronization of HPDECSTN (1).

Theorem 2. Suppose Assumption 1 holds. Given ρ > 0, HPDECSTN (1) reaches exponential
synchronization under the controller (2), if

di > λmax(Ψ + ρINn), (16)

where Ψ , IN ⊗ A+AT

2 + 0.5IN ⊗ BBT + 0.5χ2 INn + 0.5c(G⊗ Γ + GT ⊗ ΓT).

Proof.

V̇(t) + 2ρV(t)

≤
∫ L

0
eT(ζ, t)(Ψ + ρINn − D⊗ In)e(ζ, t)dζ

≤0,

(17)

which implies
V(t) ≤ V(0) exp (−2ρt). (18)
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It follows from (18) that

||ei(ζ, t)||22 ≤ σ exp (−2ρt), (19)

where σ = ||e0
i (ζ)||

2
2. Therefore, exponential synchronization is obtained.

4. Synchronization of HPDECSTNs with Multi-Weights

This section studies a class of semi-linear HPDECSTNs with multi-weights, where the
following node is as follows:

∂zi(ζ, t)
∂t

=
∂zi(ζ, t)

∂ζ
+ Azi(ζ, t) + B f (zi(ζ, t)) + c1

N

∑
j=1

g1
ijΓ1zj(ζ, t)

+ c2

N

∑
j=1

g2
ijΓ2zj(ζ, t) + · · ·+ cl

N

∑
j=1

gl
ijΓlzj(ζ, t) + ui(ζ, t),

zi(0, t) = 0,

zi(ζ, t) = z0
i (ζ, t),

(20)

where Γ1 ∈ Rn×n, Γ2 ∈ Rn×n, · · · , Γl ∈ Rn×n are constant matrices. Gk = (gk
ij)N×N satisfies

gk
ii = −

N
∑

j=1,j 6=i
gk

ij.

The error system of between HPDECSTN (20) and (2) with multi-weights can be
obtained as

∂e(ζ, t)
∂t

= Θ
∂e(ζ, t)

∂ζ
+ (IN ⊗ A)e(ζ, t) + F(e(ζ, t)) + c1(G1 ⊗ Γ1)e(ζ, t)

+ c2(G2 ⊗ Γ2)e(ζ, t) + · · ·+ cl(Gl ⊗ Γl)e(ζ, t) + ui(ζ, t),

∂e(0, t)
∂ζ

= 0,

e(ζ, 0) = e0(ζ).

(21)

Theorem 3. Suppose that Assumption 1 holds. HPDECSTN (20) reaches synchronization under
the controller (2), if

di > λmax(Ξ), (22)

where Ξ , IN ⊗ A+AT

2 + 0.5IN ⊗ BBT + 0.5χ2 INn + 0.5c1(G1 ⊗ Γ1 + GT
1 ⊗ ΓT

1 ) + 0.5c2(G2 ⊗
Γ2 + GT

2 ⊗ ΓT
2 ) + · · ·+ 0.5cl(Gl ⊗ Γl + GT

l ⊗ ΓT
l ).

Proof. The proof is similar to that of Theorem 1, and so it is omitted.

Theorem 4. Suppose that Assumption 1 holds. Given ρ > 0, HPDECSTN (20) reaches exponential
synchronization under the controller (2), if

di > λmax(Ξ + ρINn), (23)

where Ξ , IN ⊗ A+AT

2 + 0.5IN ⊗ BBT + 0.5χ2 INn + 0.5c1(G1 ⊗ Γ1 + GT
1 ⊗ ΓT

1 ) + 0.5c2(G2 ⊗
Γ2 + GT

2 ⊗ ΓT
2 ) + · · ·+ 0.5cl(Gl ⊗ Γl + GT

l ⊗ ΓT
l ).

Proof. The proof is similar to that of Theorem 2, and so it is omitted.

Remark 1. This paper addresses not only the synchronization of HPDECSTNs, but also the
exponential synchronization. Moreover, this paper addresses HPDECSTNs not only with a single
weight, but also with multi-weights.
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Remark 2. Compared with the results modeled by ordinary differential equations with multi-
weights [39–43], this paper addresses spatio-temporal models with multi-weights.

Remark 3. Different from the control design for synchronization of parabolic PDEs-based
CSTNs [44,45], this paper deals with the synchronization of hyperbolic PDEs-based CSTNs.

Remark 4. Only a few important results discussed the synchronization, exact synchronization and
approximate synchronization of HPDECSTNs [36–38]. Different from those with a single weight,
this paper addresses the case with multi-weights.

5. Numerical Simulation

Example 1. Consider a single weighted HPDECSTN (1) with random initial conditions and

A =

[
5.1 2.7
−1.1 4.2

]
, B =

[
0.5 −0.2
0.2 1.5

]
, Γ =

[
2 −1
1 2

]
, L = 1, c = 0.2, f (·) = tanh(·). (24)

The single weight takes

G =


−5 1 2 2
−1 4 3 0
1 1 −3 1
−3 −2 −3 8

. (25)

Figure 1 shows that HPDECSTN (1) cannot reach synchronization without control. It is
obvious that χ = 1. With Theorem 1, solve (16) by Matlab, the feedback gains di = 12.04 are
obtained. Figure 2 shows that HPDECSTN (1) reaches exponential synchronization under the
controller (2) with di = 12.04. The controller (2) with the feedback gains di = 12.04 is shown in
Figure 3.

Figure 1. e(ζ, t) of HPDECSTN (1) without control.
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Figure 2. e(ζ, t) of HPDECSTN (1) with control.

Figure 3. The control input of HPDECSTN (1).

Example 2. Consider multi-weighted HPDECSTN (20) with random initial conditions and the
same parameters as those of Example 1, except:

c1 = 0.8, c2 = 0.3, c3 = 0.4, c4 = 0.5 (26)
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The weights take

G1 =


−5 1 2 2
−1 4 3 0
1 1 −3 1
−3 −2 −3 8

, G2 =


6 −1 −2 −3
−2 4 −3 1
1 2 −3 0
−1 −3 −3 7

, (27)

G3 =


−2 4 1 −3
2 −1 3 −4
−2 −1 −2 5
6 2 −3 −5

, G4 =


−5 1 2 2
1 3 −2 −2
−7 −2 3 6
−3 1 −3 5

. (28)

Figure 4 shows that HPDECSTN (20) cannot reach synchronization without control. With
Theorem 4, solving (23) using Matlab, the feedback gains di = 26.21 are obtained. Figure 5 shows
that HPDECSTN (20) reaches exponential synchronization under controller (2) with di = 26.21.
The controller (2) with the feedback gains di = 26.21 is shown in Figure 6.

Figure 4. e(ζ, t) of HPDECSTN (1) without control.
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Figure 5. e(ζ, t) of HPDECSTN (1) with control.

Figure 6. The control input of HPDECSTN (1).

6. Conclusions

This paper has dealt with the leader-following synchronization control of two classes
of semi-linear HPDECSTNs: one HPDECSTN with a single weight, and the other with
multi-weights. To drive HPDECSTNs to synchronization, one new distributed controller
was constructed. Dealing with HPDECSTNs with a single weight, sufficient conditions for
synchronization and exponential synchronization of CSTNHPDE were presented by pro-
viding gain ranges. Furthermore, the proposed distributed controller was used to address
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CSTNHPDE with multi-weights and gain ranges, which were obtained for synchronization
and exponential synchronization, respectively. Two examples illustrated the effectiveness
of the developed theoretical results. In future work, the event-triggered control and pinning
control of HPDECSTNs will be studied.
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