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Abstract: This paper addresses the tracking control problem of nonstrict-feedback systems with
unknown control gains. The dynamic surface control method, Nussbaum gain function control
technique, and radial basis function neural network are applied for the design of virtual control
laws, and adaptive control laws. Then, an adaptive neural tracking control law is proposed in the
last step. By using the dynamic surface control method, the “explosion of complexity” problem of
conventional backstepping is avoided. Based on the application of the Nussbaum gain function
control technique, the unknown control gain problem is well solved. With the help of the radial basis
function neural network, the unknown nonlinear dynamics are approximated. Furthermore, through
Lyapunov stability analysis, it is proved that the proposed control law can guarantee that all signals
in the closed-loop system are bounded and the tracking error can converge to an arbitrarily small
domain of zero by adjusting the design parameters. Finally, two examples are provided to illustrate
the effectiveness of the proposed control law.
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1. Introduction

During the last few decades, control design and analysis for nonstrict-feedback non-
linear systems have been reported in much literature [1–3]. The adaptive control problems
of nonstrict-feedback nonlinear systems with uncertain dynamics [4], state constraints [5],
actuator faults [6], and time delay [7] have been solved by scholars. In addition, many
control strategies, such as the finite-time adaptive output-feedback control law [8], the
smooth-switching adaptive neural control law [9], the event-triggered-based adaptive
neural network control law [10], and references therein, have been developed. To further
deal with uncertain dynamics and unknown nonlinear functions, the fuzzy-logic system
and neural networks are widely used as approximators of unknown dynamics [5,6,11,12].
For example, in [13], a fuzzy-logic system is applied to identify unknown nonlinear func-
tions, and a fuzzy-based decentralized control scheme is proposed to ensure all signals are
bounded. In [14], an adaptive neural-network command-filtered control law is presented,
where the boundlessness of all variables is guaranteed by using the presented control law.
As a powerful tool for dealing with uncertain systems, the backstepping control method
and dynamic surface control technique are widely used to design the final control law.

The backstepping control method decomposes the n-order complex systems into sev-
eral subsystems and designs virtual control laws for each step to realize the design of the
final control law. In [15,16], the backstepping control method was applied to construct the
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adaptive neural network control law. In [17], an adaptive backstepping quantized control
scheme was presented to ensure the stability of the given system. In [18], a command filter-
based adaptive finite-time backstepping control law was designed that ensured that the
position tracking error converged to the desired neighborhood in finite time. Nevertheless,
when the backstepping control method is adopted, the repeated differential of virtual con-
trol will inevitably lead to computational complexity. To solve this problem, other control
strategies have been considered by researchers. For instance, the backstepping sliding
mode control method was designed in [19,20] and the command filtered backstepping
control method studied in [21,22].

Although the above methods can effectively solve the control problems of complex
systems, the dynamic surface control method is also widely used. In the dynamic surface
control method, the first-order filter is introduced to construct the filtering error signal
so as to realize the design of the final control law. In [23,24], adaptive fuzzy dynamic
surface control laws were designed to ensure that the tracking error converged to a small
neighborhood of zero. In [25,26], adaptive neural network dynamic surface control laws
were proposed in which the problems of global asymptotic stability and prespecified
tracking accuracy respectively, are achieved.

In some physical systems, the control gain signs may not always be known, due to
the influence of external factors. If there is no prior knowledge about the control gain,
the control law design will become much more difficult. Fortunately, the Nussbaum
gain function technique has been used by many researchers to solve this problem. This
method was proposed by Nussbaum [27], and can effectively solve the control problem
of a system with unknown control gain. In [28–30], adaptive control laws were addressed
by applying the Nussbaum gain function method for nonlinear systems with unknown
control directions. In [31], the authors proposed an observer-based adaptive fuzzy output-
feedback control law for uncertain nonlinear systems with input quantization and unknown
control direction in which the control law design combines the backstepping technique
and Nussbaum function. Furthermore, the consensus control problems of multiagent
systems with unknown control directions were studied in [32,33], where the improved
Nussbaum-type gain functions were used to design the consensus control laws. However,
it is worth noting that the unknown control gains of the nonstrict-feedback systems may
exist in each subsystem.

Inspired by the above results, this paper addresses an adaptive dynamic surface
control law for the tracking control problem of the nonstrict-feedback nonlinear systems
with unknown control gains. The radial basis function neural network (RBFNN) and
Nussbaum gain function control technique are introduced to design the final control law.
The main contributions of this paper are as follows: (1) a class of nonstrict-feedback
nonlinear systems with unknown control gains is considered, and differently from [25,26],
the unknown control gain exists in each subsystem; (2) compared with [28,29], in this paper,
the Nussbaum gain function is considered in each step of recursive design, and thus the
design of the virtual control law can be realized by using the dynamic surface control
technique; and (3) the proposed control law can guarantee that all signals in the closed-loop
system are bounded and the tracking error can converge to an arbitrarily small domain
of zero.

The main arrangement of this paper is as follows. The problem formulation and prelimi-
naries are given in Section 2. Section 3 displays the process of control law design and stability
analysis. Numeric simulations and conclusions are provided in Sections 4 and 5, respectively.

2. Problem Formulation and Preliminaries

A class of nonstrict-feedback nonlinear systems with unknown control gains is described as

.
xi = θixi+1 + fi(xi), i = 1, . . . , n− 1
.
xn = θnu + fn(xn)
y = x1

(1)
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where xi = [x1, · · · , xi]
T , i = 1, · · · , n, represent state vectors; u ∈ R and y ∈ R are control

input and system output, respectively; θi, i = 1, · · · , n, represent the unknown control
gains; and fi(xi) and fn(xn) are continuous unknown nonlinear functions. For convenience,
the functions fi(xi) and fn(xn) are denoted by fi and fn, respectively.

The control goal of this paper is to design the control law u(t) for the system (1) so that
the system’s output y can track the reference signal yd, despite the presence of unknown
control gains.

Assumption 1. The sign of control gains θi, i = 1, · · · , n is assumed to be strictly positive or
negative. Without loss of generality, it is assumed to be positive in this paper. Furthermore, there
exists the unknown positive constant θM such that θi ≤ θM.

Assumption 2. The reference signal yd is sufficiently smooth, that is, there exists a positive
constant G0 such that Ω0 :=

{
(yd,

.
yd,

..
yd) : y2

d +
.
y2

d +
..
y2

d ≤ G0

}
.

Note 1. Assumptions 1 and 2 are normal assumptions that are found in much litera-
ture [5,10,23,26]. The application of these assumptions does not impose strong restrictions
on the nonstrict-feedback system.

To facilitate the control system design, the following definition and lemmas are provided.

Definition 1 ([30]). For a smooth function N (κ) , if the following properties are held{
lim
s→∞

sup 1
s
∫ s

0 N (κ)dκ = +∞

lim
s→∞

inf 1
s
∫ s

0 N (κ)dκ = −∞
(2)

then N (κ) is called a Nussbaum gain function. In this paper, the Nussbaum gain function is
considered as N (κ) = κ2 cos(κ).

Lemma 1 ([30]). Let V(t) ≥ 0 and κ(t) be smooth functions defined on [0, t f ), and N (κ) be the
Nussbaum gain function. If the following inequality holds

V(t) ≤ e−k0t
∫ t

0
ek0τ(vN (κ(τ)) + 1)

.
κ(τ)dτ + c0, t ∈ [0, t f ) (3)

then V(t), κ(t) and
∫ t

0 ek0τ(vN (κ(τ)) + 1)
.
κ(τ)dτ are bounded on [0, t f ), where v , c0 and k0

are positive constants.

Lemma 2 ([7]). For any continuous function h(x) over a compact set Ω ⊂ Rn, there exists an
RBFNN (W∗)T ϕ(x)∗ such that

h(x) = (W∗)Tϕ(x) + ε(x), ∀x ∈ Ω (4)

where W∗ ∈ Rl is the optimal weight vector, l > 1 is the neural network node number,ε(x) is
the approximation error and satisfies |ε(x)| ≤ ε∗, and ϕ(x) = [ϕ1(x), · · · , ϕl(x)]

T ∈ Rl is the
Gaussian-like basis function vector with

ϕi(x) = exp

(
− (x− ςi)

T(x− ςi)

σ2

)
, i = 1, 2, · · · , l (5)

with ςi = [ςi1, · · · , ςin]
T the center of the basis function, and σ is the width of the Gaussian function.

Lemma 3 ([23]). For any b ∈ R and ϑ > 0, the inequality 0 ≤ |b| − btanh(b/ϑ) ≤ 0.2785ϑ holds.
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Lemma 4 ([25]). For any x ∈ R and y ∈ R, the following inequality holds

xy ≤ νp

p
|x|p + 1

qνq |y|
q (6)

where ν > 0, p > 1, q > 1 and (p− 1)(q− 1) = 1.

3. Control Law Design and Stability Analysis

In this section, the control design procedure for the system (1) is developed, which is
mainly based on the dynamic surface control method and neural network approximator.

3.1. Adaptive Neural Tracking Control Law Design

According to the system (1), the coordinate transformation error is defined as

zi = xi − yi,d, i = 1, 2, · · · , n (7)

where y1,d = yd, yi,d for i = 2, · · · , n are the output of first-order filter with the virtual
control law αi−1 as the input, which is given as

τi
.
yi,d + yi,d = αi−1, i = 2, · · · , n

yi,d(0) = αi−1(0)
(8)

where τi is a positive constant to be designed.
Furthermore, the filter error signal is constructed as

si = yi,d − αi−1, i = 2, · · · , n (9)

In the following analysis, the actual control law will be presented through recursive design.
Step i (i = 1, 2, · · · , n− 1). Taking the time derivative of zi in (7) obtains

.
zi = θixi+1 + fi −

.
yi,d

= θiαi + θizi+1 + θisi+1 + fi −
.
yi,d

(10)

Let Vi = z2
i /2, then the time derivative of Vi is

.
Vi = zi

(
θiαi + θizi+1 + θisi+1 + fi −

.
yi,d

)
(11)

Using Lemma 4, we have

θizizi+1 ≤
θ2

i z2
i

2
+

z2
i+1
2

(12)

θizisi+1 ≤
θ2

i z2
i

2
+

s2
i+1
2

(13)

Substituting (12) and (13) into (11), one gets

.
V1 ≤ θiziαi +

1
2

z2
i+1 +

1
2

s2
i+1 + ziFi − zi

.
yi,d (14)

where Fi = θ2
i zi + fi.

Fi contains unknown function fi and unknown gain θi, such that it cannot be directly
used to control law design. According to Lemma 2, an RBFNN (W∗i )

Tϕi(Xi) with input
Xi = [y1,d, · · · , yi,d, x1, · · · , xi]

T is considered to approximate Fi, such that

Fi = (W∗i )
Tϕi(Xi) + εi(Xi), |εi(Xi)| ≤ ε∗i (15)
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where εi(Xi) is the approximation error and ε∗i is a positive constant.
To stabilize the subsystem, the virtual control law αi and adaptive control laws are

designed as
αi = Ni(κi)βi (16)

βi = (Ŵi)
T
ϕi + ε∗i tanh(

ε∗i zi

ϑ
) + λizi −

.
yi,d (17)

.
κi = zi

(
(Ŵi)

T
ϕi + ε∗i tanh(

ε∗i zi

ϑ
) + λizi −

.
yi,d

)
(18)

.
Ŵi = ηi

(
ziϕi − γiŴi

)
(19)

where Ŵi is the estimate of W∗i and ϑ, λi, ηi and γi are positive constants to be designed.
Define the Lyapunov function candidate as

Vi = Vi +
1

2ηi
(W̃i)

T
W̃i (20)

where W̃i = W∗i − Ŵi, and
.

W̃i = −
.

Ŵi.
The time derivative of (20) is

.
Vi =

.
Vi −

1
ηi
(W̃i)

T .
Ŵi (21)

Substituting (14)–(19) into (21) and considering Lemma 3, one has

.
Vi ≤ (θiNi(κi) + 1)

.
κi − λiz2

i +
1
2

z2
i+1 +

1
2

s2
i+1 + γi(W̃i)

T
Ŵi + 0.2785ϑ (22)

Step n. This is the last step, and the actual control law will be presented in this step.
Taking the time derivative of zn in (7) yields

.
zn = θnu + fn −

.
yn,d (23)

An RBF neural network (W∗n)
Tϕn(Xn) with input Xn = [x1, · · · , xn]

T is considered to
approximate fn, such that

fn = (W∗n)
Tϕn(Xn) + εn(Xn), |εn(Xn)| ≤ ε∗n (24)

where εn(Xn) is the approximation error and ε∗n is a positive constant.
Let Vn = z2

n/2 and noting (24), then the time derivative of Vn is

.
Vn = θnznu + zn(W∗n)

Tϕn + znεn − zn
.
yn,d (25)

Now, we design the actual control law u(t) and adaptive control laws as

u(t) = Nn(κn)βn (26)

βn = (Ŵn)
T
ϕn + ε∗ntanh(

ε∗nzn

ϑ
) + λnzn −

.
yn,d (27)

.
κn = zn

(
(Ŵn)

T
ϕn + ε∗ntanh(

ε∗nzn

ϑ
) + λnzn −

.
yn,d

)
(28)

.
Ŵn = ηn

(
znϕn − γnŴn

)
(29)

where Ŵn is the estimate of W∗n and ϑ, λn, ηn and γn are positive constants to be designed.



Mathematics 2022, 10, 2419 6 of 13

Define the Lyapunov function candidate as

Vn = Vn +
1

2ηn
(W̃n)

T
W̃n (30)

where W̃n = W∗n − Ŵn, and
.

W̃n = −
.

Ŵn.
Along with (24)–(29), the time derivative of Vn can be concluded as

.
Vn ≤ (θnNn(κn) + 1)

.
κn − λnz2

n + γn(W̃n)
T

Ŵn + 0.2785ϑ (31)

So far, the design process of the adaptive neural tracking control law is completed.

3.2. Stability Analysis

Theorem 1. Consider the nonstrict-feedback nonlinear system (1) with unknown control gains
under Assumptions 1 and 2, the virtual control laws are designed as (16) with the adaptive control
laws given by (18) and (19), and the actual control law is designed as (26) with the adaptive control
laws given by (28) and (29), and there exist λi, ηi and γi for i = 1, · · · , n, τi for i = 2, · · · , n, and
ϑ, such that all signals in the closed-loop system are bounded and the tracking error can converge to
an arbitrarily small domain of zero, that is, limt→∞|z1| ≤

√
2a1/ρ.

Proof. Considering (8) and (9), we have
.
yi,d = −si/τi, and the time derivative of si yielding

.
si = − si

τi
− .

αi−1

= − si
τi
−
(

∂αi−1
∂κi−1

.
κi−1 +

∂αi−1
∂Ŵi−1

.
Ŵi−1 +

∂αi−1
∂zi−1

.
zi−1 +

∂αi−1
∂

.
yi−1,d

..
yi−1,d

)
= − si

τi
+ Gi

(
z1, · · · , zi, s2, · · · , si, Ŵ1, · · · , Ŵi−1, yd,

.
yd,

..
yd
) (32)

where i = 2, · · · , n, Gi(·) is the introduced non-negative continuous function.
Let the compact set Ω1 as

Ω1 :=

{
(z1, · · · , zi, s2, · · · , si, Ŵ1, · · · , Ŵi, yd,

.
yd,

..
yd) :

n

∑
i=1

z2
i +

n

∑
i=1

1
ηi
(W̃i)

T
W̃i +

n

∑
i=2

s2
i ≤ 2q, i = 1, · · · , n

}
and noting Assumption 2, we get Ω0 ×Ω1 is also a compact set. Therefore, there exists a
positive constant Gi,M in the compact set Ω0 ×Ω1 such that |Gi(·)| ≤ Gi,M for i = 2, · · · , n.

Furthermore, according to (7), (9), (19) and (32), we have∣∣∣∣ .
si +

si
τi

∣∣∣∣ ≤ Gi
(
z1, · · · , zi, s2, · · · , si, Ŵ1, · · · , Ŵi−1, yd,

.
yd,

..
yd
)

(33)

and then,

si
.
si ≤ |siGi(·)| −

s2
i

τi
(34)

Taking the Lyapunov function candidate as

V =
n

∑
i=1

Vi +
1
2

n

∑
i=2

s2
i (35)

It follows from (22), (31), and (34), the time derivative of (35) is

.
V ≤ −

n
∑

i=1
λiz2

i +
1
2

n
∑

i=2
z2

i +
1
2

n
∑

i=2
s2

i +
n
∑

i=1
γi(W̃i)

T
Ŵi +

n
∑

i=1
(θiNi(κi) + 1)

.
κi

+
n
∑

i=2

(
|siGi(·)| −

s2
i

τi

)
+ 0.2785ϑn

(36)
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Considering Lemma 4, we get

(W̃i)
T

Ŵi = (W̃i)
T
(W∗i − W̃i) ≤ −

1
2
(W̃i)

T
W̃i +

1
2
(W∗i )

TW∗i (37)

|siGi(·)| ≤
s2

i G2
i (·)

2σ
+

σ

2
(38)

where σ is a positive constant.
Substituting (37) and (38) into (36) yields

.
V ≤ −λ1z2

1 −
n
∑

i=2

(
λi − 1

2

)
z2

i −
n
∑

i=1
(ηiγi)

1
2ηi

(W̃i)
T

W̃i − 1
2

n
∑

i=2

(
2
τi
− G2

i (·)
σ − 1

)
s2

i

+
n
∑

i=1
(θiNi(κi) + 1)

.
κi + a1

(39)

where a1 = 0.2785ϑn + σ(n− 1)/2 + ∑n
i=1 γi(W∗i )

TW∗i /2.
Taking

λ1 ≥ ρ
2

λi ≥
ρ+1

2 , i = 2, · · · , n

ηiγi ≥ ρ, i = 1, · · · , n

1
τi
≥ 1

2 +
G2

i,M
2σ + ρ

2 , i = 2, · · · , n

where ρ is a positive constant to be designed. Then, we can rewrite (39) as

.
V ≤ −ρV + a1 +

n

∑
i=2

(
G2

i (·)
G2

i,M
− 1

)
s2

i G2
i,M

σ
+

n

∑
i=1

(θiNi(κi) + 1)
.
κi (40)

It is obvious from (40) that G2
i (·)/G2

i,M − 1 ≤ 0. Then, multiply by e−ρt on both sides
of (40), and integrate on [0, t), we have

V ≤ e−ρt
n

∑
i=1

∫ t

0
e−ρτ(θiNi(κi) + 1)

.
κidτ +

(
V(0)− a1

ρ

)
e−ρt +

a1

ρ
(41)

and further obtain that

V ≤ e−ρt
n

∑
i=1

∫ t

0
e−ρτ(θiNi(κi) + 1)

.
κdτ + a2 (42)

where a2 = V(0) + a1/ρ.
Applying Lemma 1, we can get from (42) that ∑n

i=1
∫ t

0 e−ρτ(θiNi(κi) + 1)
.
κidτ are

bounded. Without loss of generality, we assume that max∑n
i=1
∫ t

0 e−ρτ(θiNi(κi) + 1)
.
κidτ = A0.

From (41), hence, one has

V ≤
(

V(0) + A0 −
a1

ρ

)
e−ρt +

a1

ρ
(43)

Noting Vi = z2
i /2, (20) and (35), we have ∑n

i=1 z2
i /2 ≤ V. Considering (43), we can

obtain that

lim
t→∞
|z1| ≤

√
2a1

ρ
(44)

Note that a1/ρ depends on the design parameters γi, λi, τi, and ηi. Therefore, we can
adjust the design parameters so that the tracking error z1 can converge to an arbitrarily
small domain of zero. This completes the proof. �
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Note 2. Theorem 1 displays that the designed adaptive laws and control law can
ensure the convergence of tracking error. That is to say, the value of a1/ρ can be freely
adjusted by selecting appropriate design parameters, namely, the tracking error z1 can be
arbitrarily small.

Note 3. It is observed (44) that the tracking error limt→∞|z1| ≤
√

2a1/ρ can be
designed as an arbitrarily small domain of zero by increasing ρ or decreasing a1. To
increase the value of ρ, we can increase the value of parameters λi and ηi, or decrease the
value of the parameter τi, and to decrease the value of a1, we can decrease the value of
parameter γi. However, the adjustment of these parameters may lead to larger amplitude
of the control signal. Therefore, when selecting design parameters, appropriate trade-offs
should be made between tracking control performance and control signal amplitude.

4. Simulation Analysis

In this section, two simulation examples are provided to illustrate the effectiveness of
the proposed adaptive neural dynamic surface control law.

Example 1. Consider a class of nonstrict-feedback nonlinear systems as

.
x1 = 3x2 + 2x1 sin(x1) + x2

1.
x2 = 5u + cos(x1x2) + 1.5x1x2

2
y = x1

(45)

Compared with system (1), we have θ1 = 3, θ2 = 5, f1 = 2x1 sin(x1) + x2
1,

f2 = cos(x1x2) + 1.5x1x2
2. The initial conditions are x1(0) = 0.5, x2(0) = 0.1. The ref-

erence signal is given as yd = 1.5 sin(t) + 1.5 sin(2t). The Nussbaum gain function selected
in this paper is N (κ) = κ2 cos(κ), and simulation time is set as t = 5s.

Considering (45), the unknown nonlinear functions F1 = θ2
1z1 + f1 with input

X1 = [yd, x1]
T , and f2 with input X2 = [x1, x2]

T are approximated by using RBFNN. Hence,
the RBFNN is constructed to contain l = 7 nodes with center ςi (i = 1, 2, · · · , l) are evenly
spaced on [−9, 9] × [−9, 9], and the width σ = 3. The designed parameters are set as
ε∗1 = ε∗2 = 0.1, ϑ = 0.01, λ1 = 50, λ2 = 35, η1 = 3, η2 = 7, γ1 = 7.5, γ2 = 1.5 and τ2 = 0.01.
The initial values are κ1(0) = κ2(0) = 0.01, Ŵ1(0) = Ŵ2(0) = [0.01]7×1.

By applying the proposed adaptive neural control law and adaptive control laws to the
system (45), the simulation results are shown in Figures 1–4. The tracking performance and
the curve of tracking error z1 are given in Figures 1 and 2, respectively. It can be concluded
from Figures 1 and 2 that the tracking error z1 can converge to an arbitrarily small domain
of zero. Figure 3 depicts the curve of control input u(t), and the responses of adaptive
control laws ‖Ŵ1‖ and ‖Ŵ2‖ are shown in Figure 4. Obviously, it can be seen from these
figures that all signals in the closed-loop system are bounded. Furthermore, the simulation
results show that the desired tracking control can be achieved by using the presented
control law for the nonstrict-feedback nonlinear system with unknown control gains.

Example 2. A practical system is considered in this example, namely, an electrome-
chanical dynamic system [34]. The dynamics of the electromechanical dynamic system are
described as .

x1 = x2 + x2
1 sin(x2x3).

x2 = 1
M x3 − N

M sin(x1)− B
M x2 +

B
M cos(x2) sin(x3).

x3 = 1
L u− K

L x2 − R
L x3

y = x1

(46)

where M = 0.181, N = 2.2816× 10−4, B = 1.8056× 10−4, L = 25, K = 0.9, R = 0.5, and x1,
x2 and x3 are the system’s states. Compared with the system (1), we have θ1 = 1, θ2 = 1/M,
θ3 = 1/L, f1 = x2

1 sin(x2x3), and f2 = −N sin(x1)/M − Bx2/M + B cos(x2) sin(x3)/M,
f3 = −Kx2/L− Rx3/L. The initial conditions are x1(0) = 1.5, x2(0) = 1.0 and x3(0) = 0.5.
The reference signal is given as yd = 1.5 sin(t) + 1.5 sin(2t).
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Similar to Example 1, the unknown nonlinear functions F1 = θ2
1z1 + f1 with input

X1 = [yd, x1, x2, x3]
T , F2 = θ2

2z2 + f2 with input X2 = [y2,d, x1, x2, x3]
T , and f3 with input

X3 = [x2, x3]
T are approximated by using RBFNN. The RBFNNs for F1, F2 and f3 are

constructed to contain l = 7 nodes with the width σ = 1.5, and the centers ςi (i = 1, 2, · · · , l)
for F1 and F2 are evenly spaced on [−9, 9]× [−9, 9]× [−9, 9]× [−9, 9], and for f3 are evenly
spaced on [−9, 9] × [−9, 9]. The designed parameters are set as ε∗1 = ε∗2 = ε∗3 = 0.5,
ϑ = 0.01, λ1 = 6, λ2 = 40, λ3 = 13, η1 = 7.5, η2 = 18, η3 = 5, γ1 = 1.5, γ2 = 0.12,
γ3 = 1.5 and τ2 = τ3 = 0.01. The initial values are κ1(0) = κ2(0) = κ3(0) = 0.01,
Ŵ1(0) = Ŵ2(0) = Ŵ3(0) = [0.01]7×1.

The simulation results are exhibited in Figures 5–8. Figure 5 shows the tracking perfor-
mance, and the curve of tracking error z1 is given in Figure 6. As shown in Figures 5 and 6,
a better tracking effect can be obtained under the action of the designed control law. The
responses of control input u(t) and adaptive control laws ‖Ŵ1‖, ‖Ŵ2‖ and ‖Ŵ3‖ are shown
in Figures 7 and 8, respectively. Compared with (45), the unknown nonlinear function sys-
tem f1, f2, and f3 in (46) are affected by more states, which makes the tracking performance
of system (46) worse than that of system (45) under the same control law. Furthermore, it
can be seen from Figure 6 that the tracking error is large in some time intervals, but the
tracking error of the rest can converge to a small domain of zero.
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5. Conclusions

In this paper, an adaptive neural tracking control law has been proposed for nonstrict-
feedback nonlinear systems with unknown control gains by using the dynamic surface
control method and Nussbaum gain function control technique. In the control design, the
unknown nonlinear dynamics have been approximated by using RBFNN. Based on the
application of the proposed control law, it has not only solved the problems of computation
complexity and unknown control gains, but also ensured that the tracking error converges
to an arbitrarily small domain of zero by adjusting the design parameters. Its effectiveness
can be proved through the examples provided. In the future, on the basis of this study, we
will further focus on the adaptive neural finite-time/fix-time tracking control problem for a
class of nonstrict-feedback systems with unknown control gains and external uncertainty.
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