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Abstract: The process of revitalising quiescent cells in order for them to proliferate plays a pivotal
role in the repair of worn-out tissues as well as for tissue homeostasis. This process is also crucial
in the growth, development and well-being of higher multi-cellular organisms such as mammals.
Deregulation of proliferation-quiescence transition is related to many diseases, such as cancer. Recent
studies have revealed that this proliferation–quiescence process is regulated tightly by the Rb− E2F
bistable switch mechanism. Based on experimental observations, in this study, we formulate a
mathematical model to examine the effect of the growth factor concentration on the proliferation–
quiescence transition in human cells. Working with a non-dimensionalised model, we prove the
positivity, boundedness and uniqueness of solutions. To understand model solution behaviour close
to bifurcation points, we carry out bifurcation analysis, which is further illustrated by the use of
numerical bifurcation analysis, sensitivity analysis and numerical simulations. Indeed, bifurcation
and numerical analysis of the model predicted a transition between bistable and stable states, which
are dependent on the growth factor concentration parameter (GF). The derived predictions confirm
experimental observations .

Keywords: cell cycle; proliferation; quiescence; system of ODEs; bifurcation analysis; numerical
bifurcation analysis; sensitivity analysis

MSC: 34C23; 65L05

1. Introduction

The human body consists of approximately 1013–1014 cells. A large proportion of these
cells are quiescent, a biochemically distinct state of growth arrest from which cells can
re-enter the cell cycle [1]. The proportion of quiescent cells consists of cells that can no
longer be re-activated to re-enter the cell cycle, and cells that can be re-activated to re-enter
the cell cycle in response to growth factor signals under normal physiological conditions [2].
The cell cycle comprises four phases, namely: G1 (first gap phase), S (synthesis phase), G2
(second gap phase) and M (mitosis), where gap phases refer to the time interval between the
synthesis phase and mitosis [3,4]. Here, mitosis refers to the process by which a single cell
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divides into two identical daughter cells. The commitment of a cell to cell division is driven
by growth factor signals. The availability of sufficient growth factors just beyond a certain
point between G1 and S, known as the restriction point, leads to the progression of the cell
cycle process, otherwise the cell enters a reversible state of growth arrest (G0) [5–12].

Mammalian cellular homeostasis (the state of steady internal, physical, and chem-
ical conditions maintained by cells) depends on the ability of cells to reversibly switch
between quiescence and proliferation [13]. This mechanism is crucial for tissue repair and
regeneration and is fundamental to the growth, development and well-being of mammals.
The decision by cells to exit or enter quiescence is dysregulated in cancer and degenera-
tive diseases [14–16]. Therefore, understanding the molecular mechanisms that control
the reversible transition between quiescence and proliferation is crucial and remains a
challenging problem in biological and medical sciences. In the 1970s and 1980s, three
classes of models were proposed to describe the transition between cellular quiescence and
proliferation [17]. These include: the “transition probability” models [18–21], the “growth
controlled” models [22,23] and the hybrid models [24,25]. Hybrid models were developed
by integrating transition probability- and growth-controlled models [24,25]. Though these
models are coherent with diverse experimental data, they lack depth, since they are descrip-
tive. Modelling proliferation–quiescence transition has shifted from this approach since
the discovery, in the contexts of molecular and cell biology, of certain genes that regulate
proliferation–quiescence transition [17]. Continuum mathematical models describing the
temporal dynamics to provide insights into proliferation–quiescence transition within the
cell cycle using gene regulatory networks have been proposed in the last two decades [26–
35]. Limit cycles [28,30,32], cell-mass-regulated bi-stable systems [25,34,36], bi-stable and
excitable systems [33,37] and transient processes [26,29,38] are examples of the cell-cycle
dynamics deduced through cell-cycle modelling. It has been demonstrated experimentally
that proliferation–quiescence transition is controlled by the Rb− E2F signalling network,
which acts as a bi-stable switch [17]. Here, Rb and E2F represent the Retinoblastoma and
Transcription factors respectively. Previously, models for the regulation of the Rb− E2F
have been put forward and simulated [29,32,38], with more details provided in the model
proposed by Aguda and Tang [38]. At the heart of the regulation of the Rb− E2F signalling
network are: cyclin D(CycD), cyclin E(CycE), cyclin A(CycA), cyclin-dependent kinases
(CDKs), family of transcription factors E2F, Myc and the retinoblastoma (Rb) family of
proteins [39,40]. The retinoblastoma (Rb) protein family is responsible for regulating prolif-
eration in most cells. The E2F family of transcription factors is responsible for the regulation
of genes involved in DNA replication and cell cycle progression [41,42]. Interactions among
these regulators have been outlined and verified experimentally [17]. However, due to
the complex nature of the Rb− E2F network, which consists of criss-crossing linkages, a
clear description of the proliferation–quiescence transition is elusive. In this study, we
simplify the Rb− E2F signalling network that has been theoretically and experimentally
verified in [43–46], and formulate an activator-inhibitor model system following the same
philosophy as that proposed by Tyson et al. in [25], to analyse the proliferation–quiescence
transition. To investigate the dynamics of the Rb − E2F signalling network describing
proliferation–quiescence transition, we have taken the approach of combining redundant
and overlapping cellular activities and collapsing linear cascades, as presented by Yao
et al. [42], to simplify the model to three nodes connected by activation and inhibition
links, as experimentally verified in [45]. Although the terms activation and inhibition are
generally used in the literature, in this study we will also refer to these molecular processes
as the production/synthesis and degradation/removal of abundant species, respectively.
In addition, we consider the conservation of the total concentration of the Rb family of
proteins and show through bifurcation and numerical analysis that the resulting system
generates a set of three dynamical behaviours shown in experiments [1,2,17]; namely, stabil-
ity, bistability and stability when the growth factor concentration (GF) is varied. Bifurcation
and numerical analysis also show that quiescence is achieved under low growth factor
stimulation and proliferation requires strong growth-factor stimulation.
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This paper is organised as follows: in Section 2, we utilise the current understanding
of activator-inhibitor systems and apply biologically reasonable assumptions to motivate
a system of non-linear ordinary differential equations (ODEs) and describe the pertinent
interactions. In the same section, we non-dimensionalise the system, outline positivity,
boundedness and prove the existence and uniqueness of solutions. This section ends with
a further study of the non-linear ODE system to gain insights into its stability behaviour. In
Section 3, we conduct a bifurcation analysis of the model to analyse the effect of varying the
growth factor concentration on the steady states of the system. We also conduct numerical
simulations to illustrate, computationally, the theoretical results. The last part of Section 3
presents sensitivity analysis for parameters of the system. We discuss the interpretations
and implications of our results in Section 4. Finally, in Section 5, we discuss the limitations
of our study and present possible future research problems.

2. Materials and Methods
2.1. Proliferation–Quiescence Dynamics Model

Our mathematical model is formulated based on first principles by first simplifying
the Rb− E2F model studied by Yao et al. [17], collapsing all the several reaction networks
into three main nodes denoted by: R, M and E and thus reducing the reaction links
from 10 to 8, as shown in Figure 1. The R node consists of the Rb family of proteins
(Rbp107 and Rbp108), the E node consists of the family of transcription factors E2F, Cyclin
E and Cyclin A, and the M node consists of cyclin D and Myc. Experimentally, it is
observed that R proteins are conserved throughout, while those of M and E are not [40].
Due to lack of experimental justifications for some reactions, and following other published
works [12,40], in formulating our model we will employ Michaelis–Menten kinetics, mass
action as well as the Hill function [47]. Michaelis–Menten kinetics describe the rate of
enzymatic reactions by relating reaction rates to the concentration of a substrate, while the
law of mass action states that the rate of a chemical reaction is directly proportional to the
product of the activities or concentrations of the reactants [48,49].

Yao et al. [17] represented the three respective nodes by symbols: RP, EE and MD.
These nodes are connected by 10 regulatory linkages. In their model, they assumed
activation of the three species RP, EE and MD by Hill functions of the form: An

Kn+[An ]
, where

A represents any of the three species RP, MD or EE, K is a Michaelis–Menten constant
and 1 ≤ n ≤ 10. In addition, they assumed that the inhibition of RP, EE and MD was
through mass action kinetics. Of interest was their exclusion of the constitutive synthesis
of EE together with its self-activation and the conservation of mass of the RP family of
proteins, which we will consider in our model. Moreover, they considered self-inhibition of
EE and inhibition of EE by MD, which we removed in our model. The simplified network
self-reorganises to form an activator-inhibitor network, as shown in Figure 1.

In our model formulation, we ignore the spatial localisation of the proteins; such an
extension forms part of our current studies and is beyond the scope of this work. We
note, however, that such an approach leads naturally to partial differential equations.
The resulting model, when spatial effects are neglected, is given in terms of a system of
non-linear ordinary differential equations (ODEs) describing the rate of change in the
concentrations of M(t), R(t) and E(t). The main novelty of the model is the use of the Hill
function with n = 2 to describe kinetics with saturation. The model is formulated based on
the following assumptions:

1 The production of M(t) is through mass action by extra-cellular growth signals GF
and by E(t), which is modelled using Michaelis–Menten kinetics, whereas its decay is
modelled by mass action. Yao et al. [2] considered Michaelis–Menten kinetics for the
production of M(t) through extra-cellular growth signals.

2 The activation of R(t) is enhanced by E(t) and its inhibition is intensified by M(t) and
E(t), which are both modelled using mass action. It is pertinent to note that, in this
study, we assume conservation of mass for the Rb family of proteins, which was not
considered in [2]. In addition, we assume self-activation and inhibition of R(t) using
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the Hill function with n = 2. On the contrary, Yao et. al. [2] modelled the production
and depletion of R(t) using Michaelis–Menten kinetics and mass action, respectively,
and self-activation and de-activation were not considered.

3 E(t) is synthesised, cf. [40], with the use of Michaelis–Menten kinetics and its synthesis
is enhanced by M(t) with the use of a Hill function with n = 2, while its decay is
enhanced by R(t) with the use of mass action. On the contrary, the authors in [2] did
not consider constitutive synthesis of E(t), which has been observed experimentally
as indicated in [40].

Figure 1. An activator-inhibitor network for the Rb− E2F signalling network [42]. The solid arrows
represent activation mechanism while the broken lines represent inhibition. Here, the growth factors
GF activate M (cyclin D and Myc) and, in turn M activates E (cyclin A, cyclin E and E2F transcription
factors) while E activates M, forming a positive feedback loop. R (Rb family of proteins) inhibits E,
while E activates and inhibits R and M inhibits R.

The main novelty of our proposed model is that we consider mass conservation of
the Rb family of proteins represented by R(t) existing in both hypo-phosphorylated form
denoted by Ru(t) and hyper-phosphorylated form denoted by Rp(t); whereas in [42] it
was assumed that the concentration of the Rb family of proteins was abundant and hence
there was no mass conservation. This assumption makes our model more realistic, as the
transition from cellular quiescence to proliferation is dependent on the cycling between the
hyper-phosphorylated and hypo-phosphorylated forms of Rb family of proteins mediated
by cyclin-dependent kinases. Hyperphosphorylation of Rb enhances proliferation, whereas
hypo-phosphorylated Rb enhances quiescence [50]. In addition, some reaction pathways
were not considered in [2], including constitutive synthesis of E and the simple mass action
for the activation of R(t). Therefore, employing mass conservation, the total concentration
of R(t) is such that:

Ru(t) + Rp(t) = RT = Constant.

The state variable R(t) denotes the concentration of Rp(t) at time t in the model.
Ru(t) corresponds to the inactive term RT − R used in Equation (1c). Therefore, the time
evolution of M(t), E(t) and R(t) are, respectively, described by the following system of
non-linear ordinary differential equations (ODEs):
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dM
dt

= α1GF︸ ︷︷ ︸
production o f M by GF

+
β1ME
k1 + E︸ ︷︷ ︸

production o f M by E

− δM︸︷︷︸
decay o f M

, (1a)

dE
dt

= α6︸︷︷︸
E baseline value

+
α4E

α8 + E︸ ︷︷ ︸
E constitutive−synthesis

+
β4EM2

k2
r3
+ M2︸ ︷︷ ︸

Production o f E by M

− α5RE︸ ︷︷ ︸
removal o f E by R

, (1b)

dR
dt

= β2(RT − R)E︸ ︷︷ ︸
Activation o f R by E

+
β3(RT − R)2

k2
r1
+ (RT − R)2︸ ︷︷ ︸

R baseline activation

− α2RM︸ ︷︷ ︸
Inhibition o f R by M

− α3RE︸ ︷︷ ︸
inhibition o f R by E

− β5R2

k2
r2
+ R2︸ ︷︷ ︸

R baseline inhibition

.
(1c)

The system is closed with non-negative initial conditions M(0) = M0, E(0) = E0, and
R(0) = R0, 0 ≤ M(t), E(t) and 0 ≤ R(t) ≤ RT . In our model, we consider M and E families
of proteins to exist in abundance; hence, there is no conservation of mass, unlike the Rb
family of proteins, which is conserved as outlined in the model formulation. This implies,
that for some appropriate model parameter values, M and E might be unbounded. Model
parameters are chosen based on a previous modelling study on the Rb− E2F pathway [17].
All model parameters are strictly positive and their values, units and physical meaning are
described in Table 1.

Table 1. Parameters used for simulations and bifurcation analysis. Parameter values are taken
from [17,42] and some of them adjusted to illustrate the qualitative dynamics. Here, U represents the
unit of concentration and s the unit of time t.

Parameter Description Value Units Reference

α1 Growth factors activation rate 1 s−1 [17]

GF Growth factors concentration varies U [42]

δ Inhibition rate of M 1.001 s−1 [17]

k1 Michaelis–Menten constant 1 U [42]

β1 Activation rate of M 1 s−1 [42]

β2 Activation of R protein family 1 U−1s−1 [42]

α3 Inhibition rate of R by E 1 U−1s−1 Estimate

α2 Inhibition rate of R by M 1 U−1s−1 Estimate

β3 R baseline inhibition rate 1 Us−1 Estimate

RT Total concentration of R 5 U [40]

α4 E self activation rate 0.02 Us−1 [17]

β4 Activation rate E by M 0.02 s−1 [17]

β5 R baseline inhibition rate 1 Us−1 Estimate

α6 E constitutive activation rate 0.001 s−1 [40]

α8 Michaelis–Menten constant 0.92 U [42]

α5 Inhibition rate of E by R 0.01 U−1s−1 [42]

kr1 Michaelis–Menten constant 0.05 U [42]

kr2 Michelis–Menten constant 1 U [42]

kr3 Michaelis–Menten constant 1 U [42]
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2.2. Mathematical Analysis of the Model

In this section, we non-dimensionalise system (1) so that it is unit free for purposes of
mathematical analysis, including proving positivity, boundedness, existence and unique-
ness of solutions as well as performing the sensitivity analysis. However, numerical
bifurcation and numerical simulations were performed on the dimensional model. This is
meant to preserve the original concentration of species GF, which appears in Equation (1a).

2.3. Non-Dimensionalisation

There are nineteen parameters in system (1). We can reduce the number of parameters
to sixteen by defining new coordinates M = Xx∗, E = Yy∗, R = Zz∗ and t = Tτ, where
X, Y, Z and t are constant (dimension carrying) scales, to be chosen and x∗; y∗; z∗; τ are
the numerical (dimensionless) variables. Substituting these into (1) and letting a1 = α1GF

α4
,

a2 = β1α8
α4

, a3 = k1
α8

, a4 = δα8
α4

, a5 =
β2α2

8
α4

, a6 = RT
α8

, a7 = β3
α4

, a8 =
k2

r1
α2

8
, a9 =

α2α2
8

α4
, a10 =

α3α2
8

α4
,

a11 = β5
α4

, a12 =
k2

r2
α2

8
, a13 = β4α8

α4
, a14 =

k2
r3

α2
8

, a15 = α6α8
α4

and a16 =
α5α2

8
α4

, and, dropping * so

that x∗ = x, y∗ = y and z∗ = z, we obtain the non-dimensional system:

dx
dt

= a1 +
a2xy

a3 + y
− a4x, (2a)

dy
dt

= a16 +
y

1 + y
+

a13x2y
a14 + x2 − a15yz, (2b)

dz
dt

= a5(a6 − z)y +
a7(a6 − z)2

a8 + (a6 − z)2 − a9xz− a10yz− a11z2

a12 + z2 , (2c)

with positive initial conditions x(0) = x0, y(0) = y0 and z(0) = z0 and positive constant
parameters a1, . . . , a16.

2.4. Positivity, Boundedness and Existence and Uniqueness of Solutions

We first show thatsystem (2), associated with initial conditions, has a unique local solution.

Lemma 1 (Local existence and uniqueness). System (2), associated with the initial condition
(x(0), y(0), andz(0)), has a unique local solution in the interval (0, T) for some T > 0.

Proof. System (2) can be written in matrix form, as follows:

d~x
dt

=

 dx
dt
dy
dt
dz
dt

 = ~f (~x) =

 f1(x, y, z)
f2(x, y, z)
f3(x, y, z)

, (3)

for ~x = ~x(t) =
(

x(t), y(t), z(t)
)T and

f1(x, y, z) := a1 +
a2xy

a3 + y
− a4x,

f2(x, y, z) := a16 +
y

1 + y
+

a13x2y
a14 + x2 − a15yz,

f3(x, y, z) := a5(a6 − z)y +
a7(a6 − z)2

a8 + (a6 − z)2 − a9xz− a10yz− a11z2

a12 + z2 .

It follows that ~f is Lipschitz continuous, i.e., there exists a constant L ≥ 0 such that∥∥∥~f (~x1)− ~f (~x2)
∥∥∥ ≤ L‖~x1 −~x2‖, for all ~x1, ~x2 ∈ D, for any bounded region D in R3

+. Then,
local existence and uniqueness of solutions is established by the classic theory, cf. [51].
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Next, the positivity of solutions of (2) is established; hence, the feasibility of solutions
for the study of the underlying biological problem is guaranteed.

Lemma 2 (Positivity). If the initial condition in system (2) satisfies x(0) > 0, y(0) > 0, z(0) > 0,
then the solution (x(t), y(t), z(t)) of (2) will remain in R3

+ for all t ∈ [0, T], where T > 0 stands
for the maximum existence time guaranteed by Lemma 1.

Proof. We must prove that (x(t), y(t), z(t)) will remain in R3
+ for any t ∈ (0, T), where

T > 0 is the maximum existence time. Since x(0) > 0, y(0) > 0, z(0) > 0 then, by a
continuity argument, there exists t1 > 0 such that (x(t), y(t), z(t)) ∈ R3

+ for all t ∈ [0, t1].
Thus, recalling that all parameters used in system (2) are positive, we derive the following
inequalities in the interval (0, t1)

dx
dt

= a1 +
a2xy

a3 + y
− a4x ≥ −a4x, (4a)

dy
dt

= a16 +
y

1 + y
+

a13x2y
a14 + x2 − a15yz ≥ −a15yz, (4b)

dz
dt

= a5(a6 − z)y +
a7(a6 − z)2

a8 + (a6 − z)2 − a9xz− a10yz− a11z2

a12 + z2 ≥ −a5z− a9xz− a10yz. (4c)

Now, integrating the above differential equation inequalities in the interval [t1, T), we
obtain

x(t) ≥ A0e−a4(t−t1) > 0,

y(t) ≥ C0e−a15
∫ t

t1
z(t)dt

> 0,

z(t) ≥ B0e−a9
∫ t

t1
x(t)dt−(a5+a10)

∫ t
t1

y(t)dt
> 0,

for some positive constants A0, B0, C0. Thus, for all t ∈ [0, t1], x(t), y(t), and z(t) will
remain in R3

+. Repeating this argument, we can prove that (x(t), y(t), z(t)) ∈ R3
+ for any

t ∈ (0, T), and this completes the proof.

Lemma 3 (Boundedness). There exists xv, yv, zv > 0 such that lim supt→T x(t) ≤ xv,
lim supt→T y(t) ≤ yv and lim supt→T z(t) ≤ zv provided that min(θ, φ) > 0 where θ := a4− a2
and φ := a15zv − a13. Here, T is the maximum existence time for system (2) given by Lemma 1.

Proof. Since all involved constants ai, i = 1, . . . , 16 are positive, thanks to Lemma 2 we can
deduce that

lim
z→a6

dz
dt

= −a6a9x− a6a10y−
a11a2

6
a12 + a2

6
≤ 0,

which implies that there exists zv > 0 such that lim supt→T z(t) ≤ zv; hence, z(t) is bounded
in [0, T]. By making the substitution z = zv we also obtain that

dx
dt

+
dy
dt

= a1 +
a2xy

a3 + y
− a4x + a16 +

y
y + 1

+
a13x2y

a14 + x2 − a15yzv.

≤ a1 + a2x− a4x + a16 + 1 + a13y− a15yzv,

≤ a1 + a16 + 1− x(a4 − a2)− y(a15zv − a13).

Setting θ := a4 − a2 and φ := a15zv − a13, provided that min(θ, φ) > 0, then it follows that

d(x + y)
dt

≤ λ− θx− φy ≤ λ−min(θ, φ)(x + y),
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where λ := a1 + a16 + 1. Solving this differential inequality using the method of integrating
factor, we obtain:

(x + y)(t) ≤ λ

min(θ, φ)
+ c0e−min(θ,φ)t ≤ λ

min(θ, φ)
+ c0,

and thus

lim sup
t→T

(x + y)(t) ≤ λ

min(θ, φ)
+ c0.

Now, choosing

xv = yv =
λ

min(θ, φ)
+ c0;

entails that (x + y)(t) is bounded from above and, therefore, x(t), andy(t) are also bounded
from above by xv = yv for all t ∈ [0, T].

Theorem 1. Under the assumption of Lemma 3 and provided that x(0), y(0), z(0)> 0, then
system (2) has a global-in-time positive solution; that is, (x(t), y(t), z(t)) will exist in R3

+ and is
bounded for any t > 0.

Proof. The existence of a local positive solution for system (2) is an immediate consequence
of Lemmas 1 and 2. Thanks to Lemma 2, such a solution is also bounded in (0, T) and, thus,
the classical theory, cf. [51] (Corollary 2.3.2), guarantees its existence as a (global) positive
solution for all t > 0.

Next, we demonstrate the existence of at least three uniform states for the model
system (1).

2.5. Steady States

The uniform steady state (M∗, E∗, R∗) of System (1) is a solution to the following
system of nonlinear algebraic equations

α1GF +
β1ME
k1 + E

− δM =0, (5)

α6 +
α4E

α8 + E
+

β4EM2

k2
r3
+ M2 − α5RE =0, (6)

β2(RT − R)E +
β3(RT − R)2

k2
r1
+ (RT − R)2 − α2RM− α3RE− β5R2

k2
r2
+ R2 =0. (7)

Analytically, solving this set of equations gives a cubic polynomial which, by the
Fundamental theorem of algebra [52], yields at most three steady states. The illustration
of this is shown by plotting numerical bifurcation analysis results shown in Figure 2.
Therefore, for some parameter values, system (1) admits up to three steady states, if they
exist. We remark that finding exact analytical solutions of the uniform steady states was
not possible due to the intractability of the system. Instead, we used bifurcation analysis to
unravel the existence of such states.
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2.6. Linear Stability Analysis

The following analysis establishes the stability of the positive steady states for ODE
system (1). To investigate the stability of (1), we linearize it around the steady state
(M∗, E∗, R∗) to obtain: 

d(M−M∗)
dt

d(E− E∗)
dt

d(R− R∗)
dt

 = J

M−M∗

E− E∗

R− R∗

, (8)

where

J =



∂g1
∂M

∂g1
∂E

∂g1
∂R

∂g2
∂M

∂g2
∂E

∂g2
∂R

∂g3
∂M

∂g3
∂E

∂g3
∂R


(M∗ ,E∗ ,R∗)

. (9)

with

g1(M, E, R) = α1GF +
β1ME
k1 + E

− δM,

g2(M, E, R) = α6 +
α4E

α8 + E
+

β4EM2

k2
3 + M2

− α5RE,

g3(M, E, R) = β2(RT − R)E +
β3(RT − R)2

k2
r1
+ (RT − R)2 − α2RM− α3RE− β5R2

k2
r2
+ R2 ,

and, thus,

∂g1

∂M

∣∣∣
(M∗ ,E∗ ,R∗)

= −δ +
β1E∗

k1 + E∗
:= ω1,

∂g1

∂E

∣∣∣
(M∗ ,E∗ ,R∗)

=
k1β1M∗

(k1 + E∗)2 := ω2 > 0,

∂g1

∂R

∣∣∣
(M∗ ,E∗ ,R∗)

= 0,

∂g2

∂M

∣∣∣
(M∗ ,E∗ ,R∗)

=
2M∗β4E∗k2

3
(k2

3 + M∗2)2
:= γ1 > 0,

∂g2

∂E

∣∣∣
(M∗ ,E∗ ,R∗)

=
α4α8

(α8 + E∗)2 +
β4M∗2

k2
3 + M∗2

− α5R∗ := γ2,

∂g2

∂R

∣∣∣
(M∗ ,E∗ ,R∗)

= −α5E∗ := γ3 < 0,

∂g3

∂M

∣∣∣
(M∗ ,E∗ ,R∗)

= −α2R∗ := θ1 < 0,

∂g3

∂E

∣∣∣
(M∗ ,E∗ ,R∗)

= β2(RT − R∗)− α2R∗ := θ2,

∂g3

∂R

∣∣∣
(M∗ ,E∗ ,R∗)

= −β2E∗ −
2(RT − R∗)2β3k2

r1

[k2
r1
+ (RT − R∗)2]2

:= θ3 < 0,

recalling that, due to Theorem 1. it also holds that (M∗, E∗, R∗) ∈ R3
+.

Theorem 2. Assume that (M∗, E∗, R∗) is the steady-state solution of ODE system (1). Given that
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(A). ω1, γ2 < 0 and θ2 > 0,
(B). ω1θ2 < ω2θ1 and ω2γ1 < ω1γ2,
(C). ω2θ1γ3 +ω1ω2γ1 > 0 and γ2γ3θ2 +ω2γ1γ2 > 0, then (M*, E*, R*) is asymptotically stable.

Proof. The Jacobian matrix for the system is given by

J =

ω1 ω2 0
γ1 γ2 γ3
θ1 θ2 θ3

. (10)

Next, we compute the eigenvalues of J by solving the equation

|J − λI| =

∣∣∣∣∣∣∣
ω1 − λ ω2 0

γ1 γ2 − λ γ3
θ1 θ2 θ3 − λ

∣∣∣∣∣∣∣ = 0, (11)

where I is the 3× 3 identity matrix. The characteristic polynomial of J is then given by

λ3 + p1λ2 + p2λ + p3 = 0, (12)

with coefficients,

p1 =− (ω1 + γ2 + θ3),

p2 =ω1γ2 + ω1θ3 + γ2θ3 − γ3θ2 −ω2γ1,

p3 =ω1γ3θ2 −ω1γ2θ3 + ω2γ1θ3 −ω2γ3θ1 .

By the Routh–Hurwitz stability criterion, all the roots of (12) have negative real parts if
p1 > 0, p3 > 0 and p1 p2 − p3 > 0. Clearly p1 > 0 by condition (A). In addition,

p3 =ω1γ3θ2 −ω2γ3θ1 + ω2γ1θ3 −ω1γ2θ3

=γ3(ω1θ2 −ω2θ1) + θ3(ω2γ1 −ω1γ2)

and, thus, by conditions (A) and (B) it follows that p3 > 0.
It remains to show that p1 p2 − p3 > 0. Now,

p1 p2 − p3 =− (ω1 + γ2 + θ3)(ω1γ2 + ω1θ3 + γ2θ3 − γ3θ2 −ω2γ1)

− (ω2γ1θ3 + ω1γ3θ2 −ω1γ2θ3 −ω2θ1γ3).

After simplifying and grouping, we obtain

p1 p2 − p3 =−ω2
1γ2 −ω2

1θ3 + ω1ω2γ1 −ω1γ2
2 −ω1γ2θ3 − γ2

2θ3 + γ2γ3θ2

+ ω2γ1γ2 −ω1γ2θ3 −ω1θ2
3 − γ2θ2

3 + γ3θ2θ3 + ω2θ1γ3

=−ω2
1γ2 −ω2

1θ3 + ω2θ1γ3 + ω1ω2γ1 −ω1γ2
2 −ω1γ2θ3 − γ2

2θ3

+ γ2γ3θ2 + ω2γ1γ2 −ω1γ2θ3 −ω1θ2
3 − γ2θ2

3 + γ3θ2θ3.

Due to conditions (A)–(C) and in conjunction with the sign of the parameter θ3 < 0, then
p1 p2 − p3 > 0. Hence, the system of ODEs (1) becomes asymptotically stable.

3. Results
3.1. Bifurcation Analysis

Bifurcation analysis of the system of ODEs (1) was carried out using XPPAUT, a
software program freely available from http://www.math.pitt.edu/$\sim$bard/xpp/xpp.
html (accessed on 22 November 2020) [53]. Parameter values for our model are shown
in Table 1, unless otherwise specified. The parameter values were chosen based on the

http://www.math.pitt.edu/$\sim $bard/xpp/xpp.html
http://www.math.pitt.edu/$\sim $bard/xpp/xpp.html
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literature whenever possible and some of them adjusted to illustrate qualitative dynamics
[17,42]. As shown in Figure 2a, there exists a unique steady state corresponding to the
quiescent state when GF < 0.3735 with M∗ < 1.225. For 0.3735 < GF < 0.4138, bistable
dynamics result from a saddle node bifurcation marked by two black dots labelled as SN
(saddle node). As GF increases further out of the bistable regime, M∗ jumps into its high
steady state, where a cell undergoes proliferation. We also plot k1 against GF and generate
a two parameter bifurcation diagram shown in Figure 2c. In the latter figure, the bistable
region is coloured green.

(a) (b)

(c)

Figure 2. Numerical bifurcation diagrams for the system of ODEs (1), with parameter values listed
in Table 1. (a) One parameter bifurcation diagram for M∗, with the growth factor GF concentration
value as a bifurcation parameter. The saddle-node (SN) bifurcation points for GF are 0.3735 and
0.4138 and the corresponding M∗ are 3.826 and 1.225, respectively. The red line represents the stable
steady states whereas the thin black line represent saddle points. The black dots labelled SN are the
saddle-node bifurcation points, which span the region characterised by bistable dynamics. (b) A
one-parameter bifurcation diagram showing a zoom of (a) around the two saddle-node bifurcation
points. (c) Two-parameter bifurcation diagram with k1 and GF as bifurcation parameters. The green
coloured region is characterised by bistable dynamics, whereas the colourless region is characterised
by stable dynamics.

3.2. Numerical Simulations

Numerical simulations were carried out using the MATLAB ode45 solver [54]. This is a
standard solver for ordinary differential equations (ODEs) that implements a Runge–Kutta
method with a variable time-step for efficient computations, (see [55] for details). We
simulated the system by selecting values of GF corresponding to different dynamic regimes
deduced through the bifurcation analysis in the previous subsection. We solved the system
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of ODEs (1) for those three regimes and plot the solution for separate time intervals with a
variable growth factor concentration value and for different initial conditions.

First, we show the time evolution for M(t), R(t) and E(t) by solving numerically
system (1) with parameters as outlined in Table 1 assuming the growth factor has concen-
tration value GF = 0.3 with initial conditions M0 = 0.2, E0 = 1.2 and R0 = 3, which bring
the system to the lower stable region, as shown in Figure 3a.

(a) (b)

(c)

Figure 3. Numerical simulations illustrating the time evolution dynamics of (M(t), R(t), E(t)) for
system (1) corresponding to different dynamic regimes. As the value of GF increases, the system
transitions from stable ((a) with GF = 0.3 and initial conditions M0 = 0.2, E0 = 1.2, R0 = 3) through
bistable ((b) with GF = 0.39 and two sets of initial conditions M0 = 0.2, E0 = 1.2, R0 = 3 and
M0 = 20, E0 = 5 and R0 = 5) then back to stable ((c) with GF = 0.45 and initial conditions M0 = 20,
E0 = 5 and R0 = 5).

Second, we solved the system with the growth factor concentration GF value of 0.39
and two sets of initial conditions M0 = 0.2, E0 = 1.2, R0 = 3 and M0 = 20, E0 = 5, R0 = 5
while keeping all the other parameters fixed. The results obtained show that the system
exhibits bistability, as shown in Figure 3b. Third, we solved the model after adjusting the
growth factor concentration GF to 0.45 and, keeping all other parameters unchanged and
initial conditions M0 = 20, E0 = 5 and R0 = 5, the model evolves to a higher steady state,
as shown in Figure 3c. These results confirm the conditions set in Theorem 2.

Next, we explored conditions given in Lemma 3 and Theorem 2, as demonstrated in
Figure 4. Figure 4 illustrates numerically the dynamics of model system (1) when both
Lemma 3 and Theorem 2 are violated. When both conditions of Lemma 3 and Theorem 2
are not satisfied, then there exist two steady states, one stable and another unstable, and,
henceforth, the possibility of two different dynamics: either bounded (stable) or unbounded
(unstable) solutions. The unstable steady state acts as a switch, determining the initial
conditions under which the system may exhibit bounded or unbounded behaviour.



Mathematics 2022, 10, 2426 13 of 24

(a) (b)

(c) (d)

(e) (f)

Figure 4. Numerical bifurcations and simulations illustrating the dynamics of System (1) where we
explore the conditions of Theorem 2. (a–c) bifurcation diagrams for M(t), E(t) and R(t), respectively,
with respect to α5; other parameter values are fixed as shown in Table 1 and GF = 0.3. (d) shows
unbounded solutions of E and M with α5 = 0.0079, δ = 1 and GF = 0.3, while keeping all the other
parameters fixed as in Table 1 and initial conditions M0 = 1.2, E0 = 3, R0 = 1.2 so that the conditions
set in Theorem 2 and 3 are not met. To be more specific, γ2 > 0, which is against conditions (A),
(B) and (C) of Theorem 2. The M(t) curve was amplified by a factor of 10 to visualize its behaviour
with time and show that it grows unbounded with time while the R curve remain bounded because
of conservation. (e) illustrates a zoom of the unstable dynamics of (d) for a short time t ∈ [0, 2000]
without scaling. (f) shows the stable time evolution of M(t), E(t) and R(t) with α5 = 0.0079, δ = 1
and GF = 0.3 with initial condition (M0, E0, R0) = (0.4782, 0.594, 1.8616). With these parameters, the
model converges to the steady state (M∗, E∗, R∗) = (0.7255, 1.4184, 2.0449).

To illustrate such dynamics, we set α5 = 0.0079, δ = 1 and GF = 0.3, while keeping
the rest of the parameters fixed, as shown in Table 1. This choice of parameters ensures
that conditions (B) and (C) outlined in Theorem 2 are violated while, at the same time, the
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min(θ, φ) = 0, which violates Lemma 3. With this choice of parameters, model system
(1) exhibits two steady states, as predicted above, an unstable and a stable steady state,
which leads to either unbounded (unstable) or bounded (stable) solutions, respectively.
Figure 4d demonstrates the validity of our theoretical results; the system of ODEs (1) be-
comes unstable with solutions for M(t) and E(t) growing unboundedly while those of
R(t) remain bounded. The biological justification for this type of model behaviour lies in
our assumptions. Unlike the Rb family of proteins, which are assumed to be conserved
for all time, M(t) and E(t) species are not conserved, because they are assumed to exist
in abundance. Therefore, they are not constrained by laws of mass conservation. We
also plot the bifurcation diagram as shown in Figure 4a, for which we have the lower
stable steady state shown in red

(
(M∗, E∗, R∗) = (0.7255, 1.4184, 2.0449) with α5 = 0.0079)

, followed by an upper unstable steady state also for the same parameter value α5 = 0.0079
(shown in grey) (M∗, E∗, R∗) = (0.9755, 2.25168, 2.08855). For completeness, we have in-
cluded the bifurcation diagrams for E(t) and R(t), respectively, as illustrated in Figure 4b,c.
The eigenvalues of the above steady states are given by (−3.7119,−0.4209,−0.0015) and
(−5.6216,−0.3165, 0.0013), respectively, confirming that the lower steady state is stable
while the upper is unstable. The unstable steady state acts as a switch mechanism between
the unbounded and bounded solutions, determining the initial conditions under which the
system may either exhibit unbounded or bounded solutions when conditions in Lemma 3
and Theorem 2 are violated.

We complete this section by illustrating stable dynamics of model system (1), as shown
in Figure 4f. To obtain bounded solutions close to the unstable steady state, we adjusted our
initial conditions to M0 = 0.4782, E0 = 0.594 and R0 = 1.8616, such that these are located
below the unstable steady state. The model system solved with this set of initial conditions
exhibits bounded solutions which converge to the stable steady state computed above.

3.3. Sensitivity Analysis

Following the works in [56–58], we present the local sensitivity analysis of system (1)
with respect to baseline parameter values in Table 1. We used local sensitivity analysis to
identify the set of model parameters whose percentage change from the baseline parameter
set causes significant changes in the model output [59]. Hence, local sensitivity analysis
provides a useful insight into identifying model components that contribute most to the
variability in the model output [59,60]. In general, there are two types of sensitivity analyses:
local and global. In this article, we focused on local sensitivity analysis, which will allow
us to evaluate changes in the model output with respect to variations in a single parameter
at a time [59,61]. Global sensitivity analysis will allow for simultaneous changes in model
parameters and evaluation of the interaction between parameters, which is not in our
interest at this stage. Our methodology involves increasing parameters one at a time by
5%, and 10% and decreasing them by 5% and 10%, respectively. Next, we calculated
the local sensitivity indices (percentage changes) in the solutions for M(t), E(t) and R(t).
The results for 5% increase, 5% decrease, 10% increase and 10% decrease are shown in
Tables 2–5, respectively. We proceed to illustrate comparatively the results corresponding
to 5% increase and decrease in Figure 5 as well as 10% increase and decrease in Figure 6 for
each variable. First, we observe that the steady state M∗ is mostly sensitive to parameters
k1 and GF, as shown in Figure 5a,b. Clearly, k1 and GF have negative and positive effects to
M∗, respectively, corresponding to 5% increase and decrease in parameters. This means that
increasing k1 reduces M∗, whereas increasing GF increases M∗. Second, the steady state E∗

is mostly sensitive to α2 and α5 followed by k1, kr1 and GF, as shown in Figure 5c,d. Third,
kr3 and α2 have the greatest effect on R∗ followed by α4 and α6, as shown in Figure 5c,d. It
is also pertinent to note that the effect of 5% parameter increases on the steady states of
M(t), E(t) and R(t) has a direct opposite effect to that of reducing the parameters by the
same margin, as shown in Figure 5a–f. Furthermore, the response of M(t), E(t) and R(t)
steady-state values to a 5% increase in parameters is almost similar, as shown in Figure 5a,c.
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In addition, the response of the M(t), E(t) and R(t) steady-state values to a 5% decrease in
parameters is also similar, as shown in Figure 5b,d, albeit with different magnitudes.

This can interpreted biologically as follows: increasing (i) the growth factor concen-
tration GF, (ii) the activation rate of M(t), and (iii) the inhibition rate of E(t) by R(t) will
result in an increase in the steady-state values of M(t) and E(t), leading to proliferation.
Decreasing these parameters will reduce their respective steady states, leading cells to qui-
escence. In Figure 5e, all the parameters except α2, α5, β2, β3, kr1 , and kr2 have an opposite
effect on the steady state of R(t) when compared to those of M(t)and E(t), as shown in
Figure 5a,c. Thus, increasing these parameters would have the effect of suppressing both
M∗ and E∗, as well as increasing R∗.

Table 2. Percentage changes in the steady-state values M∗, E∗ and R∗ after a 5% increase in parameter
values of the non-linear model (1).

5% Increase in Parameter % Change in M∗ % Change in E∗ % Change in R∗

k1 −10.330 −10.186 0.7016

δ −2.5797 −2.6158 −0.0973

α6 −2.3573 −6.6279 1.7049

α4 1.6213 4.5563 −1.1907

α8 1.3212 3.7135 −0.96101

β4 −1.4816 −4.1652 1.0916

kr3 −3.6855 −10.361 2.78

α5 3.6754 10.331 0.9486

β2 0.9689 2.7222 0.1993

RT 1.1586 3.2559 −0.8912

β3 0.4682 1.3150 0.0671

kr1 −2.1313 −5.9929 −0.73 16

α2 −4.4144 −12.411 −1.5102

α3 0.0008 0.00217 −0.0044

β5 −0.50358 −1.4171 0.2834

kr2 −1.3792 −3.8783 −0.5012

GF 8.2181 8.6153 −0.4477

β1 4.8355 5.0458 −0.30391

Table 3. Percentage changes in the steady-state values M∗, E∗ and R∗ after a 5% decrease in parameter
values of the non-linear model (1).

5% Decrease in Parameter % Change in M∗ % Change in E∗ % Change in R∗

k1 15.379 16.574 −0.74247

δ 3.0549 3.1573 −0.23624

α6 2.7989 7.8667 −1.9380

α4 −1.5130 −4.2539 1.0604

α8 −1.3083 −3.6785 0.91636

β4 1.4856 4.1750 −1.1118

kr3 4.6941 13.194 −3.0811

α5 −3.3974 −9.5522 −1.1635
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Table 3. Cont.

5% Decrease in Parameter % Change in M∗ % Change in E∗ % Change in R∗

β2 −0.90100 −2.5340 −0.34861

RT −1,1643 −3.2747 0.77670

β3 −0.47058 −1.3243 −0.22096

kr1 2.2750 6.3943 0.56813

α2 5.6528 15.889 1.4395

α3 −0.00076 −2.0707 0.00434

β5 0.50506 1.4196 −0.37425

kr2 1.7225 4.8407 0.41722

GF −7.5303 −7.4886 0.46275

β1 −3.9715 −4.0111 0.25848

Table 4. Percentage changes in the steady-state values M∗, E∗ and R∗ after a 10% increase in
parameter values of the non-linear model (1).

10% Increase in Parameter % Change in M∗ % Change in E∗ % Change in R∗

k1 −18.792 −18.005 1.5896

δ −4.9970 −5.0238 0.25366

α6 −4.5627 −12.828 3.5291

α4 3.5450 9.9639 −2.4070

α8 2.7918 7.8469 −1.9470

β4 −3.1078 −8.7368 2.3944

kr3 −6.9382 −19.505 5.7536

α5 8.0605 22.659 1.9911

β2 2.1256 5.9736 0.52836

RT 2.4269 6.8214 −1.7297

β3 0.9800 2.7539 0.2105

kr1 −4.3112 −12.122 −1.4863

α2 −8.2964 −23.324 −3.0332

α3 0.0017 0.0047 −0.0093

β5 −1.0545 −2.9658 0.7076

kr2 −2.6078 −7.3322 −0.8934

GF 18.296 19.8 −0.7814

β1 11.815 12.677 −0.6242

Table 5. Percentage changes in steady-state values M∗, E∗ and R∗ after a 10% decrease in parameter
values of the non-linear model (1).

10% Decrease in Parameter % Change in M∗ % Change in E∗ % Change in R∗

k1 43.284 51.402 −0.90841

δ 6.340764 6.6298 −0.40674

α6 5.8216 16.364 −3.7086
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Table 5. Cont.

10% Decrease in Parameter % Change in M∗ % Change in E∗ % Change in R∗

α4 −2.7912 −7.8475 2.0483

α8 −2.4764 −6.9631 1.7939

β4 2.8264 7.9439 −1.9852

kr3 10.236 28.774 −5.9032

α5 −6.2295 −17.514 −2.2045

β2 −1.6616 −4.6717 −0.56234

RT −2.2183 −6.2377 1.5914

β3 −0.89676 −2.5224 −0.34685

kr1 4.44444 12.49 1.1354

α2 12.394 34.839 2.8958

α3 −0.0014110 −0.0038423 0.0081792

β5 0.95936 2.6969 −0.73757

kr2 3.6812 10.3 47 0.94703

GF −13.836 −13.470 1.0361

β1 −7.0325 −7.0261 0.41178

Next, we proceed to investigate the correlations between parameter sensitivities
to parameter changes for M against E, M against R and E against R, respectively, by
considering a 5% increase in parameters. The results are shown in Figure 7. From Figure
7a, it is clear that all parameters except k1, δ, β1 and GF affect the steady states M∗ and
E∗ in the same way, since they lie on the same straight line. The parameters δ and k1
have a negative effect on M∗, E∗ and a positive effect on R∗, i.e., an opposite effect on R∗.
Parameter GF has a positive effect on both M∗ and E∗ and an opposing effect on R∗. In
Figure 7b,c, there is almost no correlation between the changes in the steady-state values
M∗ against R∗ as well as E∗ against R∗.

To proceed, we interpret the correlations shown in Figure 7. Generally, the order of
the impact of parameters on M(t) and E(t) between a 5% and 10% increase in parameters
is found to be similar, see Tables 2 and 4. This fact is also true for 5% and 10% decreases
in parameters, as shown in Tables 3 and 5. This confirmed that none of the parameters
of the system has a switching effect; that is, when they reach a particular threshold, their
effect on the steady state is greatly increased, in relation to the other parameters. Having
identified this, it is inferred that the dynamics of proliferation–quiescence transition re-
mained unaltered with respect to small perturbations in parameters. In Figure 7a, most of
the parameters are distributed linearly; thus, these parameters affect both M(t) and E(t)
solutions in a similar fashion. Both Figure 7b,c show a similar pattern, in which parameter
values are grouped in two well correlated sets. The first set contains parameters α2, kr1 , kr2 ,
β3, β2 and α5, while the other contains kr3 , α6, β4, α3, RT , α4 and α8. The effects of changes
in α3 are absolutely negligible, as shown in Figures 5 and 6. Biologically, α3 represents
the inhibition rate of R by E which is a two-stage process involving the dephosphoryla-
tion of the Rb family of proteins [40] followed by the inhibition of these proteins. This
effectively means that the inhibition process depends on the dephosphorylation of the Rb
family of proteins, thus explaining the negligible sensitivity observed in this case. The
parameter δ lies off the linear pattern, as shown in Figure 7a, which is a result of its role in
the proliferation–quiescence transition. It is known that variation in cyclin D levels through
the cell cycle determines the proliferating fate of a cell [40]. Parameters δ, k1, α1 and GF
lie off the well-defined linear pattern followed by the rest of the parameters. From this
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observation, it is inferred that a 10% increase in the inhibition rate of M (Cyclin D and Myc)
causes a significant decrease in the activation of E(t) (E2F, Cyclin E, Cyclin A) and a small
increase in the activation of the Rb family of proteins. Under these circumstances, cells
would naturally enter the quiescence state. Additionally, an increase in the expression of
the Rb family of proteins significantly reduces the expression levels of E (E2F, Cyclin E and
Cyclin A), thereby preventing cells from entering the cell cycle.
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Figure 5. Parameter sensitivities for system (1) corresponding to 5% increase and decrease in parame-
ters. (a,b) show sensitivity of M∗ after 5 % increase and decrease in parameters, respectively; (c,d)
show sensitivity of E∗ corresponding to 5% increase and decrease, respectively. (e,f) show sensitivity
R∗ to 5% increase and decrease in parameters, respectively.
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Figure 6. Parameter sensitivities for system (1) corresponding to 10% increases and decrease in
parameters. (a,b) show sensitivity of M∗ after 10 % increase and decrease in parameters, respectively,
(c,d) show sensitivity of E∗ corresponding to 10% increases and decrease, respectively. (e,f) show
sensitivity R∗ to 10% increases and decrease in parameters, respectively.
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Figure 7. Correlation between parameter sensitivity of M(t), E(t) and R(t) corresponding to 10%
increase in model parameters. (a) shows the correction between M(t) and E(t), (b) shows the
correlation between M(t) and R(t) and (c) shows the correlation between E(t) and R(t).

4. Discussion

Biologically, it was shown that the growth factor concentration plays a pivotal role in a
wide range of cellular processes, including cellular growth and differentiation [40]. As such,
growth factor (GF) stimulation has a profound effect on cancer development [18,19,21]. Pre-
vious studies have shown that the Rb− E2F bistable switch converts graded and transient
serum growth signals into a binary and hysteric E2F activity in individual cells [2].

In this paper

• Based on the concept of first principles, we investigated the dynamical potential of
growth factors in the regulation of the cell-cycle entry.

• A mathematical model for the simplified Rb− E2F network was constructed based on
the model proposed in Yao et al. [2]. While previous studies modelled all links using
Michaelis–Menten functions only [2], we used mass action, and Michaelis–Menten
and Hill functions, resulting in a simpler model. In addition, we considered the R
species to exist either in hyper-phosphorylated or hypo-phosphorylated form and that
their total concentration is conserved.

• By varying the growth factor signal values through bifurcation analysis, numerical
simulations illustrated that the magnitude of the value of the growth factor plays a
critical role in regulating cell-cycle entry. Through bifurcation analysis, we deduced
the existence of three consecutive dynamical behaviours, namely, stability, bi-stability
and stability.
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• Numerical simulations performed with different growth factor values validated the
results derived from the bifurcation analysis. In particular, the biological interpretation
of the uniform steady state can be established as follows:

1. For GF < 0.3735, System (1) is asymptotically stable, indicating the regime in
which cells are in a quiescent state. In this state, cells feature low levels of Cyclin
D, Myc and high levels of R species.

2. On the other hand, in the range 0.3735 < GF < 0.4138, System (1) exhibits bi-
stability, marking the position of the restriction point, as deduced in Yao et al. [42].
This point sets a high threshold separating quiescence from proliferation and
acts as a barrier against unregulated and accidental cell growth. In addition, it
provides a low-maintenance mechanism ensuring that the cell cycle proceeds,
albeit later due to
changes in the extracellular environment which is crucial for maintaining genome
integrity.

3. For values of GF > 0.4138, the system generates a stable dynamical behaviour
where a cell is in the proliferation mode marking the higher steady state value. This
state features high levels of Cyclin D, Myc and low levels of the Rb family of proteins.

However, it remains to investigate the conditions under which the system exhibits
excitable and oscillatory dynamics as observed in a different model proposed in [62],
but that would be investigated in a subsequent work. While Yao et al. [42] identified a
basic gene circuit underlying resettable Rb− E2F bi-stable switch controlling cell-cycle
entry, we obtained a range of values of the growth factor concentration for the three
dynamical regimes.

In this study, we focused our attention on the quantitative aspects of bi-stability,
including ascertaining some constraints and the region for bi-stability, whereas, in [42], the
focus was on the qualitative aspects of bi-stability.

Our consideration of the conservation of the R species did not affect the bistable nature
of the system but revealed that the system becomes unstable at very low levels of the concen-
tration of the R species. Local sensitivity analysis revealed that increasing parameters that
enhance the availability of Cyclin A, Cyclin E, Cyclin D, Myc and E2F in the model results
in the hyper-phosphorylation of Rb proteins. In its hyper-phosphorylated state, the Rb loses
its affinity to bind free E2F, which results in transcription, leading to proliferation [40]. On
the contrary, reducing these parameters by a small margin results in Rb dephosphorylation,
which increases its affinity for E2F. Naturally, in its hypo-phosphorylated state, Rb binds
to free E2F, impairing transcription. This results in cells being unable to pass through the
restriction point and, hence, remaining in quiescence.

5. Limitations

In this study, we constructed an activator-inhibitor model to describe the Rb− E2F
signalling interaction network and analysed its dynamics and biological implications.
However, in our study there are some limitations. Firstly, the model does not seem to
exhibit periodicity and excitable dynamics. Secondly, spatial localisation of the proteins
was completely ignored. This will give rise to partial differential equations. Thirdly, we
did not fit the model to data to infer model parameters; this forms part of our future
studies. Though simplification of the model produced the interesting bistable behaviour
consistent with experimental observations, there were consequences on other dynamics
of the Rb − E2F signalling network such as oscillatory dynamics, as observed in [62].
Moreover, we assumed that all proteins other than the Rb family of proteins exist in
abundance which may not be the case and hence must be investigated in future studies.
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