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Abstract: Spectrum-Based Fault Localization (SBFL) is one of the most effective fault localization
techniques, and its performance closely depends on the program spectra and the ranking formula.
Despite the numerous proposed approaches for fault localization, there are still great demands for
fault localization techniques that can help guide developers to the locations of faults. Therefore, this
paper defines four metrics from the program spectrum, which can become essential components of
ranking formulas to mitigate spectrum-based fault localization problems. These metrics are further
combined to propose a new heuristic, Metrics Combination (MECO), which does not require any
prior information on program structure or semantics to locate faults effectively. The evaluation
experiments are conducted on the Defects4J and SIR datasets, and MECO is compared with the
18 maximal formulas. The experimental result shows that MECO is more efficient in terms of
Precision, Accuracy, and Wasted Efforts than the compared formulas. An empirical evaluation also
indicates that two of the defined metrics, Assumption Proportion and Fault Assumption, when
combined with the existing formulas, improve the localization effectiveness, especially the precision
of ER5a-c (77.77%), GP02 (41%), and GP19 (27.22%), respectively.

Keywords: fault localization; fault assumption; assumption proportion; failed execution flag;
total execution

MSC: 68N30

1. Introduction

Software Fault Localization (SFL) in program debugging is a tedious and time-
consuming process for pinpointing the root causes of program failures. It plays an in-
dispensable role in software debugging, which has been estimated to account for up to 75%
to 80% of the total software cost [1,2].

The automation of locating faults can effectively improve the efficiency and quality of
debugging, so it has become a common goal pursued by industry and academia. In recent
years, various methods have been proposed to assist programmers in performing fault
localization, including Spectrum-Based Fault Localization [2–7], Program Slicing [8–10],
Machine Learning [11–14], and Mutation-Based Fault Localization (MBFL) [15–17].

Spectrum-Based Fault Localization (SBFL) is one of the most widely used approaches
due to its lightweight and effective features [4,7,12,18]. SBFL techniques collect program
execution traces from passed and failed executions stimulated by a collection of test cases.
These traces record the specific execution information of the program entities (such as
statements, basic blocks, and methods), which constitutes the program spectrum. Spectrum-
based methods are based on a fundamental assumption: an entity with a higher number
of failed executions, but fewer passed executions is more likely to be faulty [19]. On this
basis, SBFL techniques use a ranking formula and calculate the suspiciousness score for
each entity using program spectra. Then, they sort program entities in descending order of
the suspiciousness scores, which indicate how likely each program entity is to be faulty.
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Finally, testers can manually inspect the source code to diagnose the root causes of failures
by following the ranked entity list (from the beginning to the end).

So far, although a large number of SBFL methods have been proposed (such as Jac-
card/Ochiai [20,21], Op1&2 [7], also known as ER1a&b [4], Tarantula [22], FLUCCS [23],
Savant [24], and Prince [25]), no one can always perform the best in practice [26]. Therefore,
how to further improve the accuracy of fault localization is still a research problem worth
exploring. One of the significant existing problems is that many non-faulty statements
possess identical program spectra as the correct ones and then share similar suspiciousness
scores computed by some existing techniques. This problem causes the testers to check
many non-faulty statements before discovering the real faulty ones, consequently affecting
the efficiency of fault localization. Except for those statements contained in the Dynamic
Basic Block (DBB) [27], whose spectra are always identical, other scenarios still have the po-
tential to be further improved, in particular the uncovered faulty statements during failed
test executions. For example, if faulty statements are located in a simple if statement block
without an else-clause and no test cases cover the branch where such faults are located, many
existing formulas may not identify this fault. Here, we cannot go in-depth on why test cases
do not cover a faulty line, as this is beyond the scope of this paper. However, when this
situation happens, how to identify this kind of fault is a major concern in fault localization.

To this effect, defining a means to identify the following problems top our goals in
this study:

- Faulty statements in a pool of program statements with identical failed execution values.
- Faulty statements with fewer failed execution values than non-faulty statements.
- Faulty statements that are not covered by any failed test (faulty statements with zero failed

execution values).

One of the potential solutions is to utilize the relationship among the failed execution,
passed non-execution, and the total test cases to break the ties between the faulty and
non-faulty statements.

Therefore, this paper proposes a new method of fault localization based on coverage
similarity analysis. First, we suggest combining a failed execution (e f ), non-execution pass
(np), and the total test cases (ep, e f , np, n f ) to form a metric that is capable of breaking a
tie between faulty and non-faulty statements with identical failed execution values. This
metric is referred to as Assumption Proportion in this study and has the exact definition
as Simple-Matching cited in Naish et al. [7]. This metric is motivated by its ability to
calculate the percentage of the probability that a statement contains a fault. Then, this
paper proposes Failed Execution Flag, a metric that returns a value of “1” for a statement
covered by one or more failed test cases and “0” for a statement not covered by failed
test cases. This metric differs from Binary, proposed in Lee Hua Jie [28]. The Binary
metric failed to consider that none of the failed test cases covers many faulty statements.
Therefore, it isolates any faulty statement with failed non-execution values. Unlike Binary,
the Failed Execution Flag considers all the statements covered by the failed test case(s)
as potential faulty statements. The Fault Assumption metric is further suggested, which is
the relationship between e f and np. This metric can calculate the total probability that a
statement contains a fault, considering that both ep and e f contribute enormously to the
fault-probability of the program statements. It has the exact definition as Hamming, etc.,
in Naish et al. Finally, Total Execution (ep and e f ) is proposed, adding the total number of
failed executions to the pass execution to enhance fault localization.

The four metrics perform different functions. When a faulty statement has no execution
values or lower execution values than the non-faulty statements, many existing formulas
are not effective in such a situation; the Fault Assumption and Assumption Proportion
metrics are better to use. In the same way, when the faulty program statement has smaller
failed execution values than the non-faulty statements, the Failed Execution Flag can
help localize this type of fault when combined with Fault Assumption or Assumption
Proportion. Thus, when the faulty program statement has a higher passing execution
than the non-faulty statement, Total Execution is more appropriate for localizing this fault.
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Therefore, a more sophisticated fault localization method can be proposed when combining
all the suggested metrics.

Therefore, the suggested metrics are combined to devise a new formula known as
Metrics Combination (MECO). The aim is to assess the effectiveness of each metric when
combined to form a new heuristic and compare it with the existing maximal formulas. We
empirically evaluate MECO based on the SIR repository [29] and Defects4J-repository [30]
datasets.

The main contributions of this paper can be summarized as follows:

• It defines four metrics, Failed Execution Flag, Assumption Proportion, Total Exe-
cution, and Fault Assumption. It then assesses their effectiveness on each existing
maximal formula to understand which is best to combine with them for effective
fault localization.

• It proposes a new formula, MECO, by combining the proposed metrics, which devel-
opers can also use as a standalone method for fault localization.

• It assesses the contribution of each metric to the performance of the proposed method,
MECO, to determine which contributes more to its fault localization accuracy.

• MECO is empirically evaluated in seeded and real faults of the SIR-repository and
Defects4J-repository and compared on the effectiveness with the existing formulas.

The remainder of the paper is organized as follows. Section 2 provides an overview of
fault localization and a running example. Section 3 presents the details of the proposed
approach and introduces the metrics used to formulate MECO. Section 4 describes the
experimental setup and more, while Section 5 of this study gives the results. The related
work and threats to the validity are presented in Sections 6 and 7. Finally, this study is
concluded in Section 8.

2. Background and Motivation
2.1. Spectrum-Based Fault Localization

Spectrum-Based Fault Localization (SBFL) is an automated technique to pinpoint the
location of a fault in the code. The location of a faulty component can be reported at any
abstraction level, including statements, blocks, methods, etc. In SBFL, a tuple of four values
represents a program entity’s spectrum. The spectrum is formalized as (e f , ep, np, n f ),
where e f and ep signify the number of failing and passing test cases that execute and n f
and np signify the number of failing and passing test instances that do not execute the
program entity under consideration. The instrumentation of program entities can be used to
collect spectra. A ranking metric can then be used to convert spectra into a suspiciousness
score. Various ranking metrics referred to as formulas in this study have been proposed
by different researchers to assign the highest suspiciousness score to the faulty program
statements. Some of the well-known formulas have been demonstrated to perform best,
termed maximal formulas [31,32]. These maximal formulas are both human designed based
on an analytical approach, such as Tarantula [33], Ample [34], Ochiai1&2 [21], Jaccard [20],
OP1&2 [7], D2 [35], and Wong1–3 [36], and also evolved via genetic programming including
GP2, 3, 13, and 19 [37] (see Table 1 for the list of maximal formulas studied in this paper).

Many formulas emphasize how frequent failed test cases hit a program statement.
Limitations on the performance of these maximal formulas unfold when there is a disparity
between the number of failed test cases executing faulty and non-faulty program state-
ments in favor of non-faulty program statements. Many program statements containing
faults are not covered by any failed test cases, limiting the ability of the existing maximal
formulas. In this case, we propose a method that utilizes the fault-revealing ability of the
Assumption Proportion and Fault Assumption metrics to tackle the limitation, eliminating the
issue of uncovered faulty statements. Furthermore, the coverage information of real faults
is very dynamic. In this case, many non-faulty program statements have more potential of
containing a fault. Therefore, this study defines different metrics that can:
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• Distinguish the faulty statements covered by fewer failed executions than the non-faulty statements.
• Identify the faulty statements that have no failed execution.
• Identify the faulty statement with higher pass execution than non-faulty statements.

Table 1. Some notable well-performing formulas.

Name Definition Name Definition

Tarantula [22]

e f
e f +n f

e f
e f +n f

+
ep

ep+np

Ample [34] | e f
e f +n f

− ep
ep+np

|

Ochiai1 [21]
e f√

(e f +n f )(e f +ep)
Jaccard [20]

e f
e f +ep+n f

Ochiai2 [21]
e f ∗np√

(e f +ep)(np+n f )(e f +n f )(ep+np)
Kulczynski1 [38]

e f
n f +ep

ER1a [4]

{
−1 if e f < (e f + n f )

np if otherwise
ER5b [4]

e f
e f +n f +ep+np

ER1b [4] e f −
ep

ep+np+1 D2 [35]
e f

2

ep+n f

GP03 [37]
√
|e f

2 −√ep| GP02 [37] 2(e f +
√np) +

√ep

GP13 [37] e f (1 + 1
2ep+e f

) GP19 [37] e f

√
|ep − e f + n f − np|

ER5a [4] e f ER5c [4]

{
0 if e f < (e f + n f )

1 if otherwise
Wong2 [36] e f − ep

Wong3 [36] e f − h, h =


ep if ep ≤ 2
2 + 0.1(ep − 2) if 2 < ep ≤ 10
2.8 + 0.001(ep − 10) if ep > 10

These metrics are then combined to propose MECO for effective fault localization.

2.2. Motivation

Given an n-statement of program P = (s1, s2, . . . , sn) and a test suite T = (t1, t2, . . . , tm)
with m test cases, SBFL needs the collection of program spectrum information (M = coverage
matrix), as well as testing outcomes R = (r1, r2, . . . , rm). The relationship between statement
si and test case tj is represented by the statement in the ith row and jth column of M.
The statement is equal to (X) if statement si is covered by test case tj, otherwise blank.
The R statement ri represents the testing result of test case ti on P. We may define a
four-tuple MRi = (ep (si), e f (si), np (si), n f (si)) to reflect the number of times si has been
executed or not executed for each statement si. Furthermore, np (si) and n f (si) imply the
number of successful and unsuccessful test cases in T that do not execute si, respectively;
ep (si) and e f (si) imply the number of successful and unsuccessful test instances that
execute si, respectively. The size of the test suite T is always equal to the total of these four
parts in MR.

Table 2 shows a simple function mid() that accepts as input three integers and outputs
the median value. S9 is buggy, which should be m = y. Next, Table 2 shows ten test cases,
labeled as t1–t10, with different inputs. For each test case, the column shows the coverage
of the statement (X) and whether the test case passes (P) or fails (F).
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Table 2. Motivating example: fault, m9: m = y. P: Assumption Proportion, F: Failed Execution Flag, A:
Fault Assumption, E: Total Execution, MECO: Proposed method.

Si mid ( ) { int x, y, z, m;

t 1
(6

,6
,8

)

t 2
(4

,5
,6

)

t 3
(2

,1
,1

)

t 4
(3

,3
,3

)

t 5
(5

,5
,9

)

t 6
(2

,1
,3

)

t 7
(4

,3
,1

)

t 8
(8

,6
,4

)

t 9
(6

,5
,1

)

t 1
0(

5,
2,

6)

ep e f np n f Jaccard P F A E MECO

S1 m = z; X X X X X X X X X X 6 4 0 0 0.40 0.40 1 4 10 0.20
S2 if(y<z) X X X X X X X X X X 6 4 0 0 0.40 0.40 1 4 10 0.20
S3 if(x <y) X X X X X 4 1 2 3 0.13 0.30 1 3 5 0.06
S4 m = y; X 1 0 5 4 0.00 0.50 0 5 1 0.00
S5 else if (x<z) X X X X 3 1 3 3 0.14 0.40 1 4 4 0.08
S6 m = x; X X X 2 1 4 3 0.17 0.50 1 5 3 0.11
S7 else X X X X 2 2 4 2 0.33 0.60 1 6 4 0.17
S8 if (x >y) X X X X 2 2 4 2 0.33 0.60 1 6 4 0.17
S9 m = z //***bug***; X X X 1 2 5 2 0.40 0.70 1 7 3 0.21
S10 else if (x>z) X 1 0 5 4 0.00 0.50 0 5 1 0.00
S11 m = x; 0 0 6 4 0.00 0.60 0 6 0 0.00
S12 print(“Middle number is:”, m) X X X X X X X X X X 6 4 0 0 0.40 0.40 1 4 10 0.20

} Pass/fail status P P P P P P F F F F

Six test cases passed, and four failed. For each statement, the program spectrum (ep,
e f , np, n f ) and the suspiciousness scores computed by one of the best maximal formulas,
Jaccard, indicating the likelihood of the statement being faulty, are shown next to the test
spectrum. The existing formula in the example fails to rank the faulty statement higher
than the non-faulty ones. In short, almost 90% of the existing maximal formulas cannot
place the faulty statement higher because some non-faulty ones, such as S1, S2, and S12,
have greater failed execution values than the faulty statements and are highly ranked. The
potential solutions to rank such a fault in the example given in Table 2 are:

• Find the relationship between the failed execution and non-execution pass, known as
Fault Assumption, A.

• Divide Fault Assumption by the total test cases known as Fault Probability, P.
• Convert the failed execution to “1” or “0” if a statement has one or more failed

executions or has no failed execution, known as Failed Execution Flag, F. This can
replace failed execution (e f ) in any formula with only e f as its numerators, such as
Jaccard, ER1b, and D2. When Failed Execution Flag replaces e f in Jaccard, ER1b, and D2,

the formulas become F
ep + e f + n f

, F− ep
ep + nP + 1 , and F2

ep + n f
. Applying these metrics

to the example will rank the faulty statement more than the non-faulty statements.
• Find the total number of test cases that hit each program statement, known as Total

Execution, E.
• Combine the Fault Assumption, Assumption Proportion, Failed Execution Flag,

and Total Execution to form a formula, MECO.

When the above-proposed solutions are applied to the example, the faulty statement
can be distinguished from non-faulty ones. Therefore, a new fault localization method,
MECO, is proposed for effective fault localization.

3. MECO Method

This study proposes MECO, which combines different metrics for fault localization.
This section discusses the motivation for selecting the suggested metrics and how they are
combined for effective fault localization.

This study defines four metrics that can localize faults in different situations and
then combines them to propose MECO. Furthermore, the existing maximal formulas are
overwhelming when no failed test cases cover the faulty statements and when the number
of failed test cases executing non-faulty statements is higher than the faulty ones. Therefore,
the suggested metrics to handle different fault localization problems in this study are
discussed below.



Mathematics 2022, 10, 2425 6 of 23

(1) Fault Assumption

This study assumes special attention should be given to a passed test that did not
cover a program statement. A fault might have triggered the test to pass without hitting
a program statement. Furthermore, with a close observation of some large real faulty
programs, such as Closure and Time, in the presence of multiple faults, some faulty
statements were not covered by any failed test, but have more passed non-execution tests.
If the developers combine the failed execution and passed non-execution values, e f and
np, during debugging, it can rank the faulty program statements higher than the non-
faulty ones. Some research work [19,35,39,40] has demonstrated that when failed test cases
cover a statement, such a program statement is potentially faulty. Similarly, a statement is
potentially faulty when no test cases cover it, but passed [35]. Consequently, developers
may find themselves in a situation where hundreds of non-faulty program statements have
higher failed execution than the faulty ones, for example if a faulty statement A has (38, 0,
3973, 1) coverage information and non-faulty statement B has (3661, 1, 350, 0). The majority
of the existing maximal formulas cannot identify this fault. This coverage information can
be found in large programs, such as closure in defects4j. Therefore, the union between a
failed execution test and a passed non-execution test is defined, Fault Assumption, denoted
as A, to help identify this fault. In Naish et al. [7], the definition of the Hamming, etc.,
formula is the same as the definition of the defined Fault Assumption in this study, but
in a different context. The Fault Assumption metric is only a component of the proposed
method. The Fault Assumption metric is given as the addition of failed execution and
passed non-execution:

A = e f + np (1)

(2) Assumption Proportion

The Assumption Proportion metric, denoted as P, calculates the percentage of the
assumption that a program statement contains a fault. This metric helps identify a program
statement that failed test cases during the coverage instrumentation. Using the above
example in the Fault Assumption, we define a metric by dividing the Fault Assumption by
the total test cases present in the test oracle, known as the Assumption Proportion. Ideally,
the Simple-Matching formula in Naish et al.. has the exact definition of the Assumption
Proportion in our study. However, we suggested this based on the problems found in the
studied datasets. This metric is formulated based on the insight from the Fault Assumption
metric, identifying a faulty statement with fewer failed execution values than the non-faulty
statement. This metric is more effective if the np of the faulty program statements is higher
than the non-faulty ones. Therefore, we propose P as:

P =
Fault Assumption
Total Test Cases

==
∑(e f , np)

∑(ep, e f , np, n f )
(2)

(3) Failed Execution Flag

The Failed Execution Flag (F) converts the failed execution to “1” and “0”. This metric
assigns “1” to a statement covered by one or more failed tests and “0” otherwise. It is
motivated by the numerous non-faulty statements with higher failed execution values than
faulty ones. This situation is prevalent with a close observation of many statements in real
faults of defects4j programs, for example a faulty statement A with coverage information
(20, 1, 50, 29) and a non-faulty statement B with coverage information (40, 30, 30, 0) in terms
of (ep, e f , np, n f ). There is no existing maximal formula that can identify this fault except
Wong2. When the Failed Execution Flag is applied to convert the failed execution of the
two statements and replace the numerator of D2, Kulczynski1, Jaccard, and other formulas
with an e f numerator, A can have a higher suspiciousness score. Therefore, this metric is
handy to flag failed execution values as 1 and 0, regardless of the number of failed tests that
execute them. It is most effective when the number of failed executions of the non-faulty
statements is higher than the faulty ones, and the faulty statement(s) has (have) higher
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passed non-execution values. The developer can then use other information to break the
ties. Therefore, F is given as:

F =

{
1 if e f ≥ 1

0 if e f < 1
(3)

(4) Total Execution

In the context of this study, the Total Execution (E) gives the overall number of hits
that a program statement receives during coverage instrumentation. This metric can help
localize faults, especially when the suspected program statements have fewer failed and
more passed tests than the non-faulty statements, for example a faulty program statement
A with coverage information (60, 1, 10, 29) and a non-faulty statement B with a program
spectra (40, 1, 30, 29) in terms of (ep, e f , np, n f ). Only the Ample formula can identify
this fault among all the studied maximal formulas. The similar failed execution values of
faulty and faulty statements with different higher passed execution values are common in
real-fault programs, especially the Closure program benchmark. Therefore, we combined
passed and failed executions with other metrics to localize faults in this study. Therefore, E
is given as follows:

E = ep + e f (4)

All the above-discussed metrics are combined to propose MECO, a heuristic that needs
no other program information to localize faults in real and seeded faults effectively. Many
existing formulas have their underlying intuition. Some of these intuitions are:

• The higher the failed test (i.e., e f ), the more suspicious the program’s statement.
• The higher the pass test (i.e., ep), the lesser the suspicion of the program’s statement,

and the lesser the pass test (i.e., ep), the higher the suspicion of the program’s statement.
• The higher the uncovered failed test (i.e., n f ), the lesser the suspicious of the state-

ment. The lesser the uncovered failed test, the higher the suspicion of the program’s
statement.

This study also agrees with the intuitions and adds one other intuition based on the
formula formulation.
Intuition: The higher the Assumption Proportion with one or more failed execution,
the higher the suspiciousness of such program statements.

Therefore, this study uses the four metrics discussed above to propose a new formula,
which is given as:

MECO = (E ∗ P) + (F ∗ A)→ ((ep + e f ) ∗
e f + np

ep + e f + np + n f
) + (F ∗ (e f + np)) (5)

→ (Total Execution ∗Assumption Proportion) + (Failed Execution Flag ∗ Fault Assumption) (6)

The usefulness of each defined metric on the proposed fault localization formula
and its underlying intuitions is discussed above with examples. Therefore, this proposed
formula is empirically evaluated because it is the norm for fault localization studies and it
is impossible to prove that one fault localization technique is always more effective than
another [9,10,22,36,41,42].

4. Experimental Setup

This section contains the relevant details of the experimental study conducted to
determine the efficacy of MECO.

4.1. Fault Localization

This study uses spectrum-based fault localization as the fault localization process. It
performs its fault localization processes at the statement granularity level. Spectrum-based
fault localization can use formulas to compute program statements’ suspiciousness scores
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to determine which part of the statements contains a fault. Thus, the effectiveness of MECO
and the existing eighteen maximal formulas are evaluated as shown in Table 1.

4.2. Evaluation Metrics

This study uses the following three evaluation metrics to assess the rankings calculated
by each fault localization method.

4.2.1. acc@n

This metric counts the number of successfully localized faults within the top-n posi-
tions of the ranked lists. Following the results, programmers investigate the top few places
in a ranked list of potential faulty lines [1]. The percentage of absolute ranks is utilized,
and n = 1, 3, 5 is chosen, computing acc@1, acc@3, and acc@5 scores. This study further
used a max tie-breaker that ranks all tied elements with the lowest to break the tie if two
program statements share the same suspiciousness score. The higher the number of faults
placed by this metric, the better the formula.

4.2.2. Mean Average Precision

Traditionally, the Mean Average Precision (MAP) [43] is used to evaluate ranking lists
in information retrieval. It can also be used to investigate fault localization. The MAP
examines all suspicious program statements and prioritizes Recall over Precision. As a
result, the MAP is more suited for developers who want to dig further into the ranking
list to uncover more fault-related statements. We calculate the Average Precision (AP) of a
ranking list as follows:

AP =

T

∑
i=1

Precision(i) ∗ position(i)
Total number of faulty statements

(7)

Precision(i) =
Total number of faulty statements in top i

i
(8)

where i denotes a statement’s position in the ranking list, T denotes the list’s length, and the
Boolean position(i) indicates if the statement in position i is faulty. The precision at the ith
position in the suspiciousness score ranking list is Precision(i).

4.2.3. Wasted Effort

This study assumes that developers have a perfect comprehension of faults and can
detect the fault as soon as they reach it when going through the ranking list. As a result,
the developer’s wasted effort is the number of non-faulty statements inspected. Because
a formula ranks all the program statements according to their suspiciousness scores for a
given faulty program, it then calculates the wasted effort as the rank of the actual faulty
program statement. Suppose more than one statement has identical suspiciousness scores
as the faulty statement. In that case, we calculate the wasted effort as the average-rank of
the total program statements that have identical scores. Therefore, we adopt the absolute
wasted effort as Xuan and Martin [12] used it.

The wasted effort of a candidate statement is formally defined as:

Wasted Effort = |(suspR(cj) > suspR(ci))|+
|(suspR(ci) = suspR(cj))|

2
+

1
2

(9)

where suspR is the suspiciousness score computed by each formula, ci and cj are the subsets
of faulty and non-faulty spectra, and |.| is the length of all spectra elements in a set.

4.3. Dataset

This study conducted an experiment based on the SIR-repository [29] and Defects4J
repository (version 1.2.0) [30] benchmarks, which have been commonly used data sets in
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automatic fault localization [4,36,42,44]. This study was unable to use the latest version of
the defects4j dataset, v2.0.0, due to some unavoidable circumstances. However, version
1.2.0 still serves our purpose in this study. Furthermore, there are 92 faults (seeded) in the
SIR repository written in the C language and 357 faults (real-world) written in Java in the
Defects4J repository and are medium to large open-source projects. The total number of
faults in the SIR is 219, spanning five versions of four different programs, FLEX, GREP, GZIP,
and SED. This study isolated all the unreachable faults, 35, and 92 other uncompilable
faults. The FLEX program is a lexical analyzer; the GREP program is a utility for text
search; the GZIP program is a compressor; the SED program is an editor for the streamed
text. The Defects4J repository, on the other hand, contains many real-world Java projects,
but five were selected, JfreeChart, which was used for creating the chart, Google Closure
for optimization, Apache common lang for JDK, Apache common-math for JDK as well,
and Joda-Time for standard time. The subject programs are large enough, ranging from 9 k
to 96 k LOC. The details of all the subject programs used in this study are shown in Table 3.

Table 3. Subject programs.

Subject Programs Functions Number of Tests LOC Number of Faults
SIR

Flex Lexical analyzer 670 9933 47
Gzip Compression utility 214 3883 18
Grep Text search utility 809 7309 11
Sed Stream text editor 449 5257 16

Total 1260 92
Defects4J Nunmber of Faults
JFreechart Chart creation tool 2205 96,000 26

Google Closure compiler Script for Optimization 7927 90,000 133
Apache Commons Lang JDK 2245 22,000 65
Apache Commons Math JDK 3602 85,000 106

Joda-Time (Time) Standard Time 4130 28,000 27
Total 20,109 357

Sub-Total 21,369 449

4.4. Research Questions

RQ1. Which of the metrics contribute more to the performance of MECO?
This research question first assesses the performance of each metric to determine
its performance. It then drops one metric at a time from the MECO formula and
measures its performance. The results are then compared to MECO to determine if
dropping one of the metrics can positively or negatively affect MECO’s performance.
The effectiveness is measured using acc@n, Mean Average Precision, and Wasted
Effort. MECO is evaluated in 449 program faults.

RQ2. How effective is MECO compared to the existing maximal formulas?
This research question assesses and compares the performance of MECO to the
18 existing maximal formulas using the three evaluation metrics. It compares the
effectiveness of each method on the combined SIR faults and Defects4J project-by-
project separated faults. A total of 449 program faults is used in this experiment.

RQ3. How effective are the proposed metrics when combined with the existing maximal
formulas?
The effectiveness of the proposed metrics is assessed on the existing formulas when
combined. This study investigates how these metrics boost the fault localization
ability of the studied formulas. The approach employed is changing one metric at
a time to observe the effect of a formula locating faults. Then, the percentage of the
performance difference in 449 real and seeded faults is measured. Consult sbfl for
further information about the studied formulas.
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5. Results

This section presents the experimental results of this study. It also details the compari-
son of the results with the other methods in the real and seeded faults.

5.1. The Metric That Contributes More to the Performance of MECO.

This study first determines the performance of each metric and then compares its
effectiveness with the performance of MECO. Table 4 shows the performance of each metric
and MECO when each metric is excluded from MECO.

Table 4. Contribution of each metric to MECO’s performance. Assumption Proportion (P), Failed
Execution Flag(F), Fault Assumption (A), Total Execution (E), MECO without A (W/A), MECO
without P (W/P), MECO without F (W/F), and MECO without E (W/E).

Group Project A P F E W/A W/P W/F W/E MECO

ac
c@

1

SIR 15 15 0 0 0 0 16 15 26
Chart 8 8 4 0 8 4 15 15 25
Closure 5 5 0 0 0 0 13 9 23
Lang 9 9 2 2 9 2 14 17 27
Math 13 13 2 1 6 2 22 24 34
Time 4 4 4 0 4 4 30 22 40
AVG 9 9 2 1 5 2 18 17 29

ac
c@

3

SIR 23 23 1 0 1 1 24 23 34
Chart 19 19 8 4 12 8 31 31 41
Closure 7 7 1 0 1 0 18 17 28
Lang 12 12 9 6 22 11 29 31 42
Math 19 19 7 3 9 7 31 35 44
Time 4 4 4 0 4 4 41 30 51
AVG 14 14 5 2 8 5 29 28 40

ac
c@

5

SIR 27 27 1 0 1 1 29 28 39
Chart 23 23 12 4 15 12 38 46 52
Closure 8 8 1 0 2 0 20 19 30
Lang 20 20 14 9 26 15 43 46 55
Math 20 20 8 5 10 8 31 37 46
Time 4 4 4 0 7 4 44 33 54
AVG 17 17 7 3 10 7 34 35 46

W
as

te
d

Ef
fo

rt

SIR 17.52 17.52 27.95 35.13 23.36 12.15 13.90 8.37 3.31
Chart 65.11 65.11 24.33 26.59 27.23 18.92 62.16 32.44 11.51
Closure 56.04 56.04 21.69 39.91 22.89 19.92 42.20 16.88 9.77
Lang 55.44 55.44 10.69 20.76 10.81 8.83 20.76 10.81 3.08
Math 57.96 57.96 27.09 28.23 27.79 20.07 46.67 31.74 13.62
Time 50.29 50.29 26.45 46.27 30.50 26.41 21.16 19.01 12.88
AVG 50.39 50.39 23.03 32.81 23.77 17.71 34.48 19.88 9.03

M
A

P

SIR 0.191 0.191 0.009 0.004 0.011 0.012 0.200 0.194 0.209
Chart 0.146 0.146 0.059 0.028 0.105 0.060 0.254 0.273 0.257
Closure 0.030 0.030 0.003 0.001 0.006 0.002 0.107 0.084 0.111
Lang 0.096 0.096 0.077 0.047 0.132 0.080 0.181 0.192 0.194
Math 0.122 0.122 0.053 0.019 0.078 0.053 0.171 0.200 0.195
Time 0.012 0.012 0.026 0.002 0.047 0.026 0.177 0.159 0.178
AVG 0.100 0.100 0.038 0.017 0.063 0.039 0.182 0.184 0.191

5.1.1. Performance of Each Metric Compared to MECO

The fault localization accuracy of the utilized Fault Assumption and Assumption
Proportion is better than the other two metrics. Both the Fault Assumption and Assumption
proportions placed an average of 9% faults at the top of the ranking list, just 47% of the
MECO’s performance. These two metrics are more effective in seeded faults of the SIR
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repository. The Total Execution metric has the least performance among the four metrics.
This metric only placed an average of 1% of faults at the top of the ranking list. In terms
of Wasted Effort, the developer must check an average of 50% of the total statement
before localizing the first fault in the subject programs without the Fault Assumption and
Assumption Proportion metrics. These two metrics are better than the Failed Execution
Flag and Total Execution metrics in terms of Fault Localization Accuracy, but inferior
when assessing the number of statements the developer must check before localizing
faults. The Failed Execution Flag outperformed the other metrics in terms of Wasted
Efforts. The developer must check an average of 23% of the total program statement before
localizing the first fault, 39% of the MECO’s performance. On fault localization precision,
both the Fault Assumption and Assumption Proportion metrics precisely localized more
faults than the Failed Execution Flag and Total Execution Metrics. The performance of
these two metrics is 52% of the MECO’s performance.

5.1.2. The Contributions of Each Metric to MECO

MECO without Fault Assumption: The exclusion of the Fault Assumption from the
MECO formula placed 5% faults at the top of the ranking list. Its inclusion improved
MECO’s fault localization accuracy by 24%. In the same sense, excluding this metric from
MECO increases the number of non-faulty statements to be checked before locating the first
fault by 15%. MECO’s fault localization precision is inferior without the Fault Assumption.
MECO achieved an average of 67% improvements with this metric; see Table 4.

MECO without Assumption Proportion: The MECO formula without the Assumption
Proportion localized only 2% of the faults at the top of the ranking list. If this metric
is replaced in MECO, it increases the fault localization accuracy by 27%. Furthermore,
without this metric, MECO can only help the developer check 17.71% of non-faulty state-
ments before locating the first fault. If this metric is replaced in MECO, it increases the
performance by 9%. It also increases the MECO’s fault localization precision by 80%; see
Table 4.

MECO without Failed Execution Flag: The Failed Execution Flag did not impact
MECO’s fault localization accuracy, unlike the Fault Assumption and Assumption Pro-
portion. Without this metric, MECO’s performance is reduced by 12%. MECO’s Wasted
Efforts without this metric were 34.48%. The Wasted Effort also improved by 25% after
replacing this in MECO. Finally, the fault localization precision, which was 0.182 without
the Failed Execution Flag, increased to 0.191 when replacing it. This shows a percentage
improvement of 5%; see Table 4.

MECO without Total Execution: MECO can localize 17% of faults at the top of the
ranking list without the Total Execution metric. When this metric is replaced in MECO, its
performance increases to 29%, a roughly 12% improvement. Similarly, MECO’s Wasted
Effort without the Total Execution metric is 19.88%. This is improved to 9.03%, almost an
11% improvement when replaced in MECO’s formula. Finally, without this metric, MECO’s
fault localization precision is 0.184, but increases to 0.191 when replaced. Therefore, after the
Total Execution is replaced, MECO achieved a performance improvement of 12%, 11%,
and 4% Accuracy, Wasted Effort, and Precision; see Table 4.
RQ1 Summary:

The four metrics contribute differently to the effectiveness of the MECO formula.
The Assumption Proportion and Fault Assumption metrics mainly contributed to the fault
localization Accuracy and Precision of MECO, while the Failed Execution Flag metric
mainly contributed to the Wasted Effort of MECO. Therefore, the Assumption Proportion
and Fault Assumption metrics have the highest contribution to the effectiveness of the
proposed formula, MECO.

5.2. The Performance Comparison of MECO and the Maximal Formulas

This section compares MECO with the other eighteen proven maximal formulas
studied in fault localization. Table 1 shows the list of the compared formulas. Table 5 shows
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the overall performances in seeded faults of SIR (92-faults) and real faults, Chart (26-faults),
Closure (133-faults), Lang (65-faults), Math (106-faults), and Time (27-faults). We report the
Wasted Effort in percentage (%). Figure 1 shows the percentage of faults that each formula
localized in each program benchmark. We calculated this as the total number of faults
localized divided by the total number of faults in the evaluation dataset.

Figure 1. (a) shows the boxplot of MECO and the compared formulas in terms of acc@n in the SIR
dataset. (b) shows the same comparison in the Chart. (c) shows Closure, (d) in Lang, (e) in Math and
(f) in Time.

Table 5. Performance comparison of the combined risk evaluation metrics with the standalone risk
evaluation metrics in terms of Mean Average Precision and Wasted Effort.

SIR Chart Closure Lang Math Time

Metrics AWE MAP AWE MAP AWE MAP AWE MAP AWE MAP AWE MAP

MECO 3.31 0.209 11.51 0.257 9.77 0.111 3.08 0.194 13.62 0.195 12.88 0.178
ER1a 10.27 0.190 78.80 0.191 32.69 0.108 26.09 0.185 47.01 0.176 18.69 0.170
ER1b 5.95 0.190 35.15 0.197 18.11 0.109 11.06 0.189 38.06 0.181 12.42 0.170
Tarantula 16.96 0.080 38.56 0.236 24.09 0.085 14.53 0.190 41.66 0.196 16.39 0.170
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Table 5. Cont.

SIR Chart Closure Lang Math Time

Metrics AWE MAP AWE MAP AWE MAP AWE MAP AWE MAP AWE MAP

Ochiai1 15.99 0.070 38.51 0.252 24.09 0.085 14.16 0.192 41.66 0.196 16.390 0.170
Ochiai2 9.95 0.180 42.73 0.236 24.09 0.090 14.53 0.188 43.33 0.197 16.390 0.170
Ample 12.34 0.200 22.17 0.146 16.28 0.106 9.94 0.177 25.29 0.169 11.380 0.170
Jaccard 6.85 0.200 38.75 0.255 24.05 0.096 14.04 0.193 41.66 0.200 16.41 0.170
D2 45.36 0.050 39.55 0.255 28.16 0.092 26.71 0.144 55.97 0.117 16.38 0.200
GP02 11.21 0.080 26.61 0.122 26.03 0.009 10.56 0.103 35.03 0.096 14.53 0.010
GP03 12.76 0.160 31.65 0.066 41.85 0.006 40.12 0.043 37.01 0.020 28.92 0.030
GP13 5.95 0.190 39.82 0.197 24.90 0.109 13.91 0.189 41.75 0.181 17.01 0.170
GP19 6.95 0.200 39.52 0.122 28.93 0.070 15.78 0.141 44.86 0.148 18.94 0.120
Wong2 18.97 0.190 66.21 0.146 57.14 0.030 60.75 0.096 66.37 0.122 30.18 0.010
Wong3 18.97 0.190 66.21 0.146 57.14 0.030 60.75 0.096 66.37 0.122 30.18 0.010
Kulczynski1 45.82 0.050 39.57 0.257 28.18 0.085 27.08 0.144 56.19 0.121 16.38 0.200
ER5a 24.14 0.010 41.98 0.060 36.37 0.002 18.88 0.078 47.59 0.053 25.89 0.030
ER5b 24.14 0.010 41.98 0.060 36.37 0.002 18.88 0.078 47.59 0.053 25.89 0.030
ER5c 28.21 0.010 80.73 0.056 43.73 0.002 30.68 0.075 52.59 0.051 27.56 0.030

5.2.1. Fault Localization Accuracy

In seeded faults, MECO ranked more faults, 26%, at the top 1 of the suspiciousness
list, outperforming all other formulas. MECO also localized more faults, 39%, than all the
existing metrics at the top 5 in the ranking list. None of the existing formulas placed more
faults in the top-1 ranking list of the real fault program than MECO. When the average
performance is taken across all the subject programs in this study, MECO accurately
localizes 29%, 40%, and 46% at top 1, top 3, and top 5 of the ranking list, which is better
than all the existing compared formulas; see Table 5.

5.2.2. Fault Localization Wasted Effort

Fault localization is helpful if it reduces the number of statements a developer encoun-
ters before locating the first fault. The wasted effort of the proposed MECO in seeded faults
is 3.31%, Chart (11.51%), Closure (9.77%), Lang (3.08%), Math (13.62%), and Time (12.88),
which outrightly outperformed all the existing formulas in real and seeded fault programs.
On average, MECO outperformed the best existing formula, Ample, in terms of Wasted
Effort, 7.2%, Table 5.

5.2.3. Fault Localization Precision

How a technique precisely localizes faults is very important in fault localization.
The proposed MECO has a 20.9% MAP score in seeded faults, better than all the existing
formulas. This performance shows that the proposed method can precisely localize seeded
faults better than the existing maximal formulas. MECO and Kulczynski1 have the same
precision values in the Chart program and are better than the other formulas. MECO
outperformed all the existing formulas in the Closure and Lang projects, with MAP scores
of 11.1% and 19.4%, respectively. Some maximal formulas, such as Tarantula, Ochiai1,
Ochiai2, and Jaccard, outperformed the MECO formula in the Math program. Furthermore,
D2 and Kulczynski1 outperformed MECO in the Time program. The MECO formula is more
precise at fault localization than all the compared existing formulas, 0.191, especially Jaccard,
0.184, which shows an outstanding performance in terms of Mean Average Precision on
average of 3.8%; see Table 5.
RQ2 summary:

The proposed formula can accurately and precisely localize faults and reduce the
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efforts of fault localization compared to all the existing maximal formulas in seeded and
real faults. The MECO formula outperformed the best formula in terms of Wasted Effort,
Ample, by an average of 7.2%. In terms of Mean Average Precision, MECO outperformed
the best formula, Jaccard, on average 3.8%. MECO is more effective than all the compared
existing formulas in this study on the average performance.

5.3. The Effects of the Defined Four Metrics on the Existing Formulas

We evaluated the possibility of combining Fault Assumption, Assumption Proportion,
Failed Execution Flag, and Total Execution metrics with the existing formulas for fault
localization. This is a simple combination, such that A is combined with B to localize fault,
using a “+” sign, where A is the existing maximal metric and B is the utilized metric, such
as Assumption Proportion, Fault Assumption, Failed Execution Flag, and Total Execution.
We compared the performance of the studied formulas before and after combining the
proposed metrics with them in terms of Wasted Effort, Mean Average Precision, and acc@n.

A point to note is that this study combines all the faults for this experiment (357 + 92)
to make the datasets more complex. This is to assess the dynamic power of these metrics
adequately. Table 6 shows the average improvements of each of the four metrics on the
studied formulas in the datasets in terms of Wasted Efforts and Mean Average Precision.
We report each metric’s improvement on MECO and its Wasted Efforts in percentage (%).
Figure 2, on the other hand, shows the average improvement of the four metrics on the
existing formulas in terms of fault localization accuracy. The number of faults placed at the
top 1 of the ranking list is reported.

Figure 2. Percentage of increase in the fault localization accuracy, acc@1, of the existing formulas
with or without the proposed metrics: Assumption Proportion, Fault Assumption, Failed Execution
Flag, and Total Execution. PI: Percentage of Improvement. w/o: without metric. w/: with metric.
(a) the effect of Assumption on the existing maximal formula. (b) the effect of Fault Assumption.
(c) the effect of Failed Execution Flag. (d) the effect of Total Execution.
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Table 6. Mean Average Precision and Wasted Effort of the existing formulas with and without
Assumption Proportion (P), Failed Execution Flag (F), Fault Assumption (A), and Total Execution (E)
in seeded and real faults. PI: Percentage of Improvement. w/o: without metric. w/: with metric.

Assumption Proportion Fault Assumption Failed Execution Flag Total Execution

Metrics Status AWE MAP AWE MAP AWE MAP AWE MAP

ER1a
w/o 33 0.170 33 0.170 33 0.170 33 0.170
w/ 18 0.170 18 0.170 33 0.166 30 0.070
PI(%) 15 0 15 0 0 0 3 0

ER1b
w/o 19 0.170 19 0.170 19 0.173 19 0.170
w/ 18 0.180 18 0.180 24 0.173 26 0.050
PI(%) 1 5.55 1 5.55 0 0 0 0

Tarantula
w/o 24 0.160 24 0.160 24 0.160 24 0.160
w/ 23 0.180 23 0.180 24 0.160 33 0.030
PI(%) 1 11.11 1 11.11 0 0 0 0

Ochiai1
w/o 24 0.160 24 0.160 24 0.162 24 0.160
w/ 23 0.180 23 0.180 24 0.162 32 0.040
PI(%) 1 11.11 1 11.11 0 0 0 0

Ochiai2
w/o 24 0.180 24 0.180 24 0.177 24 0.180
w/ 24 0.180 24 0.180 24 0.177 32 0.070
PI(%) 0 0 0 0 0 0 0 0

Ample
w/o 16 0.160 16 0.160 16 0.160 16 0.160
w/ 15 0.170 15 0.170 24 0.174 25 0.050
PI(%) 1 5.88 1 5.88 0 8.04 0 0

Jaccard
w/o 23 0.180 23 0.180 23 0.184 23 0.180
w/ 23 0.180 23 0.180 23 0.185 32 0.040
PI(%) 0 0 0 0 0 0.540 0 0

D2
w/o 29 0.140 29 0.140 29 0.143 29 0.140
w/ 29 0.140 29 0.140 29 0.144 30 0.130
PI(%) 0 0 0 0 0 0.540 0 0

GP02
w/o 22 0.070 22 0.070 22 0.069 22 0.070
w/ 28 0.120 28 0.120 25 0.078 33 0.020
PI(%) 0 41 0 41 0 11.53 0 0

GP03
w/o 34 0.050 34 0.050 34 0.053 34 0.050
w/ 29 0.060 29 0.060 32 0.066 35 0.010
PI(%) 5 16.66 5 16.66 2 19.69 0 0

GP13
w/o 24 0.170 24 0.170 24 0.173 24 0.170
w/ 23 0.190 23 0.190 24 0.173 33 0.030
PI(%) 1 10.52 1 10.52 0 0 0 0

GP19
w/o 26 0.130 26 0.130 26 0.133 26 0.130
w/ 23 0.180 23 0.180 26 0.133 32 0.030
PI(%) 3 27.77 3 27.77 0 0 0 0

ER5a
w/o 33 0.040 33 0.040 33 0.040 33 0.040
w/ 23 0.180 23 0.180 33 0.040 33 0.030
PI(%) 10 77.77 10 77.77 0 0 0 0

ER5b
w/o 33 0.040 33 0.040 33 0.040 33 0.040
w/ 23 0.180 23 0.180 33 0.040 33 0.030
PI(%) 10 77.77 10 77.77 0 0 0 0

ER5c
w/o 42 0.040 42 0.040 42 0.040 42 0.040
w/ 33 0.170 33 0.170 42 0.040 41 0.030
PI(%) 10 77.77 10 77.77 0 0 1 0

Wong2
w/o 48 0.100 48 0.100 48 0.100 48 0.100
w/ 48 0.100 48 0.100 62 0.090 48 0.100
PI(%) 0 0 0 0 0 0 0 0
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Table 6. Cont.

Assumption Proportion Fault Assumption Failed Execution Flag Total Execution

Metrics Status AWE MAP AWE MAP AWE MAP AWE MAP

Wong3
w/o 48 0.100 48 0.100 48 0.100 48 0.100
w/ 48 0.100 48 0.100 62 0.090 48 0.100
PI(%) 0 0 0 0 0 0 0 0

Kulczynski1
w/o 30 0.140 30 0.140 30 0.142 30 0.140
w/ 30 0.140 30 0.140 30 0.144 30 0.140
PI(%) 0 0 0 0 0 1.39 0 0

5.3.1. The Improvements on Fault Localization Accuracy

Both the Assumption Proportion and Fault Assumption have the same noticeable
improvement on the studied formulas. The noticing improvements can be observed in GP02
(5%), GP19 (4%), ER5a, ER5b, and ER5c (16%). There is no noticeable improvement in the
fault localization accuracy of ER1a, Ochiai2, Jaccard, D2, Wong2, Wong3, and Kulczynski1.
The Failed Execution Flag metric, on the other hand, only improved the Accuracy of Ample
and GP02. Finally, the Total Execution metric did not increase the performance of any of
the studied formulas.

5.3.2. The Improvements on Wasted Effort

On average, the Assumption Proportion and Fault Assumption improved the per-
formance of all the studied maximal formulas, except Ochiai2, D2, Jaccard, and GP02.
The Failed Execution Flag did not improve any of the studied formulas, while the Total
Execution metric improved ER1a (3%) and ER5c (1%); see Table 6.

5.3.3. The Improvements on Fault Localization Precision

Assumption Proportion and Fault Assumption enhanced the fault localization preci-
sion of all the studied formulas, especially Tarantula (11.11%), Ochiai1 (11.11%), GP02 (41%),
GP19 (27.22), ER5a, ER5b, and ER5c (77.77%). Both the Failed Execution Flag and Total
Execution do not have any visible improvement in the Precision of the existing formulas.

Figure 3 shows the list of the existing formulas that the developers can combine
with the proposed metrics for fault localization. Figure 3a–c show that the Assumption
Proportion and Fault Assumption can be combined with eight existing formulas, Tarantula,
Ochiai1, GP02, GP03, GP19, ER5a, ER5b, and ER5c, for fault localization. Furthermore,
as the Failed Execution Flag can improve the performance of some formulas when combined
with them, the Total Execution did not have any visible improvements on the studied
maximal formulas.
Summary of RQ.3

Among the proposed metrics, only the Assumption Proportion and Fault Assumption
have more improvement on the existing formulas. Combining these two metrics with some
studied formulas can improve the Accuracy, Wasted Effort, and Precision of many state-
of-the-art methods, such as Tarantula, Ochiai1, GP02, GP03, GP19, ER5a, ER5b, and ER5c.
Therefore, they are good metrics to consider for fault localization.
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Figure 3. The improvements of the defined metrics on the existing formulas. (a) the list of formulas
that can be improved in terms of acc@n when combined with Fault Assumption or Assumption
Proportion. (b) the list of formulas that Fault Assumption or Assumption Proportion can enhance
their wasted effort. (c) the formulas that can be improved in terms of MAP when combined with
Fault Assumption or Assumption Proportion. (d) the list of the formulas that Failed Execution Flag
can enhance in terms of acc@n and MAP.

5.4. Discussion

This study proposed a potent formula with a better fault localization ability. We first
studied the coverage information of both seeded and real faults and discovered that the
real faults possess a dynamic characteristic, in which the non-faulty statements have more
fault-related attributes than the faulty ones, such as higher failed execution and lower
passed execution. Furthermore, many non-faulty statements have the same number of
failed execution test cases as the faulty ones, but lower passed non-execution test cases.
However, many existing maximal formulas, such as ER1a, ER5a, Wong2, Ochiai1, Jaccard,
D2, etc., do not consider these passed non-execution test cases, which can help break ties
between the faulty and non-faulty statements with the same numbers of failed execution
test cases. This situation limits the performance of the existing maximal formulas and does
not help developers rank the faulty statements higher.

Therefore, this study utilized four metrics, Failed Execution Flag, Fault Assumption, Total
Execution, and Assumption Proportion, which were subsequently combined to formulate a
heuristic. These metrics were utilized to handle different problems that were discovered in
the analysis of the program spectra, such as:

Zero failed execution values of the faulty statements: Many faulty statements in the
real faults of the defects4j repository have no failed execution test cases. This situation
was observed in multiple fault programs. Not all faults are located in a single block,
but it may be difficult to localize a fault not covered by any failed test cases. In this
situation, many existing maximal formulas are not effective in localizing this type of
fault. Therefore, we utilized Fault Assumption and Assumption Proportion to localize this
type of fault. The Fault Assumption metric adds the values of failed execution test cases to
the passed non-execution test cases, while Assumption Proportion takes the proportion of
Fault Assumption, which divides Fault Assumption by the total test cases.

Lower failed execution of the faulty statement: In the real-faults subject programs,
some faults have lower failed execution values than the non-faulty statements. Many
existing maximal formulas might find distinguishing faulty from non-faulty statements
difficult. Therefore, we utilized Failed Execution Flag, which converts failed execution values
of each statement covered by one or more failed execution to one. By virtue of this, if the
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faulty statements have more passed non-execution values than the non-faulty statements,
the fault hidden in this situation can be exposed by this metric, using other values, such as
passed non-execution values, to break the ties.

Faulty statement with higher passed execution: Close observation is given to the
faulty statements with higher passing execution. Higher passed execution of a faulty
statement cannot help localize such a statement. However, combining passed execution
values with the failed execution value can, one way or the other, help to localize some
faults. Therefore, we utilized Total Execution, which is the addition of passed and failed
executions to localize faults.

This study subsequently combined the above-discussed metrics to propose a new
heuristic, MECO, for effective fault localization. MECO was compared with the 18 existing
maximal metrics to determine its effectiveness for fault localization. Before this comparison,
an experiment was performed to determine which metrics contribute more to MECO’s
effectiveness. This was achieved by computing the acc@n, Wasted Efforts, and Mean
Average Precision of each metric. Furthermore, MECO’s effectiveness was observed with-
out each metric by removing one metric at a time in the formula. This study showed
that Fault Assumption and Assumption Proportion contribute more to MECO’s performance,
especially its Accuracy and Precision. This study further suggests that each metric is individ-
ually poor at fault localization, but is effective when combined. Although Fault Assumption
and Assumption Proportion are the major backbones of MECO, combining these two metrics
is not effective without the other two metrics.

On the other hand, MECO is more effective than all the existing formulas. It out-
performed all the existing maximal formulas in the evaluation metrics used in this study.
On average performance, MECO outperformed the best formula in terms of Wasted Effort,
Ample, with an average of 7.2%. In terms of Mean Average Precision, MECO outperformed
the best formula, Jaccard, on average 3.8%. In terms of fault localization accuracy, MECO
outperformed some formulas with the same performance, ER1a, ER1b, Ochiai2, Ample,
and GP13, which is better than all the existing formulas with an average of 11%.

Finally, we combined each proposed metric with the existing studied formulas to
determine if these metrics can be combined with the existing maximal formulas. This
shows that only two of the utilized metrics, Fault Assumption and Assumption Proportion,
improved the fault localization accuracy and Precision of some existing formulas, such
as Tarantula, Ochiai1, GP02, GP03, GP19, ER5a, ER5b, and ER5c. Therefore, these two
proposed metrics can be combined with the existing formulas for effective fault localization.

6. Related Works

The formula is used in spectrum-based fault localization to transform the spectrum
of program statements into their likelihood of being faulty. As a result, the search for the
optimum formulas and Machine Learning approach is part of the dimensions of enhancing
the spectrum-based fault localization. Many studies have been conducted to find or build
the most effective strategies in the form of formulas and models for fault localization. We
separate the related work into three categories: Machine Learning, formulas created by
humans, and formulas created using algorithms.

Human-designed formulas: Wong et al. [36] presented three different versions of
Wong formulas, Wong1, Wong2, and Wong3. In Abreu et al. [5], the authors introduced the
Ochiai formula used in molecular biology in Spectrum-based fault localization. The Ochiai
formula also has other versions, Ochiai1 and Ochiai2, widely studied and used in Spectrum-
based fault localization. Naish et al. [7] also empirically studied the effectiveness of the
existing formulas and proposed two new metrics called OP1 and OP2 to support Spectrum-
based fault localization. These two formulas were later classified under ER (ER1a and
ER1b) and are among the existing maximal formulas. The D2 formula was introduced
as a modified version of the Kulczynski1 formula, which intuitively indicates that each
statement’s execution traces via test cases might be interpreted as an execution pattern [40].
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As a result, the similarity between statements more frequently executed in failing test cases
can be used to identify the faulty ones.

Contrary to the previous works that introduced new formulas in Spectrum-based
fault localization, Lucia et al. [18] investigated the efficacy of 40 association measures
proposed in data mining and quantified the strength of a relationship between two vari-
ables for fault localization. They adopted these association formulas in the context of fault
localization to assess the strength of the link between program execution and program
failures. They found that no single measure is best in all circumstances, but that numer-
ous association measures outperform maximal formulas. In essence, the major purpose
of this research is to discover the best-performing measures for Spectrum-based fault
localization and also find the highest performing formulas that have been the bourne of
Spectrum-based fault localization.

However, the proposed formula in this paper is differentiated from the existing formulas
by utilizing Assumption Proportion, Fault Assumption, Total Execution, and Failed Execution Flag.
These combined metrics effectively localized more faults in real and seeded faults.

Algorithm-designed formulas: Many researchers also have produced optimized formu-
las with the help of algorithms, which is different from our study. However, the proposed
algorithm-designed formulas have been studied in the literature. Yoo used Genetic Pro-
gramming (GP) to evolve formulas for Spectrum-based fault localization to compete with
the human design metrics [37]. Indeed, 6 of the 30 GP-evolved formulas outperformed the
literature’s studied maximal formulas. Similarly, Ajibode et al. used Genetic Programming
to evolve formulas where 20 of the 30 metrics outperformed maximal formulas [2]. Another
study related to an algorithm-designed study utilized multi-objective GP to improve fault
localization [45]. Multi-objective GP was also embedded into the FLUCC model, designed
by Sohn and Yoo [23], to rank the faulty elements.

Machine Learning: Other methods, such as Machine Learning methods, have been
used in Spectrum-based fault localization. Recently, a method for learning a ranking
model using several fault localization sources has been presented. Xuan and Monperrus
used linear weights to aggregate scores from various SBFL models [12]. Le et al. learned
ranking models from various SBFL scores, as well as invariant violation characteristics
using rankSVM [24]. Sohn and Yoo [23] learned ranking models from SBFL scores and
program change measures, using rankSVM and GP. Finally, Kim et al. introduced the
PRecise machINe-learning-based fault loCalization tEchnique (PRINCE), a unique learn-to-
rank fault localization technique that uses Genetic Programming (GP) to combine several
sets of previously researched localization input features [25]. This study proposed some
metrics that can be combined with the existing formulas to train other Machine Learning
algorithms for effective fault localization.

Note that the proposed Assumption Proportion method in the context of this study is
different from the Barinel [46] and ER5b [24] formulas. The dichotomy of Failed Execution
and total test cases made up Barinel. Furthermore, Failed Execution and Total Execution
made up ER5b, which opposes the Fault Assumption and total test cases that made up
Assumption Proportion in our study.

7. Threats to Validity

We describe the risks that empirical research faces regarding the validity of its find-
ings and the steps we took to mitigate them. These threats to validity are divided into
three groups:

• Internal validity: The degree to which the outcomes of empirical evaluations support
the claims is internal validity, the data integrity of training, and test data.
In our study, we chose statements as the granularity of fault localization rather than
methods and blocks. Existing studies by Xu et al. investigated fault localization with
blocks, and Steimann et al. [47,48], Xuan et al. [12,12], and Sohn et al. [23], addressed
fault localization with methods in the C and Java programs. In our study, we used
statements as our level of granularity, as has also been followed by Jones et al. [33],
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Abreu et al. [5], Kim et al. [25], and Naish et al. [7]. Given the program for methods,
our study can easily be adapted to fault localization on methods without further
modification.

• External validity: By design, the MECO method described in this paper depends on
the subject program dataset and may not be generalizable. Many fault localization
research’ results and findings are, in fact, not directly generalizable. However, we
took a measure to mitigate this threat by experimenting on two different repository
datasets (nine different programs in all) to evaluate our method extensively. We also
ensured that the subject programs contain both real and seeded faults to determine if
our method can be adapted to different types of faults and provide a high quality of
fault localization effectiveness.

• Construct validity:The measure used to evaluate MECO’s performance poses a sig-
nificant threat to construct validity. We mitigated this threat by reporting not only
the commonly used Wasted Effort metric, which shows the percentages of a program
that needs to be investigated, but also the Mean Average Precision and acc@n met-
rics, which show the absolute rank of a faulty statement, as proposed by Parnin and
Orso [1].

8. Conclusions

An approach to help developers quickly localize faults with less cost is highly in
demand in spectrum-based fault localization. Therefore, this paper first proposed the Fault
Assumption, Total Execution, Failed Execution Flag, and Assumption Proportion metrics,
which can be combined and also combined with other existing formulas for effective fault
localization. Secondly, it presented MECO, a fault localization method that combines
different metrics to automatically lead developers to the locations of the faults in a program.
This study is the first to consider using different shortcomings in the program spectra to
construct a simple formula for fault localization.

The proposed formula and the existing maximal formulas were evaluated on single
and multiple real faults of the Defects4J dataset and seeded faults of the SIR dataset.
The empirical evaluation showed that MECO is an effective fault localization method,
placing an average of 107 of 357 real faults and 23 of 92 seeded faults at the top 1 of the
ranking list. It further placed 171 of 357 real faults and 36 of 92 seeded faults within
the top-5 places of the ranking list. This performance supersedes the existing maxima
formulas’ performances.

Furthermore, the Assumption Proportion and Fault Assumption metrics can be
combined with other existing formulas as they drastically improve the Wasted Effort
and Precision of many existing maximal formulas. The general performance of the pro-
posed formula in this study shows that it can be applied to other projects for effective
fault localization.

The future works will regard using MECO on other large projects such as AspectJ.
We also plan to compare MECO with other fault localization techniques using different
coverage information types. Finally, we plan to optimize MECO’s performance using
some optimization techniques such as particle swarm optimization [49] and gray wolf
optimization [50] as used in [51,52].
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