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Abstract: There is great focus on phenomena that depend on their past history or their past state. The
mathematical models of these phenomena can be described by differential equations of a self-referred
type. This paper is devoted to studying the solvability of a state-dependent integro-differential inclu-
sion. The existence and uniqueness of solutions to a state-dependent functional integro-differential
inclusion with delay nonlocal condition is studied. We, moreover, conclude the existence of solutions
to the problem with the integral condition and the infinite-point boundary one. Some properties of
the solutions are given. Finally, two examples illustrating the main result are presented.

Keywords: nonlocal condition; infinite point; delay integral operator; differential inclusion;
self-dependence
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1. Introduction

A functional equation is an equation involving an unknown function at more than an
argument value. In functional equations, argument deviations are the variations between
the argument values of an unknown function and an independent variable ¢. The functional
differential equation, or differential equations with diverging arguments, is created by
combining the concepts of differential and functional equations. Functional differential
equations are used to describe many phenomena in different sciences, see [1]. Nonlocal
problems in mathematical physics are problems in which, unlike traditional boundary
value conditions, the desired function’s values at distinct places of the boundary (and/or
its values at the boundary and outside it) are related. In fact, it is reasonable to treat the
theory of functional differential equations and the theory of nonlocal problems as one
indivisible theory.

For various reasons, many researchers have been interested in researching the non-
local problem of functional differential equations with infinite point conditions; see for
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example [2-10]. The deviation of the argument in the current literature’s differential and in-
tegral equations with diverging arguments usually concerns only the time itself, see [11,12].
In theory and practice, however, another case exists in which the deviating arguments
are dependent on both the state variable y and the time f. Several studies devoted to
such differential equations have lately been published, for example [13-17] . The first
papers studying this class of functional equations with self-reference, Eder [18], studied the
existence of the unique solution for the differential equation

Z'(t) = z(z(t)), z(0)=2zp, t€BCR.

where 1 : R — R is continuous and monotone, and /(0) = 0.
Feckan [20] studied the existence solution

Z'(t) = h(z(z(t))), z(0) =0 where he CYR,R).

Buica [13] studied the existence and continuous dependence of solutions, on zg of the
functional differential equation

Z'(t) = h(t,z(z(t)), z(to) =z0, tE€[ab],

where tg, xg € [a,b] and h € C([a, b], [a, b]).
Stanek [21] studied global properties of decreasing solution of the equation

Z'(t) = z(z(t)) + z(¢t).
Stanek [16] studied global properties of solution of the functional differential equation
z(1)Z'(t) = kz(z(t)) 0< |k| < 1.

In this study, the initial value problem of the functional differential inclusion with
self-dependence on a nonlinear delay integral operator

dy u(t)
a5 € ‘I’(t,y(/o w(u,y(u))du)) ae. t € (0,B], (1)
with the nonlocal condition
K
y(0) + Y qey(u(w)) =vo, q¢>0, T € (0,B), ©)
(=1

was investigated. We study the existence of the absolutely continuous solution y € ACJ0, B]
and demonstrate the continuous dependence on yy and 1. Moreover, as applications, we
study the nonlocal problem of Equation (1) with the integral condition

y(0) + /OB y(u(u))dh(u) = yo, h:[0,B] — R (increasing function) ©)]

and with the infinite-point boundary condition

y(0) + ﬁ 30y (u(1)) = vo, @
/=1

if Y77 1 q¢ is convergent.
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The paper is organized as follows: In Section 2, the equivalence of the functional
differential inclusion with state-dependence on the nonlinear delay integral operator (1)
with the nonlocal condition (2) is given. In Section 3, we study the existence of absolutely
continuous solutions to problem (1) and (2), and conclude the existence of solutions to
problem (1) with the integral condition (3) and the infinite-point boundary condition (4).
In Section 4, we establish the existence of exactly one solution for (1) and (2). In Section 5,
the continuous dependence of the solution is studied. Finally, in Section 6, two examples
are given to corroborate the main existence result and a numerical example is given to
demonstrate the difference between the exact solution and numerical solution.

2. Auxiliary Results

Consider the following assumptions:

(@) ¥(ty)is nonempty, convex and closed V (t,y) € [0, B] x R.

(b) ¥(ty)is measurableint € [0, B] for every y € R.

(c) ¥(ty)is upper semi continuous in y for every ¢ € [0, B].

(d) There exist a bounded measurable function ¢ : [0, B] — R and a positive constant b,
such that

¥t y)ll =sup{[r|:r € ¥(t,y)} < lc(t)| +Dlyl, |e(t)] <M.
From the assumptions (a)-(d), we can deduce that there exists a r € ¥(t,y), such that
the following is satisfied:

(1) r:[0,B] x R — R satisfies Carathéodory condition:

- Foreacht € [0, B],r(t,.) is continuous;
- Foreach g € R,7(.,0) is measurable;
- There exist a bounded measurable function c(t) and a positive constant b > 0,
such that
r(t Q) < le(®)]+bleol,  [e(t)] < M.

and the functional r satisfies the integro-differential equation

% = r(t,y(/()y(t) 1p(u,y(u))du)) ae.t € (0,B], ©)

(2) ¥ :[0,B] x R — R satisfies Carathéodory condition:

- Foreacht € [0,B], (t,.) is continuous;

- Foreachy € R, ¢(.,y) is measurable;

- byl <t
(3) p:1[0,B] — [0, B] is continuous and nondecreasing, j(t) < t, t € [0,B] .
4 (1+2%)_,q¢)bB <1

Remark 1. From (a) and (1), we can deduce that every solution of (1) is also a solution of (5).
The equivalence of (5)—(2) and the integral equation is given in the following lemma.
Lemma 1. If (1)—(4) hold, then the nonlocal problem (1) and (2) and the equation

1

y(t) = Ty lyo - i qe /Oy(mr(ufy</;l(u) w(efy(e))de»du]

(=1
+/Otr(u,y</0”(u) lp(Q,y(Q))dQ))du fort € [0, B] (6)

are equivalent.
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Proof. Assume that the solution of the nonlocal problem (1) and (2) exists. Integrating (5)

from 0 to t, we get
vy =v0)+ [ (s [ vestenac) )au ?

Using the condition (2), we obtain
K K K () p(u)
3 autz) =y Lae+ Yoo [ r(w([* wiovenae) Jau
=1 =1 =1 70 0

By Yy_1q90y(1(t)) = yo — y(0), we have
K LS () (u)
Yo —y(0) :y(0)£q4+£qe /O” r(u,y</oy lP(Q,y(q))dg))du,

which implies

. [yo - i q /OM) r(u,y</oy(u) ¢(e,y(e))de>)du1. ®)

0) ==
y(0) = 7 S py

Using (7) and (8), we obtain

y(t) = S - lyo - iqe /()M(T[)r(u,y(/oy(u) 1P(Q/y(9))d0>>d“]

1+ 22:1 qe (=1

" /ot ' (”’y (/Oy(u) ‘/’(Q/y(e))de> ) du.

Now, suppose that y € C[0, B] is a solution of (6). Now differentiate (6), we arrive at

dy _ d {1 [yo - iqz /OH(TZ)r<u,y(/OH(u) t/}(e,y(e))dg))du]

dt —  dt 14+Y5 1490 =

" /ot ' (”’y <./(;H(u) ¢(ery(e))de> ) du}
-7 <W (/OW) w(@/y<e))de> ) :

From (6), we find

- []/0 - Z q¢ /Ou(m r<u,y</0y(u) w(e,y(e))de»du]

T =

* /OTZ ’ (”fy ( /OW) llf(e,y(e))de) > du,

: [yo - Z qe /Oym) r(%}/(/oy(u) IP(@,y(e))dQ))du], )

)
y( ) 1+ Zéil qe /=1

and
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K 1 K K u(te) p(u)
T —_— — rlu, , d du
o) = g Zzlwlyo Lo [ e(wa ([ wtevienac) ) ]
L4 () p(u)
4 7 d d . 10
+521W/0 r<u y(/o ¥(0,y(0)) @)> u (10)

From (9) and (10), we have

K 1 K K
y(0) + é;wy(ﬂ(fz)) e (1 +) ‘M) []/0 - Y

=1 =1

/om) ' (”’y (/oy(u) ‘/’(Q/,‘/(Q))dg) ) du]
i [21 o [ (1 [ #le(e)de) ).

Then .
y(0) + E; aey(u(t)) = yo.

This completes the proof. [

3. Existence of Solution

In the following theorem, using Schauder’s fixed point theorem, we establish the

existence of at least one solution of (1) and (2).

Theorem 1. If (1)—(4) hold, then the nonlocal problem (1) and (2) has at least one solution y €

ACI0, B].

Proof. First, we define the operator A associated with Equation (6) and set P by

Ay(t) = 1+21/_1q4 [yo—égqe /OM)r(ttfy(/oy(u)w(e,y(e))de»dbt]

* /ot g <”«‘/ (/OW) w(efy(e))dg) > du.

Now Pp = {y € C[0, B] : |y(t) —y(u)| < L|t —ul|, Vt,u € [0,B]}, where

blyol + (1 + Y1 90)M

L=

(1+X)_1q0) — (14+2%)_1q¢)bB’

Then we have fory € P,

|Ay(t)] =

+/0tr(u,y(/0y(u) ¢(Q,y(9))de>
()
0

1 K
S . WS S0

i /ot r(”’»‘/</oy(u) llﬂ<@,y(e))de>

r

1 ()
— Yo — T
T+ 3Yi 40 lyo gzzl e /0 (

)
(
)

du

u,y(/oy(u) 1P(Q/y(9))d9>>

du,

u,y('/o'y(u) w(e,y(e))de>)du]

du]
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and so

|Ay(t)] < Hzlm-Iyol+Eflqe/0y(m(lc(u)l+b‘y(/oy(u)¢(e,y(9))de)Ddu]

+ /Ot (IC(u)I + b‘y(/oy(u) tp(q,y(g))dg> Ddu

K ()
+ c(u
wol-+ Lo [ (etw)

A\

IA

T+ Yi 140 |

+b‘y (/OW) w(e,y(e))de) - y(O)’ * bW(O)Dd”}

+/( |+b‘ (/W)tlf(e,y@))de)—y(0)‘+b|y(0)|>du

Thus,

IN

Hzlzlq%“iqf/ ( |+bL/ Ide+bly()|>]

/( |+bL/ 0))ldg + bly(0 |)

Yi—1q¢ 2
—_— —= " (BM+ bLB” + bB|y(0
14+Y0, ’M|y0| 1+Y5 4 ‘M( I )|)

+BM + bLB? + bB|y(0)]

S (w +1) (BM + bLB? + bB|y(0)]). (11)
T4+ qe T+ Y14

IN

But

1+Zl?=107£ [yo - (i e /Mm r(”’y</oy(u> ‘P(Qf]/(Q))dQ>>dM]
1+Z1§_1qg [Wo! 2 q /M( é r<u,y</oy(u) IP(Q,y(Q))dg)) du]

y(0)] =

and so

e ol L [ e
+4y(£”mvwaym»d§)y«n]+wywn)d4
wol+ L e [ (lewl 2 [ e @)ide + iy ) ]

[yol + 3 q¢ (BM +bLB? + bBIy(0)] ) |
(=1

IN

1
1+Yi 14

IN

1
T+Y0 14

Hence
lyo| + (BM +bLB?) Y¥_, g,

. 12
(1+X)_19¢) —bBYj_14q¢ (12)

y(0)] <
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From (11) and (12), we obtain
1 Yi—19¢ )
Ay(t)| < ——=——Iyo| + <+1
4y(®) 1+>:?=1w|y°| T+ X0 qe
x (BM 4 bLB? + bB|y(0)|)

1 Y19 )
—_—— + | —=—"+1
1+Y7 4 ’N|y0| (1 + Y140

ol + (BM +bLB*) Y5_, g¢
(1+Y)_19¢) —bBYj_1 q¢

lyol + (BM +bLB?) Y5 _; q¢
(T4 Xh-19¢) —bBYj_1q¢

Now, let t1, t, € (0, B] such that |t; — t1| < &, then

IN

X (BM + bLB?+ bB

+ LB.

|Ay(t2) — Ay(t1)| < /tltz r(u,y</oy(u) w(g,y(g))dg>> du
= ,/:(ICW)I +b‘y(/oy(u) w(e,y(e))de> —y(O)’ +b|y(0)|>du
= /: ('C(“>| +bL /OW) |1P(Q/3/(Q))|dQ+b]/(0)|)du
< (b —h)M+ (ta = h)bLB + (t2 — 11)bly(0)]

= (tp —t1)(M+bLB+b|y(0)|). (13)
From (12) and (13), we obtain

[Ay(t2) = Ay(h)| < (b2 —t)(M+bLB
b ( [yol + (BM + bLB?) ¥, w))

(L4 X1 q0) —bBYi_1 40
blyo| + (1 + Y 4¢)(M + BLB)
(1+X—190) —bBYG_1 4¢

This proves that A : P, — Py; the class of functions { Ay} is uniformly bounded and
equi-continuous in Pr.

Let y» € P, y» — y (n — o0), then from assumptions (1) and (2), we obtain
r(tyn(£), yn () = 1t y(£),y(8)) and (8, yn(t)) — (£, y(t)) as n — co. Also

< (b—t) = (tp — t1)L.

) ) 1 X () p(u)
lim Ay, (1) = 1}520<1+Z§_1wly0_zw/0 r(u,yn(/o lp(szn(Q))dQ)>d”]

(=1

(u)
[ ([ pte (@) dean ). )
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Now

Yn </0;,(u) lP(ern(Q))dQ> - y(/oy(u) llﬂ(e,y(e))dQ) ‘
Yn (/OW) Qb(Qr]/n(Q))dQ> — Yn (/OW) w(e,y(g))de) ‘
Yn (/O”(u) ¢(Q,y(e))de) - y(/oy(u) w(efy(@))de) ‘

(u) €
<1 (0, ym(0) ~ ploy(e)ldo+ 5

€ €
< S4t—e 1
< Sth5=e (15)

IN

+

Using (14) and (15) and Lebesgue’s dominated convergence theorem [22], we obtain

. 1 K ulwe) p(u)
lim Ayn(t) = 1Y a0 [yo - E;W/O r}l_r&r<u,yn (/0 ¢(Q,yn(Q))dQ>>du]
t p(u)
a JE%J(%W (/O EL’(Q/yn(Q))dQ))du = Ay(t).

Then Ay, — Ay as n — oo, the operator A is continuous.

Hence by Schauder theorem [23] there exists at least solution y € C|0, B] for the
integral Equation (6), therefore there exists at least solution y € ACJ[0, B] for the nonlocal
problem (1) and (2). O

*  For the nonlocal integral condition, we present the following theorem.
Theorem 2. If (1)—(4) hold, then the nonlocal problem of (1), (3) has at least one solution.

Proof. Let y € AC|0, B] be the solution of the nonlocal problem (1) with (3). Let g, =
h(t;) — h(ty_q), h is an increasing function, 7y € (ty_1,ty),0 =tg < t; < tp,... < tx = B
then, as x — oo the nonlocal condition (2) will be

K

y(0) + ;l(h(fz) = h(te—1))y(#(Te)) = vo

and
K

y(0) + Jim Y7 (h(t0) ~ h(te-)y(()) = y(0) + [ y(u(u))ah(u) = yo.

K—00 /=1

As k — oo, the solution of the nonlocal problem (1), (3) will be
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) = lim e +ZK_1q [}/o - E ’M/ (u/y(/oy(u) lP(Q,y(Q))dQ»du]
s [ ( [ wieatende) au
e =t )]+ [ (o [ wtevi@)de) )au
= o o (e ([ vestenae) )anco]
+ /; r(tt,y(/oy(u) I/J(Q,y(e)de»du

This completes the proof. [

¢ For the infinite-point boundary condition, we present the following theorem.
Theorem 3. If (1)—(4) hold, then the nonlocal problem of (1), (4) has at least one solution.

Proof. Let }j_; g, be convergent. Then

y(t) = 1+21§_1q4 [yo—;qz/oy(mr@y(/oy(u)IP(Q,y(e))de))du]

+/0tr(u,yx</0y(u)IP(Q,yK(Q))d@))dw (16)

Take the limit to (16), as x — oo, we have

T [VO— S [ oy /(f(u)w(e,y(@)de))du]

s [ (e[ tp(q,yK(e))dg))du}

L s T [%;W [ (ufy( /Oy(u)w(e,y@))dg))du]

s [ (o [ 0@ m(@)de) e W

Now, |7,y(1¢)| < |9¢]]ly||, thenby comparison test ;> ; q,y(7¢) is convergent. Moreover,

/Om) r (u,y (/OW) ¢(ny(9))de> ) du /OM) (Ic(u) + b‘y (/OW) ll)(@,y(e))d9> D du

BM + bLB* + bB|y(0)| = M.
Therefore,

lim y,(t) = lim

K—00 K— 00

N

oo [ (o ([ wlevtende) )

< Mgy
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and by the comparison test

ﬁ qc /OTZ r (u,y </0u w(e,y(g))de) ) du

is convergent. Using assumptions (1)—(2) and Lebesgue’s dominated convergence theorem,
see [22], from (17), we obtain

1 > ) k()
y(t) = HZMlyog_lqé/o r(w(/o IP(Q/y(Q))dQ))d”]

+/Otr(u,y(/0y(u) lP(Q/y(Q))dQ>)d“- (18)

Then we have proved. O

4. Uniqueness of the Solution

Consider the following assumptions:

(@) Theset ¥ (t,y) is nonempty, convex and closed V(t,y) € [0, B] x R.
- ¥(t,y) is measurable in t € [0, B] for every y € R.
- ¥ satisfies the Lipschitz condition with a positive constant b such that

H(Y¥(ty) —Y¥(tq)) <bly—gq|,

where H(t,v) is the Hausdorff metric between the two subsets A, B € [0, B] x E.
Remark 2. From this assumptions we can deduce that there exists a function r € ¥ (t,y), such that

(1*) r:[0,B] x R — Ris measurable in t for any y € R and satisfies the Lipschitz condition

lr(t,y) —r(t,q)| < bly —q]. (19)
2% : |0,B] x R — R is measurable in ¢ for an € R and satisfies the Lipschitz
(4 Yy P
condition
[p(ty) —p(tq)| < bily —q]. (20)

(3)
( 1+2Y 0 19
T4+ Y0149

In the following theorem, we establish existence of exactly one solution of (1) and (2).

(bblLB2 T bB)) <1.

Theorem 4. If (1%)—(3*) hold, then the solution of the nonlocal problem (1) and (2) is unique.

Proof. Let x, y be two the solutions of (1) and (2). Then

1 K pe@) ()
HZM(E””/O r(ffx(/o VJ(QIX(Q))dQ))

(e westanae) o) + [ ([ et
_r<”'y (_/Oy(u) w(efy(e))dq» du
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and so
[x(t) —y(#)]
szm Zil q /OM) x (/Oy(u) (o x(e))de) —y (/Oy(u) w(g,y(g))dg>

+b /Ot x(/oy(u)w(efx(e))de> —y</0y(u)¢(9,y(e))de>

Therefore, we obtain
|x(t) —y(t)|
b LS ()
¢ il
T o1+ KEW 0

du

du.

([ vex@e) —x( [ vlovtone) fau

X

b s (7o)
e f
1+Zéf1‘1£ gzlqé 0

( (
" poxtonde) ~x( [ wlo,u(e)do )|
[+ )=+
x(/o w(ely(e))de> —y</oy(u) lP(Q/y(Q))dQ> du
which reduces to
|x(t) —y(t)
1+Z[ 1‘164 ;! (/” ! / lP(Q/J/(Q))ldeMJrBIIx—yI)

w(u)
4o [ " 19(0,x(0)) ~ wlo,y(e))dodu + bB]x ~ ).

Thus, we arrive at

K
x(t) —y(t < / / dodu + B||x — )
x(6) ~ y(0) H_DMMZW( y(@)ldedu-+ Bllx ]|
+bb1L// y(0)|dodu + bB|jx — v
Yi—11¢ 2 2
< === (bbyLB*+bB)||x —y|| + (bbyLB- + bB)||x —
U =yl + (01 LB + bB) x|
1+2%0 1490 2
— L= 1 B2 4 bB)x — y).
T LB+ 1B) x|
Hence,
1+25 g0 2 ))
1- | —=—"-(bb;LB°+bB X — <0.
(1- (Tt e +0m)) ) -y
Since Loy
+2) 190 2
——————(bbLB-+bB) <1
1+ZZ:1W( ! )

which implies x(t) = y(t) and the solution of the nonlocal problem (1) and (2) is unique. [

5. Continuous Dependence

Theorem 5. If (4)—(6) hold, then the solution of the nonlocal problem (1) and (2) depends continu-
ously on yo.
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Proof. Let y* be a solution of the integral equation

yt) = Hgm[ qu/m <u1y</oy(u)lP(Q,y(@)de))du]

+ fr(m( s vleu(e)de) )

such that then |yg — y§| < é. Then

*

1
H—y () < ———|yp—
yO-y Ol < g -1

1 LS (o)
1+Zé 140 EW/O

r<t/y</oy(u) ¢(er(9))d9>>

i) .
r(w (/0 ¥(oy (e))de)) du
and so
ly(t) =y (t)]
1
< 0
Tl q
1 K p(t) p(u) s .
+b1+22__1qé;qe/0 y(/o lP(ny(Q))dQ> —y (/0 play (e))de) du
() NI
y(/o lP(ny(Q))dQ> —y (/0 p(oy (e))de) du.
Thus, we arrive at
y(t) =y (t)]
< ;5
T+
1 K () p(u) p(u) .
+bmg 1%/0 y(/o ¢(sz(9))d0) —y(/o ¥(oy (Q))dQ) du
ko rulw) () . o .
1+Zz lqMZ{w/o y(/o ploy (e))de> -y </0 ploy (Q))dQ> du

du

</W ))dg) - y(/oy(u) IP(Q,y*(Q))dQ)
(/ Q>>d@) y ( /f(”) lP(ny*(Q))dQ> du

which reduces to
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y(t) =y (1)
1

—_
1+3_ 1‘1/

() . i
RaE 1% o = 9le.y"(@)Idedu-+ Blly ~y']

+bL/O./O [¥(0,y(0)) —¢(o,y*(0))|dodu + bB|ly — y*|.

IN

Therefore, we obtain

y(®) = y* (1)]
1
—" )
Tl 4
1 K w(te) pp(u)
it e [ [ o) -y @t s 1y -1
Hmm;w(l " 1v(0) ~ v (@Idedu+ By~ |
b L / [ 1910) ~ y* )ldodu + By ']
< LIzt 90 (b, LB 4 bB)ly — v° || + (bb1LB® + bB)ly — v°|
1+Z£:1‘M T+ Y0149
) 14+2Y5 140 2 X
= - bb{LB“ +bB — .
Ty g 1m0 My =yl
Hence s
* 1+ZK= qe
ly—y*ll < TR =e.
. Y1 9¢ 2
1 (71%1 222 (b LB +bB))

Then the solution of the nonlocal problem (1) and (2) depends continuously on yg. O

Theorem 6. If (4)—(6) hold, then the solution of the nonlocal problem (1) and (2) continuously
depends on the function 1.

Proof. Let y* be a solution of the integral equation

S HZlM[yo_géq%m)r(”’y (/()y(u)lp*(grl/(@))d()))du]
* /ot ' <”’y (/oﬂ(u) llf(e,y(e))de) ) du

such that | — ¢*| < 4. Then

1 K w(w)
B —y*(t < —=
VORSAOIIE 1+221W(/§W/0

—r(t,y* (/OW) ¥ (e,y"(0))de )
Ot r(u,y(/oy(u) lP(Q/y(Q))dQ>>
—r(u,y* </Oy(u) lP*(Q/y*(Q))dQ)>

r (by (/OW) llﬂ(e,y(e))dq) )
du)

du,
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then

y(t) =y (1)]

by _yq0 [T ( p(u) )_ *< plu) )
Ty 1W/ y/O pley(e))de ) —y /0 ¥ (0¥ ())de

+/ </M (e))d@> y(/oy(u)lp*(@,y*(@))de)

Hence, we obtain

ly(t) —y* ()]
by 1 q /H(Te)

p(u) plu)
T+ a Jo y(/o ¢(Q,y(e))de) - (/0 ¥ ey (e))de)
by _149¢ /#(Te)

y
m y( /OW) w*(g,y*<e))de> A ( /OW) w*(e,y*(e))de>
([ vtevtenae) v [ v(e @)ae) au
y(/o w*(ely*(e))dg) -y </OW) lP*(Q,y*(Q))dQ)

du

du.

du

IN

du

+

du,

which yields
y(t) —y* (1)

bLE?_qu( w(w) pulw) o
rrs () eyt ey e)

+¥(e.y(e)) — ¥ (e,y"(0))|dedu + Blly — y*||)

s [ (@) - 9oy (@)
+¥(o,y* () — ¥ (oY (Q))Idedu+bB||y v

IN

Thus, we find

bLB25Y S 1 qu

-y ()] < 4 BLB%S
ly(t) —y* ()] < Y
bLY;_19¢ ( / (Te) / )
oy o dodu + B
1+ Y m (¢)lde ly — "l
+bblL// (¢)|dedu +bB|ly — y~||
DLB* Y q; oo 14H2Y5 4 ,
< 2=y + ==V (b1 LB + bB) ||y — v .
Ry =L T+5 g 0 My =yl

Therefore, we have

bLB25 Y5, qy 2
1+Y0 14 +bLBS

ly =yl <
1- (ﬁ#(bb LB2+bB))

= €.

Then the solution of the nonlocal problem (1) and (2) continuously depends on the
functiony. O
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6. Examples
Example 1. Consider the differential equation

dy 13 1 Pt cos’y
a3 Ters (‘y</o )| ) b0 @
with condition
=1 /-1
y(0)+ ) av\l— ) =1L (22)
(=1
B 1 KT, 1 s cos’y
0 = rpna R (7 (U ) )
t(1 4 1 s cos?y
+/0 (35 +52+5(‘y(/0 1+ey(u)du)‘>)ds. (23)
Set
u(t) 15 1 Pt cos’y
r<t,y(/0 1p(u,y(u))du)> = gt + P (‘y(/o T ol e du> D
Then ®
" 1, 1
< = -
([ wmvean) )| < 37+ L,
and also
[ u, y(u))| < 1.

It is clear that the assumptions 1-4 of Theorem 1 are satisfied with |c(t)| = |%t3| < % is
measurable bounded, b = %, L=(1+ 279%)% ~ 0.63293 and the series: y_;> 4 g% is convergent.
Therefore, by applying to Theorem 1, the given nonlocal problem (21) and (22) has a solution given
by the integral solution (23).

Example 2. Consider the differential equation
Loy L /tﬁ S W) g, te (0,1], >1 (24)
dt 4 Vit1e \Jo T+u? A p=1
with condition )
21  F+i-1
—Y(———) = 1. 2
The integral equation
2
1 x sl | 1 s* sin?(y)
RS N P P LT [0 4,4
(o) T+ 8 z—g 0 it )+\/s+16y o T+ )
tf1 1 s sin?(y)
~(s+1 / du | |ds. 26
+/0<4(s+)+ T+16y<o T | |ds (26)

Set

1’<t,y</0y(t) w(”'y(”))d“)> = ;L T \/t}l»imy (/Ofﬁ sliri(uyz) du>-
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Then

and also
[P(u,y(u))| < 1.
It is clear that the assumptions (1)—(4) of Theorem 1 are satisfied with |c(t)| = | t|

being measurably bounded, b = :1,), L=(1+ 2945)— 0.7586 and the series: Y ;7 4 f() bemg
convergent. Therefore, by applying to Theorem 1, the given nonlocal problem (24) and (25) has a
solution given by the integral solution (26).

Example 3. Consider the differential equation

dy £ 1 5 £ y(u)
= 7E+(32(t+t ))3/(/0 (1+y2(u))2du> te (0,1], (27)
with condition 1 1
(0) +/O y(u)du = 5 (28)

The integral equation

y(t) = [/ | ( f—+ 32(s+s))y</0s ufy(ﬁ‘()u))zdu»dsde]

+/ (1_t2 312(s+55))y<./0'5 %du))ds, (29)

Set

r(t,y</0”(t) ¢(u,y(u))du>) 1o Lﬂ (4 P))y (/Otz H;Z(u)du)

Then ® )
H
(v ([ vtytnan) ) <1+ gl

[P (u,y(u))| < 1.

It is clear that the assumptions (1)—(4) of Theorem 1 are satisfied with |c(t)| < 1 being
M+ 3blyol

L —

16’ 1-3b

nonlocal problem (27) and (28) has a solution given by the integral solution (29).
The exact solution of (27) and (28) is y(t) = t, we use Picard’s method to estimate the solution

and also

measurably bounded, b = o~ 1. Therefore, by applying to Theorem 1, the given

of (27) and (28).
Yn(t) [/ / ( (s+s ))Yn—1 (/05 %du))ds%]
s 1 * Yaa(u)
+ / <1 - —tz 3—(5 +8°))Yu_1 (/0 Wdu>>d5. (30)
yot) = 1 @)
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and

y(t) = lim y,(t).

n—oo

Figure 1 shows the valuesobtained from the exact solution, the first and the second iterations
for different values of t, the three lines in Figure 1 semi coincide; at the top of Figure 1, the lines
have been enlarged to show the difference between them.

FT T T T 1

10f 04120f
| 04115]
081 pa4110f
[ 5L
os[ 04105}
= 0.4100 “ : s
> 04100 04105 04110 4115 04120 @ Ex

0.4

T T T T T T

— First App.
0.2 PP

e Second App.
0.0

0.0 0.2 0.4 0.6 0.8 1.0
t

Figure 1. Exact solution, first approximation and second approximation.

7. Conclusions

In this work, the existence of an absolutely continuous solution using Schauder’s fixed
point theorem, the uniqueness solution and the continuous dependence of the functional
differential inclusion with self-dependence on a nonlinear delay integral operator were
studied. Some examples were introduced to illustrate the benefits of our results. Lastly, the
Picard method was used to estimate the solution of a given example and plot the solution.
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