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Abstract: Data security represents an essential task in the present day, in which chaotic models
have an excellent role in designing modern cryptosystems. Here, a novel oscillator with chaotic
dynamics is presented and its dynamical properties are investigated. Various properties of the
oscillator, like equilibria, bifurcations, and Lyapunov exponents (LEs), are discussed. The designed
system has a center point equilibrium and an interesting chaotic attractor. The existence of chaotic
dynamics is proved by calculating Lyapunov exponents. The region of attraction for the chaotic
attractor is investigated by plotting the basin of attraction. The oscillator has a chaotic attractor
in which its basin is entangled with the center point. The complexity of the chaotic dynamic and
its entangled basin of attraction make it a proper choice for image encryption. Using the effective
properties of the chaotic oscillator, a method to construct pseudo-random numbers (PRNGs) is
proposed, then utilizing the generated PRNG sequence for designing secure substitution boxes
(S-boxes). Finally, a new image cryptosystem is presented using the proposed PRNG mechanism and
the suggested S-box approach. The effectiveness of the suggested mechanisms is evaluated using
several assessments, in which the outcomes show the characteristics of the presented mechanisms for
reliable cryptographic applications.

Keywords: chaotic dynamical oscillator; chaos-based PRNG; chaos-based S-box; chaos-based image
cryptosystem; security purposes

MSC: 65P20; 34C28; 68P25

1. Introduction

Information security plays a significant role in our daily lives [1,2]. Information can be
protected via performing one of the data security methods like information hiding [3]. The
main objective of data encryption is to convert the data style from an intelligible style into
an unintelligible pattern. Chaotic models are considered as a backbone of designing modern
data encryption algorithms [4,5]. In [6], an encryption method based on a hyperchaotic
oscillator was proposed to use the ciphertext in the pseudo-random sequences, and also
the encryption method has a closed-loop form.
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Chaos is one of the most mysterious dynamics that catches the attention of many
researchers [7]. A critical question in this area is the generation of chaotic attractors. Previ-
ously, there was a hypothesis that chaotic attractors are linked to saddle points [8,9]. After
that, two systems were presented to show chaotic oscillations without saddle point [10,11].
Thus, two groups of dynamics were investigated: self-excited and hidden. The basin of
attraction of a self-excited attractor is around an unstable equilibrium, while in hidden
attractors, there is not such an association [12]. It was a turning point in the study of chaotic
flows. Then, investigations have been focused on various features of chaotic flows such
as multistability and multi-scroll attractors. Dynamical properties of of a novel oscillator
with extreme multistability was studied in [13]. A memristive oscillator with multiwing dy-
namics was discussed in [14]. In [15], an image encryption method based on a multi-scroll
memristive system was designed. The analog implementation of Hindmarsh–Rose neuron
model was discussed in [16]. Various dynamics of a fractional-order chaotic oscillator were
investigated in [17]. The oscillator has three types of offset-boosting. The synchronization
of flows is interesting. The synchronization of chaotic neural network with impulsive
control was studied in [18]. Sliding mode and passivity method was used to investigate the
synchronization of chaotic flows with perturbations [19].

Various tools can be used to investigate the properties of dynamical oscillators [20–22].
Plotting a bifurcation diagram is one of the most noticeable methods [23–25]. It shows
the variations of the oscillator’s attractors by varying a parameter. Another tool is a
Lyapunov exponent that reveals the chaotic behaviors [26]. Plotting the basin of attraction
helps to investigate various oscillator dynamics by changing initial conditions [27]. The
basin of attraction is often a two-dimensional plot that shows the attraction’s area of
various attractors. Multistability is an interesting behavior of dynamical oscillators [28–30].
Multistability is a condition in which the system has two or more attractors in a constant set
of parameters and just by changing initial conditions. Extreme multistability is a particular
case of multistability [31,32]. It is a case with coexisting uncountable infinite attractors.
Here, a novel chaotic flow is proposed. Dynamical behavior of the system reveals its
noticeable behavior.

PRNG and S-box mechanisms are considered as the backbone of designing mod-
ern data encryption algorithms and draw in much attention from cryptographers and
specialists [33], in which chaotic models are commonly used for generating PRNG se-
quences and constructing S-boxes due to their complex dynamics [34]. Using the effective
properties of the new chaotic flow, a method to construct PRNGs is presented and then
utilizes the generated PRNG sequence for designing secure S-boxes. Finally, a new image
cryptosystem is proposed using the suggested PRNG method and the suggested S-box
approach. The effectiveness of the suggested mechanisms is evaluated using several assess-
ments, in which the outcomes show the vital characteristics of the presented mechanisms
for reliable cryptographic applications.

We can recap the principal contributions of this work as given below:

• Presenting a novel oscillator with chaotic dynamics and investigating its
dynamical properties;

• Constructing a novel PRNG method using the effective properties of the new
chaotic flow;

• Utilizing the PRNG method for designing secure S-boxes;
• Due to the importance of data security in the present day, a new image cryptosystem

is presented as a cryptographic application of the presented chaotic oscillator.

In the following, the chaotic oscillator system is proposed, and its features are investi-
gated in Section 2. In Section 3, the suggested PRNG scheme is introduced including its
performance analyses, while the suggested chaos-based S-box and its performance analyses
are provided in Section 4. The image cryptosystem is proposed including its analyses in
Section 5. Section 6 gives the concluding points and future works.
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2. Chaotic Oscillator

A novel chaotic oscillator is designed and its equations are presented in Equation (1).
It is a jerk system that shows chaotic dynamics in a = −0.7, b = 2.7, c = 0.3, and initial
values (0, 1, 0). Figure 1 gives the attractor of the oscillator. The oscillator is solved by
runtime 800. Half of the signals are removed as the transient time:

ẋ = y
ẏ = z

ż = ax− y− 0.7z− 0.9y2 − 0.7z2 + 0.3xy + cxz + byz
(1)

To investigate the dynamics of the oscillator, its equilibrium point is calculated as
(0, 0, 0). The characteristic equation of the oscillator at (0, 0, 0) is l3 + 0.7l2 + l + 0.7 = 0.
Therefore, the eigenvalues are −0.7,±i. Thus, the type of the origin cannot be revealed
by the eigenvalues. Numerical examinations show that the equilibrium point is a center
point. The dynamics of the oscillator around the equilibrium point are a cycle in which
its amplitude changes by changing initial conditions. In this situation, which is proved
by running the system for many initial conditions, the equilibrium point is called a center
point. Investigation of equilibrium points and their stability is very important in the study
of chaotic systems. In [35], various chaotic flows with different equilibrium points were
reviewed. Chaotic flows with specific analytical solutions were discussed in [36].

Figure 1. Chaotic behavior of the oscillator in various projections; (I) x− y plane; (II) x− z plane;
(III) y− z plane; (IV) x− y− z space.

Different dynamics of the oscillator can be investigated using a bifurcation diagram
(BD). The BD of a continuous oscillator is schemed using a Poincare section (PS) of the
attractors in each parameter by varying the bifurcation parameter gradually. Usually, the
PS is selected as the peak values of the variables. Lyapunov exponent (LE) is another
mechanism to investigate various dynamics of a flow. The Wolf method with runtime
20,000 is used to calculate Lyapunov exponents [37]. It is a well-known method and is very
popular in the literature [38,39]. Here, the BDs of the oscillator are studied by varying
three parameters, a, b and c. A period-doubling route to chaos is shown in all of the figures.
The first row of Figure 2 presents a BD for changing a ∈ [−0.7,−0.6]. It presents the peaks
of x. By increasing a, the oscillator’s dynamics become more orderly. Part II of Figure 2
displays the LEs of the oscillator by varying parameters a. It shows that the oscillator has
chaotic dynamics in a ∈ [−0.7,−0.688] since it has one positive LE. Then, in the interval
a ∈ [−0.688, −0.6], the largest LE is zero, which means the dynamics are limit cycles. The
first row of Figure 3 presents the bifurcations by changing b ∈ [2.4, 2.7]. The oscillator
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shows a period-doubling until it reaches the chaotic attractors. Part II of Figure 3 displays
the LEs of the oscillator by varying parameters b. The results show that the oscillator has
periodic dynamics in b ∈ [2.4, 2.653]. In that interval, the largest LE of the oscillator is zero.
Then, by increasing the parameter b, the oscillator’s dynamics become chaotic with one
positive LE. Figure 4 shows the BD by varying c. The bifurcation has a wider chaotic region
than bifurcation by changing a and b. Its LEs by changing c represents the chaotic regions
(part II of Figure 4).

The basin of attraction of the oscillator is shown in Figure 5. The yellow region in
this plot shows unbounded solutions, the cyan color is attracted to the chaotic attractors,
and the red color remains around the equilibrium point. The result shows that the chaotic
dynamics have a large basin of attraction entangled with center point dynamics.

The chaotic dynamic of the oscillator shows a complex signal which can be used
in encryption applications. In addition, it has a range of parameters to present chaotic
dynamics, making finding the exact system hard for attackers. However, initial conditions
are an essential matter if they know the exact system. In the following, the proposed
oscillator is used in designing various cryptographic applications.

Figure 2. BD of Oscillator (1) by constant initial conditions (0, 1, 0); (I) peaks of x by varying the
parameter a; (II) three different Lyapunov exponents of the oscillator shown by different colors
calculated using constant initial values (0, 1, 0) and by changing a.
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Figure 3. BD of Oscillator (1) by constant initial conditions (0, 1, 0); (I) peaks of x by varying the
parameter b; (II) three different Lyapunov exponents of the oscillator shown by different colors
calculated using constant initial values (0, 1, 0) and by changing b.
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Figure 4. BD of Oscillator (1) by constant initial conditions (0, 1, 0); (I) peaks of x by varying the
parameter c; (II) three different Lyapunov exponents of the oscillator shown by different colors
calculated using constant initial values (0, 1, 0) and by changing c.

Figure 5. Basin of attraction of Oscillator (1); The yellow region in this plot shows unbounded
solutions, the cyan color is attracted to the chaotic attractors, and the red color remains around the
equilibrium point.
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3. Proposed PRNG Mechanism and Its Performance

PRNG plays a vital task in designing robust cryptographic primitives [40]. It guar-
antees that the attackers cannot prophesy the data. In this part, the proposed PRNG
mechanism and its performance analyses are presented.

3.1. PRNG Mechanism

The PRNG scheme is proposed using the presented chaotic oscillator. The itemized
actions of the presented PRNG are provided in the following:

1. Solve the chaotic oscillator (Equation (1)) with initial values (x0,y0,z0) and control
parameters a = −0.7, b = 2.7, c = 0.3 to obtain the signals X, Y, and Z;

2. Transform signals X, Y, and Z into integer numbers in the interval [0, 255];

SeqX = f ix(X× 1012mod 256)
SeqY = f ix(Y × 1012mod 256)
SeqZ = f ix(Z × 1012mod 256)

(2)

where fix function rounds each number to the closest integer toward zero (i.e., fix(5.483) = 5)
and mod function represents the modulo operation (i.e., 7.5 mod 3 = 1.5) [41].

3. Obtain the PRNG sequence using SeqX, SeqY, and SeqZ as given in Equation (3).

PRNG = SeqX⊕ SeqY⊕ SeqZ (3)

3.2. PRNG Performance Analyses

To guarantee the effectiveness of the presented PRNG mechanism, security analyses
are carried out for the generated PRNG sequences in terms of correlation, randomness tests,
histograms, key sensitivity, and entropy.

3.2.1. Correlation Performance

The correlation coefficient measures the relation between two pseudo-random se-
quences. The correlation coefficient of two sequences can be defined by

rxy =
∑M

i=1

(
xi − 1

M ∑M
i=1 xi

)(
yi − 1

M ∑M
i=1 yi

)
√

∑M
i=1

(
xi − 1

M ∑M
i=1 xi

)2
∑M

i=1

(
yi − 1

M ∑M
i=1 yi

)2
(4)

where xi and yi are the ith pair of adjacent numbers, and M is the entire number of
neighborhood numbers. The average outcome of correlation is 0.0001288, which refers to
the absence of correlation between the two generated sequences.

3.2.2. Randomness Test

To measure the randomness of the signal, NIST SP 800-22 is employed. Its role is to
highlight any non-randomness in a PRNG signal. It consists of 15 tests that are executed
on different 1000 PRNG signals each of 106 bits [42]. The outcomes are shown in Table 1,
in which the successful proportion is greater than 98%. Therefore, the PRNG signal is
purely random.

3.2.3. Key Sensitivity (KS)

The KS is a vital feature of any secure PRNG method. Any tiny modifications in the
key lead to different results. To assess the KS of the PRNG, some tests are done: byte change
rate and bit change rate. For two sequences with tiny modifications in the secret key, the
byte change rate is 99.62745% and the bit change rate is 50.01032%, which is near the ideal
bit change rate of 50%. The stated results for both byte and bit change rates proved that the
PRNG mechanism is susceptible to slight modifications in the secret key.
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Table 1. NIST SP800-22 outcomes of 1000 PRNG signals each of 106 bits.

Test Successful Proportion

Serial
T1 990/1000

T2 990/1000

Cumulative sums
Forward 989/1000

Reverse 987/1000

Approximate entropy 984/1000
Frequency 999/1000
No overlapping templates 991/1000
Runs 986/1000
Random excursions variant 986/1000
Rank 991/1000
Spectral DFT 987/1000
Linear complexity 983/1000
Overlapping templates 992/1000
Long runs of ones 986/1000
Random excursions 989/1000
Block-frequency 998/1000
Universal 996/1000

3.2.4. Histograms

A good PRNG scheme should ensure the uniformity of histograms for distinct PRNG
sequences. Figure 6 presents the histograms of four different PRNG sequences, in which
the histograms are uniform.

Figure 6. Histograms of four different PRNG sequences, in which the histograms are uniform. (a) His-
togram of sequence S1; (b) Histogram of sequence S2; (c) Histogram of sequence S3; (d) Histogram of
sequence S4.

3.2.5. Information Entropy

Information entropy is intended for computing the randomness of a specific message
as Equation (5) [43]:

E(X) =
255

∑
i=0

p(xi) log2
1

p(xi)
(5)

where p(xi) signifies the probability of xi. Optimal entropy value for a number with 8-bit
is equal to 8. To estimate the effectiveness of the presented PRNG scheme, the information
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entropy test is performed on the generated PRNG sequence. The outcome value of entropy
is 7.9992, which is close to 8. Therefore, the presented PRNG mechanism is reliable for
various cryptographic applications.

4. Proposed S-Box Mechanism and Its Performance

S-boxes is important in designing robust cryptographic applications. Here, the S-box
mechanism and its performance are provided.

4.1. S-Box Mechanism

The S-box approach is based on the presented PRNG approach. The itemized actions
of the presented S-box are provided in the following steps:

1. Obtain a PRNG sequence using the presented PRNG algorithm (see Section 3.1);
2. Collect the first 256 dissimilar element from the PRNG sequence to construct an

8 × 8 S-box.

4.2. S-Box Performance Analyses

To guarantee the effectiveness of the presented S-box mechanism, performance analy-
ses are carried out for the generated S-box [44,45]. The primary states and control parame-
ters that are used to create an 8× 8 S-box (An n× n S-box has an 2n different elements) are
given as x0 = −0.2851, y0 = 0.7692, z0 = 0.6170, a = −0.7, b = 2.7 , and c = 0.3. The created
S-box is provided in Table 2, while Table 3 presented a comparison of the performance
for the proposed S-box besides relevant S-boxes as reported in [33,44,46,47] in terms of
nonlinearity, strict avalanche criterion (SAC), bit independence (BIC), linear approximation
probability (LP), and differential probability (DP), in which the stated S-box approach has
good SAC, BIC, and nonlinearity properties.

Table 2. An 8× 8 S-box created via the proposed approach.

0 161 115 34 104 200 203 173 37 24 255 239 240 190 93 76

198 251 12 57 236 223 188 72 83 127 179 237 67 158 20 94

88 126 183 222 212 150 228 73 133 230 55 226 157 1 97 101

210 61 43 136 4 233 172 221 28 129 232 125 8 42 224 81

69 247 178 128 141 22 23 15 253 189 252 99 121 254 50 3

49 64 116 31 13 147 6 238 25 92 220 216 163 243 192 46

119 175 201 79 174 153 194 82 148 80 191 102 35 149 250 62

89 11 197 44 74 219 18 185 248 84 205 135 123 77 90 96

143 112 56 152 117 70 211 10 39 29 2 184 144 160 146 100

109 131 33 171 168 91 105 27 139 202 169 59 78 208 53 177

40 156 30 52 155 124 214 38 103 196 229 215 217 66 138 113

164 180 86 9 5 145 65 19 54 199 132 98 95 225 21 118

63 58 207 41 218 162 195 75 134 181 165 204 85 71 187 176

206 87 245 137 166 16 36 130 227 108 51 111 182 170 151 106

32 107 45 209 122 234 14 114 241 110 231 17 68 249 246 26

242 193 244 60 48 142 47 235 7 159 186 120 154 213 140 167
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Table 3. Comparison of the performance for the S-box besides relevant S-boxes.

S-box
Approach Nonlinearity BIC-NL SAC BIC-SAC LP DP

Proposed 106.5 103.1 0.5000 0.5058 0.1250 0.0391

[44] 106.00 104.2 0.4993 0.5030 0.1250 0.0391

[46] 102.00 102.9 0.5178 0.4999 0.1250 0.0313

[33] 106.00 103.9 0.4958 0.5023 0.1250 0.0313

[47] 105.25 103.8 0.4956 0.4996 0.1562 0.0391

5. Proposed Image Encryption Algorithm and Its Performance

Data security is important due to the rapid growth of internet technologies. Digital
images are usually utilized for representing information [48,49]. Digital images can be
protected via image encryption algorithms. Image encryption aims to convert the image
from an intelligible style into an unintelligible pattern. Chaotic models are usually utilized
for designing reliable image cryptosystems [50,51]. Using the effective properties of the
chaotic flow, an image cryptosystem is presented. Therefore, this part is devoted to the
proposed image cryptosystem and its performance analyses.

5.1. Encryption Algorithm

The proposed image cryptosystem is based on the PRNG algorithm and the suggested
S-box approach. At first, the plain image is substituted using the generated PRNG sequence,
then some information about the substituted image is acquired, and this information is
utilized to update the initial conditions of the chaotic oscillator. Using the updated initial
conditions, solve the chaotic oscillator system to generate three sequences, and utilize the
first and the third sequences to construct a permutation box for shuffling the rows of the
substituted image and utilize the second and the third sequences to construct a permutation
box for shuffling the columns of the substituted image. Finally, construct an S-box for
substituting the permutated image to generate the cipher image. The procedure of the
proposed image encryption algorithm is outlined in Figure 7 and its details in Algorithm 1.

Plain image of 
size R×C

Cipher image

Chaotic oscillator 
system

Key parameters 

S-box

Update initial 
conditions



Substituted 
image

Acquiring some information about the 
substituted image

Substitution

PRNG

Chaotic oscillator 
system

Permutation

Shuffling rows

Shuffling columns 

Permutation box 
of length R

Permutation box 
of length C

Using X,Z

Using Y,Z

Figure 7. Outline of the image encryption algorithm for the proposed cryptosystem.
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5.2. Decryption Algorithm

The decryption algorithm of the proposed cryptosystem is the inverse of the encryption
algorithm. Prior to the encryption process, the key parameters utilized in the encryption
process are shared between the sender and the receiver via a closed environment or by
utilizing one of the appropriate asymmetric cryptography algorithms for distributing keys
(i.e., 5 RSA, ECC). After the encryption process, the value of β is shared between the sender
and the receiver by utilizing one of the asymmetric cryptography algorithms, to perform the
decryption algorithm on the receiver’s device. The procedure of the proposed decryption
algorithm is outlined in Figure 8 and its details in Algorithm 2.

5.3. Image Cryptosystem Performance Analyses

To guarantee the effectiveness of the presented image cryptosystem, performance
analyses are carried out on a PC with Intel coreTM 2 Duo of CPU 3.00 GHz, 4.00 GB of RAM,
and preinstalled with MATLAB 2016b. The dataset of used images consists of four standard
grayscale images with dimension 512× 512 and labeled as Lake, WalkBridge, Mandrill, and
JetPlane (see Figure 9). The primary key parameters are given as x0 = −0.2851, y0 = 0.7692,
z0 = 0.6170, a = −0.7, b = 2.7 , and c = 0.3.

Algorithm 1: Image encryption algorithm
Parameters : Initial conditions (x0, y0, z0) and control parameters (a, b, c) of the

chaotic oscillator system.
Input: Plain image (PG)
Output: Cipher image (CG) and β

1 [R C N]← size(PG) // Obtain the size of the plain image
2 K ← PRNG([x0, y0, z0, a, b, c], R× C× N)// Obtain a PRNG sequence of

length R*C*N using the key parameters (x0, y0, z0, a, b)
3 K ← reshape(K, R, C, N)// Reshape the sequence K into a matrix
4 SG ← PG⊕ K

5 β← (∑R
t=1 ∑C

u=1 ∑N
v=1 Sg(t,u,v))mod512

512 // Obtain some information about SG
image

// Update initial conditions
6 xn ← (x0 + β)

/
2

7 yn ← (y0 + β)
/

2
8 zn ← (z0 + β)

/
2

9 [X Y Z]← ChaoticSystem(xn, yn, zn, a, b, c)
10 H ← f ix

(
(X + Z)× 1012modR

)
+ 1// Obtain a sequence of integers in

range 1 to R
11 PerH ← unique(H)// Collect the first R dissimilar elements from H

sequence
12 W ← f ix

(
(Y + Z)× 1012modC

)
+ 1

13 PerW ← unique(W)
// Permutation process

14 for t← 1 to R do
15 for u← 1 to C do
16 PerG( t, u, :)← SG( PerH(t), PerW(u), :)

17 SB← Sbox(X, Y, Z)// Construct an 8× 8 S-box
18 for t← 1 to R do
19 for u← 1 to C do
20 for v← 1 to N do
21 CG( t, u, v)← SB(PerG(t, u, v) + 1)// Cipher image
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Cipher image
of size R×C Substitution S-box

Chaotic oscillator 
system

Update initial 
conditions using β

Chaotic oscillator 
system

Key parameters 

Permutation

Shuffling rows

Shuffling columns 
Permutation box 

of length C

Permutation box 
of length R

Using X,Z

Using Y,Z

 PRNGDecrypted  image

Figure 8. Outline of the decryption algorithm for the proposed cryptosystem.

Algorithm 2: Image decryption algorithm
Parameters : Initial conditions (x0, y0, z0) and control parameters (a, b, c) of the

chaotic oscillator system
Input: Cipher image (CG) and β
Output: Decrypted image (DG)

1 [R C N]← size(CG)
// Update initial conditions using β

2 xn ← (x0 + β)
/

2
3 yn ← (y0 + β)

/
2

4 zn ← (z0 + β)
/

2
5 [X Y Z]← ChaoticSystem(xn, yn, zn, a, b, c)
6 SB← Sbox(X, Y, Z)// Construct an 8× 8 S-box
7 for t← 1 to R do
8 for u← 1 to C do
9 for v← 1 to N do

10 PerG( t, u, v)← f ind(SB == CG(t, u, v))− 1

11 H ← f ix
(
(X + Z)× 1012modR

)
+ 1// Obtain a sequence of integers in

range 1 to R
12 PerH ← unique(H)// Collect the first R dissimilar elements from H

sequence
13 W ← f ix

(
(Y + Z)× 1012modC

)
+ 1

14 PerW ← unique(W)
// De-permutation process

15 for t← 1 to R do
16 for u← 1 to C do
17 SG( PerH(t), PerW(u), :)← PerG( t, u, :)

18 K ← PRNG([x0, y0, z0, a, b, c], R× C× N)
19 K ← reshape(K, R, C, N)
20 DG ← SG⊕ K// Decrypted image

The efficiency of any image encryption algorithm relies on two factors; the first one
is based on encryption time, while the second factor is based on the ability to resistant
manifold attacks: such as brute force, statistical cryptanalysis, differential cryptanalysis,
etc. These factors are discussed in the following subsections to illustrate the efficiency of
the presented image encryption algorithm.
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Figure 9. Experimental dataset of images, in which the top two rows represent the plain version of
images and the bottom two rows indicate the cipher version of images.

5.3.1. Encryption Time

Encryption time is the time elapsed to encrypt one image. Table 4 provides the encryp-
tion speed in Mbits/second, in which the presented cryptosystem has good encryption
time besides other related algorithms.



Mathematics 2022, 10, 2434 14 of 22

Table 4. Comparison of encryption speed (in Mbits/second) for the proposed cryptosystem with
other corresponding methods, as stated in [52–54].

Cryptosystem Encrypted MBits Per Second

Proposed 2.1744
[52] 0.5418
[53] 1.3027
[54] 2.1612

5.3.2. Correlation Performance

Each pixel value in a plain image is extremely correlated with its adjacent pixels and
its correlation coefficients are close to 1 in all directions, while correlation coefficients for
cipher images are very close to 0. For calculating the correlation coefficients for plain
and their cipher images, we randomly picked 10,000 neighboring pixels in each direction.
Table 5 stated the correlation coefficients for the plain images and their analogous cipher
versions, in which the correlation coefficients of cipher images are very close to 0. In
addition, the correlation distribution for the plain and cipher Lake image are plotted in
Figure 10. From the declared outcomes, we can deduce that the proposed cryptosystem
withstands correlation analysis.

Figure 10. Correlation distribution for plain and cipher Lake image, in which the top row refers to the
correlation distribution of the plain image, while the bottom row refers to the correlation distribution
of the ciphered image.

Table 5. Correlation coefficients for the plain images and their analogous cipher versions, in which
the correlation coefficients of cipher images are very close to 0.

Image
Direction

Horizontal Vertical Diagonal

Lake 0.9773 0.9778 0.9638
WalkBridge 0.9396 0.9412 0.9062
Mandrill 0.9045 0.9324 0.8598
JetPlane 0.9704 0.9734 0.9501
Cipher Lake 0.0006 −0.0003 0.0009

Cipher WalkBridge −0.0006 0.0003 0.0005
Cipher Mandrill 0.0001 −0.0003 −0.0004
Cipher JetPlane −0.0007 0.0006 −0.0004
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5.3.3. Differential Analyses

Plain image sensitivity is a vital feature of any secure image cryptosystem, in which
any tiny modifications in the plain image lead to significant different in the cipher image.
To assess the plain image sensitivity of the proposed cryptosystem, some tests are done:
NPCR (Number of Pixels Change Rate) and UACI (Unified Average Changing Intensity).
They can be defined as follows [49]:

NPCR = ∑N
i=1 Di f f (i)

N × 100%,

Di f f (i) =
{

0 when S1(i) = S2(i)
1 when S1(i) 6= S2(i)

(6)

UACI =
1
N

(
N

∑
i=1

|S1(i)− S2(i)|
255

)
× 100% (7)

where S1, S2 are two generated cipher images for one plain image with tiny modifications
in one of its bits; N denotes the entire pixels for the image. The results are stated in
Table 6, in which the stated data proved that the proposed cryptosystem is sensitive to
slight modifications in the plain image.

Table 6. NPCR and UACI values for investigated images when changing one bit in one pixel in
the image.

Image UACI NPCR

Lake 33.42641% 99.62311%
WalkBridge 33.49124% 99.62196%
Mandrill 33.48107% 99.61967%
JetPlane 33.41351% 99.62768%

5.3.4. Histogram Test

A good image cryptosystem scheme should ensure the uniformity of histograms for
distinct cipher images. Figure 11 presents the histograms of the plain images and their
analogous cipher versions, in which the histograms of plain images are distinct from each
other’s while the histograms of their analogous cipher images are uniform with each other.
To ensure the similarity of histograms for the ciphered images, we used a quantity test like
variance (Var) [4], which can be defined as provided in Equation (8):

Var(T) =
1

2552

255

∑
p=0

255

∑
q=0

(
tp − tq

)2

2
(8)

where T = {t0, t1, . . . , t255} is the sequence of the histogram values, and tp and tq are the
pixel numbers whose grey values are equal to p and q, respectively. Table 7 provides the
outcomes of histogram variance for the tested images previous and after the encryption
process, in which the low values denote the high uniformity of histograms.

Table 7. Outcomes of histogram variance, in which low values of histogram variance denote the high
uniformity of histograms.

Image
Variance Value

Plain Cipher

Lake 727,739.4117 966.8784
WalkBridge 428,846.3451 1020.4078

Mandrill 848,778.8784 920.8314
JetPlane 2,843,823.0823 1099.6313
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Figure 11. Histograms of images, in which the top two rows represent the histograms of plain images
and the bottom two rows indicate the histograms of cipher images.

5.3.5. Information Entropy

Information entropy is intended to compute the randomness of a specific message [55].
The optimal entropy value for a grayscale image is equal to 8. To estimate the effectiveness
of the presented image cryptosystem, the information entropy test is performed on the
plain and its analog cipher images. The outcomes of entropy are provided in Table 8, in
which the entropy values for cipher images are near 8. From the stated data, we can deduce
that the proposed cryptosystem withstands entropy analysis.

Table 8. Outcomes of entropy, in which the entropy values for cipher images are very close to 8.

Image
Information Entropy

Plain Cipher

Lake 7.48264 7.99933
WalkBridge 7.68301 7.99930
Mandrill 7.29254 7.99936
JetPlane 6.71351 7.99924

5.3.6. Key Space and Key Sensitivity

The key space refers to the diverse keys that can be used in brute force attacks which
should be extensive sufficiently to resist those attacks. In the presented encryption al-
gorithm, we utilize the primary key parameters (x0, y0, z0, a, and b) to solve the chaotic
oscillator (Equation (1)) in the encryption and decryption procedures. By assuming that
the precision computation of digital devices is 10−16, the key space for the presented
cryptosystem is 1080, which is enough for any cryptographic method.
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Key sensitivity is a vital feature of any secure cryptosystem. Any tiny modifications
in the key lead to different results. To assess the key sensitivity of the proposed image
cryptosystem, we attempt to decrypt the cipher image of Lake several times utilizing tiny
modifications in key parameters. The decryption effects are provided in Figure 12, in
which the original image is not retrieved when making tiny changes in the key parameters.
Furthermore, to test the key sensitivity in quantity terms, we execute an NPCR test on the
decrypted Lake image with the actual key and other decrypted images with slight changes
in the initial keys as stated in Figure 12, the outcomes are displayed in Table 9. From the
outcomes given in Figure 12 and Table 9, the presented image encryption algorithm has
high key sensitivity, in which any slight modifications in initial keys lead to significant
modifications in the results.

Figure 12. Decryption effects of cipher Lake image when making tiny changes in the key parameters.
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Table 9. NPCR values for the decrypted Lake image with the actual key and other decrypted images
with slight changes in the initial keys as stated in Figure 12.

Image NPCR

Figure 12a & Figure 12b 99.62348%
Figure 12a & Figure 12c 99.60479%
Figure 12a & Figure 12d 99.60594%
Figure 12a & Figure 12e 99.61204%
Figure 12a & Figure 12f 99.60975%

5.3.7. Data Loss Attack

During data transmission across a communication channel, the cipher data may have
vulnerability to data loss attacks. Therefore, any image cryptosystem must be invincible
against data loss attacks. To value the proposed image cryptosystem for withstanding data
loss attacks, we cut out some blocks of the cipher image and then attempt to retrieve the
secret data from the defective cipher image through the decryption algorithm. Figure 13
presents the outcomes of data loss attacks, in which the plain image is retrieved effectively
from the defective cipher image.

To assess in quantity terms the visual quality of the retrieved images from defected
cipher images, we utilized peak signal-to-noise ratio (PSNR) which can be formulated
mathematically as stated in Equation (9) [49]:

PSNR(P, D)= 20 log10

(
255√

MSE(P, D)

)
(9)

MSE(P, D)=
1

x× y

x

∑
i=1

y

∑
j=1

[P(i, j)− D(i, j)]2 (10)

where x× y is dimensional of the plain image P, and D indicates the retrieved image from
the defective image. The outcomes of PSNR test for the plain Lake image (Figure 9a) and
the retrieved images (the second row of Figure 13) are displayed in Table 10. From the
outcomes given in Figure 13 and Table 10, it is seen that, when the defective image losses
more data, the retrieved image has lost more of its visual quality.

Figure 13. Results of data loss attacks, in which the Lake image is retrieved effectively from the
defective cipher image.
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Table 10. PSNR values for the plain Lake image (Figure 9a) and the retrieved images (the second row
of Figure 13).

Image PSNR

Losing data by 10% 17.6429
Losing data by 15% 15.8784
Losing data by 20% 14.6695

5.3.8. Comparative Analysis

To prove the effectiveness of the presented image cryptosystem alongside other similar
image cryptosystems, Table 11 presents a comparison of the average values of information
entropy, NPCR, UACI, and correlation coefficients of our encryption system with their
average values reported in [54,56–59]. From the stated data, we can deduce the efficiency
of the proposed image cryptosystem compared to other related approaches.

We can recap the principal advantages of the proposed encryption algorithm as
given below:

• According to the data stated in Table 4, the presented cryptosystem has good encryp-
tion time besides other related algorithms.

• According to the data stated in Table 5, the correlation coefficients of cipher images
are very close to 0, and the proposed cryptosystem has the ability to withstand
correlation analysis.

• According to the data stated in Table 6, the proposed cryptosystem is sensitive to
slight modifications in the plain image.

• According to the plots stated in Figure 11, the histograms of cipher images are uniform
with each other.

• According to the data stated in Table 7, the cipher images have high uniformity
of histograms.

• According to the data stated in Table 8, the entropy values for cipher images are near
8, and the proposed cryptosystem has the ability to withstand entropy analysis.

• According to the outcomes given in Figure 12 and Table 9, the presented image
encryption algorithm has high key sensitivity, in which any slight modifications in
initial keys lead to significant modifications in the results.

• From the outcomes given in Figure 13 and Table 10, it is seen that, when the defective
image losses more data, the retrieved image has lost more of its visual quality.

Table 11. Comparison of the average values of information entropy, NPCR, UACI, and correlation
coefficients of our encryption system with their average values reported in [54,56–59].

Image
Cryptosystem

Information
Entropy UACI NPCR

Correlation Coefficient

Horizontal Vertical Diagonal

Proposed 7.99931 33.453% 99.623% −0.00015 0.00007 0.00015
[56] 7.99929 33.476% 99.611% 0.00219 0.00169 0.00186
[57] 7.99700 33.440% 99.600% −0.00970 −0.00870 0.00650
[54] 7.99941 33.463% 99.609% 0.00265 −0.00105 0.00013
[58] 7.99923 32.620% 99.210% 0.00180 0.00053 0.00113
[59] 7.99658 33.360% 99.610% 0.01554 - -

6. Conclusions

Here, a novel chaotic oscillator was proposed, and its dynamical properties were
investigated.The chaotic attractor of the system was shown. The oscillator was discussed
using bifurcation diagram and Lyapunov exponents. The oscillator has fascinating bifurca-
tions by changing three parameters, a, b and c. Lyapunov exponents of the oscillator were
wholly matched with the bifurcation diagrams and present their types of dynamics. In
addition, this study introduced various cryptographic applications using the effectiveness
of the chaotic flow. A method is presented to construct PRNGs, and the generated PRNG
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algorithm is utilized for constructing secure S-boxes. Finally, a new image cryptosystem
is presented using the proposed PRNG method and the suggested S-box approach. The
effectiveness of the suggested mechanisms was evaluated using several assessments, in
which the outcomes showed the vital characteristics of the presented mechanisms that are
valuable for reliable security purposes. In the future, we aim to study applying the gener-
ated sequences from the proposed PRNG algorithm to the auxiliary classifier generative
adversarial nets [60].
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