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Abstract: Mine extraction planning has a far-reaching impact on the production management and
overall economic efficiency of the mining enterprise. The traditional method of preparing under-
ground mine production planning is complicated and tedious, and reaching the optimum calculation
results is difficult. Firstly, the theory and method of multi-objective optimization are used to establish
a multi-objective planning model with the objective of the best economic efficiency, grade, and ore
quantity, taking into account the constraints of ore grade fluctuation, ore output from the mine,
production capacity of mining enterprises, and mineral resources utilization. Second, an improved
particle swarm algorithm is applied to solve the model, a nonlinear dynamic decreasing weight
strategy is proposed for the inertia weights, the variation probability of each generation of particles is
dynamically adjusted by the aggregation degree, and this variation probability is used to perform
a mixed Gaussian and Cauchy mutation for the global optimal position and an adaptive wavelet
variation for the worst individual optimal position. This improved strategy can greatly increase the
diversity of the population, improve the global convergence speed of the algorithm, and avoid the
premature convergence of the solution. Finally, taking a large polymetallic underground mine in
China as a case, the example calculation proves that the algorithm solution result is 10.98% higher
than the mine plan index in terms of ore volume and 41.88% higher in terms of economic efficiency,
the algorithm solution speed is 29.25% higher, and the model and optimization algorithm meet the
requirements of a mining industry extraction production plan, which can effectively optimize the
mine’s extraction plan and provide a basis for mine operation decisions.

Keywords: multi-objective optimization; mining plan; metal mines; adaptive; hybrid mutation

MSC: 90C29

1. Introduction

The preparation of the extraction plan, as a basic link in the production operation of
a mining enterprise, is one of the most critical tasks in the production decision of a mine,
and the rationality of the plan preparation directly affects the efficiency of the subsequent
production links and the overall economic efficiency of the mining enterprise [1–3]. The
traditional manual preparation method is not only time-consuming and intensive but also
has poor accuracy and is difficult to modify. The reason for this is mainly the complex
underground mine conditions during the preparation of the plan, which requires com-
prehensive consideration of the spatial and temporal constraints between the production
processes and the mines and their continuity. Therefore, how to develop the underground
mine production plan quickly and accurately has been an urgent problem to be solved.

With the continuous advancement of computer technology and operations research
theory, many researchers have started to try to use the powerful simulation computing
power of computers to simulate the mine production process, so as to continuously opti-
mize the mine extraction plan [4,5]. Several researchers recognize that integer programming
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can solve discrete production scheduling decision problems in the mining industry [6,7].
Many studies on mine production planning related to integer programming theory were
subsequently carried out [3,8–12]. Dimitrakopoulos and Ramazan [13] developed an
optimization framework for stochastic mine production scheduling considering mine un-
certainties based on an ore body model and an integer planning approach. Weintraub
et al. [14] developed a large, aggregated integer planning model (MIP) based on cluster
analysis for mine planning at CODELCO, a national copper mine in Chile, through which
data information of all CODELCO mines can be obtained to optimize the mine extraction
planning. Newman et al. [15] developed a mixed integer planning model for underground
mining operations in Kiruna mine, Sweden. This optimization model identifies an opera-
tionally feasible recovery sequence that minimizes deviations from the planned production
quantities. Terblanche and Bley [16] used a mixed integer planning approach to construct a
theoretical model applicable to the optimization of extraction production plans for open pit
and underground mines but did not verify the feasibility of the model. Nehring et al. [17]
proposed an improved modified model formulation for the classical model of long-term
mine planning, assigning different human resources and equipment to each mining area.
In the classical model, only one binary variable is assigned to each activity in each mining
area, whereas the improved model assigns one binary variable to all activities under a more
stringent assumption.

Although there are more existing studies on mathematical planning methods, most
of these models achieve the solution of mine production planning with a single economic
indicator; however, since mine extraction production planning is a complex system of
engineering, it is difficult to highlight the production plan preparation and optimization
effect by considering only a single economic indicator [18]. In order to overcome these
difficulties, researchers have used a variety of computational intelligence methods to solve
multi-objective prediction and optimization problems, and heuristic algorithms are effective
methods to improve the solution speed and avoid involving local optimal solutions, while
having unique advantages for multi-objective optimization problems (MOP). Little and
Topal [19] investigated the methodology of whole life of mine (LOM) production planning
generated using a simulated annealing technique and stochastic simulation representation
of the ore body with the objective of maximizing the net present value (NPV) of the mine.
Hou et al. [20] addressed the production planning for the next three years of the mine
using an artificial bee colony optimization algorithm. Otto and Bonnaire [21] developed a
“Greedy randomized adaptive search” program to help solve models for copper mining
development and improve the speed of solution. O’Sullivan and Newman [22] proposed an
optimization heuristic algorithm to set a complex set of constraints based on an optimization
algorithm in a mining operation model for an underground lead–zinc mine in Ireland.
Wang et al. [23] proposed a multi-objective optimization model formulation by taking the
grade of mined and processed ore as the main constraint, maximizing mining returns and
efficient use of natural resources as the objective function, and used a genetic algorithm to
find the optimal solution to the multi-objective optimization problem. Nesbitt et al. [24]
considered the uncertainty faced in the economic value of minerals faced by mines with
long operating cycles. For a hard rock mine, the method of creating a stochastic integer
program helps the mine to customize a mining schedule with a high degree of feasibility.

However, the use of traditional heuristic algorithms in the preparation of mining
industry extraction production plans leads to slow solution speed and reduced global con-
vergence performance, which brings many difficulties to the preparation and optimization
effect of the actual production operation plan in real time and has a profound impact on
the production management and economic efficiency of the enterprise. Therefore, in order
to solve these problems, which are due to the complexity of multi-metal mine production
planning, and since it is difficult to achieve the optimal results by traditional methods, this
paper takes the best economic efficiency, grade, and ore volume as the goal and integrates
constraints such as ore grade fluctuation, ore output of mining sites, mine production
capacity, and mineral resource utilization. A production planning model is established,
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and the model is optimally solved by an improved particle swarm optimization (PSO)
algorithm with nonlinear inertia weights and adaptive mutation probability (NAMPSO) in
the context of an engineering example to improve the model’s solving speed and increase
the global convergence performance of the algorithm, thereby verifying the feasibility of
the model solution method.

2. Balanced Mining Plan Model
2.1. Model Analysis

There are many factors that need to be considered comprehensively in the preparation
of an underground mine extraction plan, and by analyzing the current situation faced
by underground mining and the existing mining technology conditions [25–30], the main
factors that need to be considered in the process of extraction plan preparation are shown
in Figure 1.

(1) Economic efficiency: when mining in the market economy, the first factor to consider
is the economic factors, that is, to ensure that the mining enterprise can obtain a better
economic benefit.

(2) The planned quantity of mining: for mining enterprises to carry out normal operations,
mining plans must be able to ensure the mine’s subsequent production of ore demand.

(3) Planned metal quantity: for mines with metal quantity as the production target,
the quantity of ore mined should be guaranteed to meet the requirements of metal
quantity for production and processing.

(4) Ore loss and dilution ratios: in the process of balanced mining in underground
metal mines, ore loss and dilution ratios must be controlled in order to ensure the
maximization of the comprehensive benefits of the enterprise and the maximization
of resource recovery and utilization.

(5) Ore quality and grade: due to the variability of mineral resources endowment, there
are differences in quality and grade of ore per mining site; therefore, the devel-
opment of the extraction plan needs to take full account of such differences and
achieve the requirements of the extracted ore in terms of quality and grade through
reasonable planning.

(6) Ore reserves: to achieve balanced mining, the development of the extraction plan
must take into account the limits of the ore reserve of each mineral deposit and
mine excavation.

(7) Operating capability: mining enterprises need to have a full understanding of the
existing production technology conditions of the mine, production equipment, and
the ability and quality of operators when formulating the extraction plan.

(8) Production continuity requirements: once the mine is established, it must ensure
that production activities can be carried out continuously and steadily; therefore, the
mine’s mining plan must consider the ore reserves of the mineral deposit, cutting,
retrieval, and preparation for mining to ensure that the mine production activities can
be carried out continuously and steadily.

(9) Mine transportation and hoisting capacity: Most of the waste rock and all the ore
produced by underground metal mines rely on haulage and hoisting equipment to
transport and hoist. The production capacity of the mine must be matched with the
transport and hoisting capacity of the mine.

(10) Mine processing plant capacity: in order to avoid the long-term backlog of mined
ore, resulting in increased mining production costs or affecting underground mining
operations, the total output of ore during the planning period is generally required to
be on par with the processing capacity of the plant.
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In principle, each underground metal mine plan should consider all the factors in
Figure 1, but in practice some factors can be combined and simplified according to the
actual situation of the specific mine. For example, only one of the planned mining quantities
and planned metal quantity are required, and only the smaller of the mine transport and
hoisting capacity and mine processing plant capacity should be considered. At the same
time, it is possible to add other influencing factors.

The process of preparing an extraction plan based on balanced mining is essentially a
process of seeking an extraction solution that meets the requirements of various stakehold-
ers in the process of comprehensive coordination of various constraints. Therefore, with
the help of the objective optimization method in operations research theory, the complex
extraction planning can be transformed into an MOP problem model by converting various
restrictions into constraints and the final objective into an objective function, thus turning
the complex programming process into a mathematical optimization problem.

2.2. Model Building
2.2.1. Model Assumptions

This modeling is carried out based on the following three basic assumptions:

(1) The mining method assumed for the model is room-and-pillar mining. The mine
development system has been completed before the preparation of the mining plan,
and the mining plan constructed in this paper mainly includes the output of each
mineral deposit and the mining cut of each block during the planning period.

(2) The ore reserves, the grade of each metallic element in the ore, and the content of
contaminants in each mineral deposit (including the mined room, the mined pillar,
the mined and cut room, the mined and cut pillar, and the complete block that has not
yet been mined) have all been proven.

(3) The planned mineral deposits should be capable of simultaneous mining operations.

2.2.2. Model Parameters Definition

This model parameters are defined at the end of the paper.
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2.2.3. Objective Functions

Equation (1) indicates the maximization of corporate revenue: from the perspective
of corporate profitability, one of the purposes of mining enterprises conducting extractive
operations is to obtain economic benefits, so the maximization of corporate revenue is one
of the main objectives of the preparation of the extraction plan.

maxQ =
H

∑
h=1

B

∑
b=1

xbuebhsh ph +
H

∑
h=1

R

∑
r=1

yrerhsh ph +
H

∑
h=1

K

∑
k=1

zkekhsh ph (1)

minEh = |σh − σ∗h | =

∣∣∣∣∣∣∣∣∣
B
∑

b=1
xbuebh +

R
∑

r=1
yrerh +

K
∑

k=1
zkekh

B
∑

b=1
xiu +

R
∑

r=1
yr +

K
∑

k=1
zk

− σ∗h

∣∣∣∣∣∣∣∣∣ (2)

maxA =
B

∑
b=1

xiu +
R

∑
r=1

yr +
K

∑
k=1

zk (3)

Equation (2) indicates the grade optimization: from the perspective of mineral pro-
cessing, due to the variability of mineral resource endowment, the development of the
extraction plan needs to take full account of such differences to achieve the minimum
fluctuations in the average grade of the extracted ore.

Equation (3) indicates the ore production maximization: the more ore extracted during
the planning period, the higher the production efficiency and the better the mining operation.

2.2.4. Constraints

After establishing the target of the extraction plan, it is necessary to transform each
restriction into the constraint of the target function. Combined with the actual underground
mining, the constraints are mainly the following six kinds.

B

∑
b=1

xbuebhsh +
R

∑
r=1

yrerhsh +
K

∑
k=1

zkekhsh > Sh (4)


xb ≤ Xb
yr ≤ Yr
zk ≤ Zk

(5)



B
∑

b=1
xb ≤ D1

R
∑

r=1
yr ≤ D2

K
∑

k=1
zk ≤ D3

(6)

B

∑
b=1

Uxb ≥ (
R

∑
r=1

yr +
K

∑
k=1

zk)× η (7)

B

∑
b=1

xiu +
R

∑
r=1

yr +
K

∑
k=1

zk ≤ A1 (8)


xb ≥ 0
yr ≥ 0
zk ≥ 0

(9)

Equation (4) indicates the metal quantity constraint: the actual quantity of metal
produced cannot be lower than the minimum amount of metal required during the
planning period.
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Equation (5) indicates the ore reserve constraint: the ore reserves of each mine room
and pillar, as well as the ore reserves of the mining preparation works, are limited and
cannot be exceeded.

Equation (6) indicates the production capacity constraints: the development of extrac-
tion plans needs to consider the existing technical conditions of the mine’s production and
production equipment, etc., and cannot exceed the maximum production capacity.

Equation (7) indicates the production continuity constraints: once the mine is fully
operational, it must ensure that production activities can be carried out continuously and
steadily; therefore, the mine’s mining plan must be prepared to consider mining preparation
blocks. Back mining blocks in the ore reserves can be articulated reasonably as the general
requirements of the planned period for mining preparation blocks, and the ore reserves are
not less than the planned period for back mining of ore to ensure that the mine production
activities can be carried out continuously and steadily.

Equation (8) indicates the mine hoisting capacity constraint: the mining capacity
cannot exceed the maximum hoisting capacity of equipment during the planning period.

Equation (9) represents the variable non-negative constraint: recovery of ore quantity
in all mine rooms and pillar and mining preparation block quantity are non-negative
quantities that are greater than or equal to zero.

2.3. Optimized Solution

The optimal solution (xb, yr, zk) to the objective is the optimal operation plan for the
planning period. However, due to the large number of decision variables, it is difficult
to find the optimal solution by manual calculation. In order to solve the above MOP
problem, this paper does not use the traditional single-objective processing methods, such
as weight coefficient summation or objective constraint, but finds a set of feasible solutions
based on the Pareto optimal solution set in order to provide more decision options for the
decision maker. Therefore, it is necessary to find an appropriate algorithm and then solve
the problem with the powerful computing facilities. In this paper, an improved particle
swarm algorithm is adopted to solve the above MOP problem [31].

3. Materials and Methods
3.1. Basic Particle Swarm Optimization Algorithm

The particle swarm algorithm was proposed by Kennedy, an American psychologist,
and Dr. Eberhart, an electrical engineer, in 1995 [32]. This algorithm is used to guide the
updating of the velocity and position of the next generation of particles by the individual
optimal position and the global optimal position of the particles in the population, so that
the particles always move toward the individual optimal position and the global optimal
position and finally converge to the global optimal position [33,34].

In the M-dimensional search space, there exists a population xij consisting of N
particles, where i ∈ {1, . . . , N}, j ∈ {1, 2, · · · , M}; the velocity and position components of
the i particle at the t iteration in the j dimension are vij(t) and xij(t), respectively; Pbest,ij(t)
denotes the optimal position component of the particle; gbest,j(t) denotes the optimal
position component of the population; w is the inertia weight coefficient; c1, c2 is the
learning factor; r1, r2 is a random number obeying uniform distribution within (0, 1) [35].

The velocity and position update of the basic particle swarm algorithm are as indicated
by Equations (10) and (11) [36].

vij(t + 1) = wvij(t) + c1r1(Pbest,ij(t)− xij(t)) + c2r2(Gbest,j(t)− xij(t)) (10)

xij(t + 1) = xij(t) + vij(t + 1) (11)
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3.2. Optimization Strategies
3.2.1. Nonlinear Dynamic Decreasing Inertia Weighting Strategy

The inertia weight w is one of the important parameters affecting the performance
of PSO algorithm. The larger the inertia weight is, the faster the particle swarm moves,
the ability to search the local space is reduced, and the ability to detect the global space
is enhanced; the smaller the inertia weight is, the lower the speed of the particle moves,
the ability to search the local space is enhanced, and the ability to detect the global space
is reduced. Therefore, appropriate improvement of inertia weights can improve the per-
formance of the PSO algorithm. For this reason, Shi [37] proposed a linear decreasing
particle swarm optimization (LDPSO) algorithm, with the following linear decreasing
inertia weight strategy:

w = (wmax − wmin)×
(

tmax − t
tmax

)
+ wmin (12)

where tmax denotes the maximum number of iterations; t denotes the current number of
iterations; wmax and wmin denote the set maximum inertia weights and minimum inertia
weights, respectively. Through several experimental analyses, the authors found that as the
number of iterations increases, when wmax = 0.9, wmin = 0.4, the search performance of the
algorithm is greatly improved [38,39].

In this paper, based on the LDPSO algorithm and inspired by the ideas in the litera-
ture [39–42], we propose a nonlinear dynamic decreasing weight strategy particle swarm
optimization (NDIWPSO) algorithm in which the inertia weights are set as nonlinear
exponential functions, as shown in Equation (13):

w = (wmax − wmin)×
(

1− 1
1 + exp((−kt)÷ tmax)

)
+ wmin (13)

where k is the control factor. Compared with LDPSO, when w is close to wmax, the value of
w increases, and NDIWPSO is dominated by the first term of Equation (10) during most of
the iterations. Then, the ability of the particle to expand the search space is enhanced, and
it is more advantageous in searching the global space, while the contraction ability of the
particle to the location of the optimal value decreases, and the ability to search the local
space is then weakened; when w is close to wmin, the value of w decreases and NDIWPSO is
dominated by the last two terms of Equation (10) during most of the iterations, and then the
particle is more advantageous in searching for the optimal value in the local interval, and
the ability to search the global space is weakened. So, the nonlinear exponential function,
Equation (13), can coordinate the algorithm to achieve better between the ability of local
search and global search.

3.2.2. Dynamic Learning Factor Strategy

In addition to the inertia weights ω, the learning factors C1, C2 also need to be im-
proved to make them more suitable for system optimization search.

c1 = 1− ln 2
(

t
tmax

)
(14)

c2 = 1 + ln 2
(

t
tmax

)
(15)

Equations (14) and (15) are the improvement of the learning factor [42]; as the iterative
process proceeds, c1 decreases while c2 increases, and in the early iterative process, the
particles are mainly influenced by the individual information, which is beneficial to increase
the population diversity. In the later iterative process, the particles are mainly influenced
by the population information, which is beneficial to the particles to rapidly approach the
global extremes and obtain the optimal solution.
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3.2.3. Adaptive Variation Probability and Global Optimal Hybrid Mutation Strategy

In order to increase the diversity of the population, a variation strategy is applied to
it based on the previous optimization, which leads the particles to jump out of the local
optimal value points and search in a more global space. The specific implementation is
as follows.

If f t
avg, fmaxt , fmint represent the mean, maximum and minimum values of particle

fitness in the t generation, respectively, then Equation (16) for the aggregation degree δ of
particles in the t generation is as follows.

δ =
1
N

N

∑
i=1

∣∣∣∣∣ f
(
xt

i
)
− f t

avg

fmaxt − fmint

∣∣∣∣∣ (16)

When the deviation of the fitness of individual particles from the overall average
fitness is larger, the diversity of particles is better, and vice versa, the diversity of particles
is worse. Therefore, when δ is larger, the diversity of particles is better, and when δ is
smaller, the diversity of particles is worse. Therefore, the aggregation degree δ can be used
to dynamically adjust the probability of variation of particles in each generation, and let
the probability of variation in the t generation be pt

m, as shown in Equation (17). α is used
to regulate how fast the variance probability changes and is a constant that takes values in
the range [2,4].

pt
m = δe−α(1+ t

tmax ) (17)

In this paper, a mutation on the optimal position of the particle is used, and if
rand ∈

[
0, pt

m
]
, a mixture of Gaussian (Equation (18)) and Cauchy (Equation (19)) dis-

tributions is used to vary the optimal position of the particle. pg denotes a random one
of the global optimal and global suboptimal positions; gbest denotes the global optimal
position; randn is a random number of Gaussian distribution; Cauchy is a random number
of Cauchy distribution.

gbest = pg× (1 + 0.5× randn) (18)

Cauchy = tan(π × (rand− 0.5)) (19)

gbest = pg× (1 + 0.5× Cauchy) (20)

The pseudo-code for the global optimal hybrid mutation strategy is Mut1 (Algorithm 1).

Algorithm 1: Mut1.

begin
Evaluate the best position gbest
and the second best position psec
if rand < 0.5

pg = gbest
else

pg = psec
end
if rand < pt

m
gbest = (1 + 0.5 × randn );

end
if rand < pt

m
Cauchy = tan (π (randn − 0.5));
gbest = pg × (1 + 0.5 × Cauchy );

end
end
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3.2.4. Worst Personal-Best Position Adaptive Wavelet Mutation Strategy

In the above hybrid variation strategy, the global optimal and suboptimal extremes
are utilized for variation, while the worse individual extremes are not utilized. In fact, in
the population, the worse individual extremes have limited guiding effect on the particles;
thus, variation on the worse individual extremes is beneficial to accelerate the convergence
of the population.

The worst individual optimal adaptive wavelet variation strategy [43] (Mut2):
The worst individual extreme value particle m is selected, and the search boundary of

the selected particle in the j dimension is Pbest,mj ∈ [xmin, xmax]. Pbest,mj is varied according
to Equation (21), and in this paper, adaptive wavelet variation is used to improve the worst
individual extreme value to speed up the evolution of the population. δ is the wavelet
function value, ψ(x) is the wavelet function, and Morlet wavelet is chosen as the wavelet
base in Equations (22)–(24). a is the scale parameter, and more than 99% of the energy of
the wavelet function is contained in (−2.5, 2.5), so the range of values of ϕ in the formula
is the pseudo-random number of (−2.5a, 2.5a) [44]. The wavelet amplitude decreases
continuously with the increase of parameter ψ(x). In order to adjust the wavelet amplitude
ψ(x) adaptively, the adaptive parameter a is proposed in this paper, and its expression is
Equation (25). k and a0 are positive constants, and this paper sets k = 10, a0 = 5.

Pbest,mj =

 Pbest,mj + σ
(

xmax − Pbest,mj

)
, if σ > 0

Pbest,mj + σ
(

Pbest,mj − xmin

)
, if σ ≤ 0

(21)

σ =
1√
a

ψ
( ϕ

a

)
(22)

ψ(x) = e−
x2
2 cos(5x) (23)

σ =
1√
a

e−
(

ϕ
a )

2

2 cos
(

5
( ϕ

a

))
, ϕ ∈ [−2.5a, 2.5a] (24)

a = kt + a0 (25)

3.3. Algorithm Steps

Step 1. (Initialization): set the current number of iterations t = 1, the maximum number
of iterations tmax, the population size N, the dimensionality of the search space M,
and the initial position and velocity of each particle generated randomly.

Step 2. (Optimal update): the velocity and current position of each particle are updated
according to Equations (10), (11) and (13)–(15), and the value of the fitness function
f (xi) is calculated for each particle.

Step 3. (Individual Optimal Update): for each particle xi, if the current fitness function
value f (xi) is better than the individual historical optimal position f (gbest), update
the individual optimal gbest.

Step 4. (Global Optimal Update): for each particle xi, if the current fitness function value
f (xi) is better than the global optimal position f (gbest), the global optimal gbest
is updated.

Step 5. Calculate the aggregation degree δ and the variation probability pt
m of the particle

population according to Equation (16); if rand ∈
[
0, pt

m
]
, mutate according to the

mutation strategies Mut1 and Mut2 in Sections 3.2.3 and 3.2.4.
Step 6. Calculate the particle fitness and update pbest and gbest.
Step 7. t = t + 1 and return to step 2 until t reaches the set maximum number of iterations

and stop.
Step 8. The optimal result is output, and the algorithm is finished.
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3.4. Construction of the Fitness Evaluation Function

For the MOP problem model of the extraction plan, this paper uses the evaluation
function method to construct the fitness function. Specifically, we set an arbitrary best
value Q∗ and A∗ for the objective functions Q(xi, yj, zk) and A(xi, yj, zk) respectively, and
construct the fitness evaluation function F(xi, yj, zk) of the extraction plan by calculating
the difference between each objective function and it and pursuing the minimum of the
sum. Equation (26). A∗ is the planned quantity of ore to be produced, Q∗ is the planned
economic efficiency of the enterprise during the plan period.

F(xi, yj, zk) =

√
(

Q−Q∗

Q∗
)

2
+

√
(

A− A∗

A∗
)

2
+

√
(

σt − σt∗

σt∗
)

2
(26)

4. Engineering Applications and Results Analysis
4.1. Mine Engineering Overview and Basic Data

In order to verify the effectiveness of the NAMPSO algorithm for industrial mining
planning of multi-metal mines, the actual mining production data of a large underground
metal mine rich in gold (Au), antimony (Sb), and tungsten (WO3) in Hunan Province,
China, are taken as an example, and the numerical model of the mine is shown in Figure 2.
In this paper, the annual production task index of this mine and the actual situation of the
mine are combined, and the balanced mining extraction plan model established in Section 2
and the NAMPSO algorithm for solving multi-objective optimization problems proposed
in Section 3 are applied to optimize the extraction plan of this mine for each quarter and
obtain the annual optimal mining plan.
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Figure 2. Digital model of underground multi-metal mine.

The production target of the mining company for this mine in the current year is
shown in Table 1.

Table 1. Production task indicators.

Total Ore Production 80,000 t Excavation footage 480 m
Mining Quantity 78,000 t Excavation ore quantity 2000 t

Metal Au Sb WO3

Comprehensive Ore Grade 3.75 g/t 0.188% 0.125%
Metal Quantity 300 kg 150 t 100 t

Mineral Processing Recovery Rate (%) 89.7 97.0 70.0

Among them, after the completion of the mining tasks of the previous year, the ore
reserves of the mine’s preparation rooms (13) and preparation pillars (8), as well as the part
of the works of the excavated blocks (9) that need to be completed in this year, are shown
in Table 2.
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Table 2. Parameters of the mine rooms, mine pillars, and excavated blocks.

Name Number Mining Quantity/Extraction Footage
Grade(e1, e2, e3)

Au (g/t) Sb (%) WO3 (%)

Mined pillar

1314-1 b1 1089 t 7.1 0.21 0.17
1102-1II b2 2543 t 10.93 0.25 0.08

...
...

...
...

...
...

708-1 b8 12,312 t 6.16 0.11 0.14

Mined room

508-1 r1 25,854 t 6.97 0.23 0.16
2516-1 r2 2709 t 6.71 0.23 0.11

...
...

...
...

...
...

12,514-1 r13 5180 t 5.62 0.13 0.65

Excavated block

12,520 k1 80.1 m 4.52 0.16 0.16
12,520-1 k2 56.3 m 4.37 0.21 0.23

...
...

...
...

...
...

5016 k9 94.7 m 3.25 0.00 0.00

4.2. Balanced Mining Model Parameters

According to the balanced mining extraction plan model constructed in Section 2.2
of this paper, the parameters involved in the mathematical model of the extraction plan
are organized as follows, considering the actual situation of the mine and referring to the
production experience of the mine in previous years:

(1) Excavated blocks B = 9, Mine pillars K = 8, Mine rooms R = 13.
(2) Production ore quantity factor for block mining preparation works u = 4.2 t/m,

Quantity of ore contained in 1 m of mining preparation U = 166.7 t/m.
(3) Quantity factor of prepared mining blocks/ during the plan period η = 1.
(4) Maximum mining capacity: D1 = 25,000 t, D2 = 25,000 t, D3 = 180 m.
(5) Metal types H = 3, Average quarterly ore output A = 20,000 t, Maximum underground

hoisting capacity quarterly A1 = 35,000 t.
(6) Gold concentrate contains gold price (metal price) p1 = 235,000 Yuan/kg, antimony

concentrate contains antimony price (metal price) p2 = 29,700 Yuan/t (antimony con-
centrate valuation coefficient is 0.6), tungsten concentrate contains tungsten price
p3 = 150,000 Yuan/t. The quarterly revenue required by the enterprise can be calcu-
lated according to the quarterly metal quantity task as Q∗ = 22,488,750.

4.3. Algorithm Parameter Setting

For the above engineering example data and the constructed model, the algorithm is
applied on the MATLAB platform to solve the plan model optimally. There are 30 parame-
ters of decision variables in this metal mine mining planning model, so the dimension of
each particle in the algorithm M = 30; the population size of particles N = 150, the number
of iterations T = tmax = 3000; the learning factor c1, c2 varies with the number of iterations t;
the ore loss rate of the mining site is considered to be 5%.

4.4. Engineering Example Simulation

Based on the equilibrium mining model and the data in Tables 1 and 2, the PSO
algorithm and the NAMPSO algorithm were applied to find the optimal extraction plan
for each quarter of a year, and the iterative convergence process of the model solution was
calculated to obtain four quarters, as shown in Figure 3. From the fitness function curves,
we can see that the fitness function values of the two algorithms are close to the improved
algorithm slightly better, but the convergence speed of the improved PSO algorithm is
significantly faster in the first two quarters (PSO converges around the 1550th, 450th, 1400th,
and 120th generations, and NAMPSO converges around the 1100th, 250th, 1200th, and 80th



Mathematics 2022, 10, 2418 12 of 20

generations), the convergence speed is improved by about 29.25%, and the specific results
of the balanced extraction plan are shown in Tables 3–5.
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Table 3. Quarterly and annual mining plan.

Name
Mining Quantity

Q1 Q2 Q3 Q4 Full Year

Mine pillar

1314-1 201.6 47.8 492.8 196.3 938.4
1102-1II 74.7 166.0 43.0 443.6 727.3

...
...

...
...

...
...

708-1 1151.0 3697.0 3903.4 3439.0 12,190.4

Mine room

508-1 2247.4 1808.9 850.7 11,899.8 16,806.8
2516-1 430.7 362.8 819.7 733.0 2346.2

...
...

...
...

...
...

12,514-1 1261.2 1397.7 1652.5 676.0 4987.5

Total 22,297.1 21,082.3 20,751.3 22,305.4 86,436.1

Table 4. Quarterly and annual excavation plan.

Name
Excavation Footage (m)

Q1 Q2 Q3 Q4 Full Year

Excavated block

12,520 23.6 5.0 7.6 9.9 46.1
12,520-1 18.5 17.9 5.0 10.6 51.9

...
...

...
...

...
...

5016 15.4 36.9 30.9 4.3 87.5

Total (m) 174.3 179.4 134.3 72.1 560.1

By-product ore quantity (t) 731.9 753.7 564.0 302.7 2352.3

From the convergence curve in Figure 3, it can be seen that when the NAMPSO
algorithm is used to solve the extraction plan, the value of the objective function fluctuates
between 3.2 and 1.2 when the number of iterations is between 0 and 500, indicating that
the algorithm converges to the global optimal solution slowly at the early stage of iterative
computation when the number of particles within the population is high under a certain
initial population size and at the late stage of iterative computation, i.e., after 500 iterations,
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the algorithm starts to converge smoothly and rapidly to the global optimal solution of
the objective function. It can also be seen that the NAMPSO algorithm, when solving
the production planning model with complex constraints, performs nonlinear dynamic
optimization of the inertia weights of the algorithm and introduces an adaptive variational
probability strategy to make the particles outside the feasible domain enter the feasible
domain quickly, which leads to a slow convergence computation at the early stage of the
algorithm search, while the computation speed of the algorithm is faster at the later stage,
and it is easy to jump out of the local optimal solution problem.

Table 5. Extraction plan optimization results by quarter and year.

Time Economic Benefits
Total Ore

Quantity (t)

Au Sb WO3

Quantity
(kg)

Grade
(g/t)

Quantity
(t)

Grade
(%)

Quantity
(t)

Grade
(%)

Q1 30,498,831.0 23,028.9 108.3 5.244 43.5 0.195 25.0 0.155
Q2 30,168,711.6 21,836.0 107.4 5.482 39.8 0.188 25.0 0.164
Q3 30,382,181.5 21,315.3 108.4 5.668 38.9 0.188 25.1 0.168
Q4 36,643,023.2 22,608.1 134.3 6.623 44.6 0.204 25.0 0.158

Full Year 127,692,747.3 88,788.3 458.4 5.755 166.8 0.194 100.1 0.161

4.5. Analysis of Results

Combined with the enterprise’s target requirements for the mine’s extraction produc-
tion, a comparative analysis of the extraction plans given in this paper for each quarter
shows that:

(1) As shown in Figure 4, in terms of mining quantity, the actual mining quantity of
each quarter and year in the balanced mining plan is slightly higher than the planned
mining quantity, which can meet the annual mining quantity target specified by the
enterprise. At the same time, the proportion of mining quantity in each quarter is 26%,
25%, 24%, and 25%, respectively, which meets the requirement of balanced mining.
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(2) As shown in Figure 5, in terms of the production of gold, antimony, and tungsten, the
actual production for each quarter and year in the extraction plan given in this paper
is slightly higher or equal to the planned production, which fully meets the annual
metal production target set by the enterprise. The percentages of gold production in
each quarter are 24%, 23%, 24%, and 29%, respectively; the percentages of antimony
production in each quarter are 26%, 24%, 23%, and 27%, respectively; and the percent-
ages of tungsten production in each quarter are 25%, 25%, 25%, and 25%, respectively.
From the absolute uniform distribution of tungsten production in each quarter, it can
be seen that the algorithm takes the achievement of tungsten production as one of the
key conditions when searching for the optimal mining plan, which fully meets the
metal content constraint requirement of the model, and because the grade of tungsten
is relatively the lowest among the three metals in the ore of each mining site, the value
of tungsten is relatively the lowest among the three metals, and the recovery rate of
tungsten beneficiation is also the lowest.
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(3) As shown in Figure 6, the average grade of gold and tungsten is higher than the
planned ore grade, the average grade of gold and tungsten in the ore mined in each
quarter is basically balanced, and the average grade of antimony in the ore mined in
each quarter is basically the same as the planned grade. Therefore, the mining plan
searched by the method of this paper achieves the balance of the ore grade, and the
ore grade fluctuation is small.
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(4) As shown in Figure 7, in terms of economic benefits, the annual economic benefits of
the extraction plan given in this paper increased by 41.88% compared to the planned
economic benefits. The actual production of each quarter and year is slightly higher
than the planned production, and the production of each metal also meets the require-
ments, so the economic benefits of each quarter and year are necessarily higher than
the planned economic benefits, and the actual benefits of each quarter account for
24%, 23%, 24%, and 29%, respectively, and in general, the economic benefits of each
quarter are balanced and stable, which can well fulfill the benefit targets given by
the company.
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(5) As shown in Figure 8, in terms of mining balance, in order to seek the quarterly
quantity of ore production that satisfies each constraint, the quantity of ore mined
from each mineral deposit (including the mine room and pillar) varies each quarter,
which reflects the equilibrium process of ore matching. Through four quarters of
mining, the ore reserves of each mining field are basically depleted, and in actual
production the ore reserves of the mining field can be considered as the end of mining
when they are below a certain value. After one year of mining, most of the 21 recovery
mining fields involved in the plan can be considered as completed. In order to ensure
that mine production can be carried out continuously, it is necessary to adhere to the
principle of balanced mining and excavation with excavation first. In this paper, the
mining plan is formulated mainly through the balance between the recovery quantity
and mining preparation quantity to ensure the continuity of production, as shown
in Figure 9. This paper contains nine mining preparation fields, each of which has
a different footage of excavation in each quarter, and the reason for this is that the
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quantity of ore production from each mining preparation project also must meet the
production constraints. After four quarters of mining preparation work, the nine
mining preparation fields are basically finished and can be used as back mining fields
for the next year, which can ensure the continuous progress of production work in the
next year.
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5. Conclusions

Aiming at the multi-objective optimization problem faced by underground multi-
metal mine extraction plans, this paper proposes an improved particle swarm optimization
algorithm, which makes the global relative optimal solution converge smoothly and quickly
by nonlinear dynamic optimization of inertia weights of a particle swarm algorithm,
while introducing an adaptive mutation probability strategy, mixed mutation strategy
for relatively optimal individuals, and adaptive wavelet mutation strategy for the poorer
optimal individuals to achieve the solution of the balanced mining plan. The optimal
extraction plan searched was compared and analyzed with the production target proposed
by the enterprise in five aspects: economic efficiency, ore production, metal quantity, ore
grade, and extraction balance. The results prove that the balanced mining plan model
constructed by using this paper and the quarterly and annual mining plans obtained by
using the NAMPSO algorithm not only fully meet the production task requirements, but
also the algorithm solution results are 10.98% higher than the mine plan index in terms of
ore quantity, 41.88% higher in terms of economic efficiency, and 29.25% higher in terms
of algorithm solution speed, which can well achieve the balanced production of the mine.
Thus, the practicality and feasibility of the model and algorithm are highlighted.

The optimization of the engineering examples in this paper focuses on optimization
with deterministic information and has limitations that can provide a reference for decision
makers. Future research will focus on optimization under uncertainty, seeking quantitative
methods for the uncertain information in the complex system of a mine. At the same time,
the optimization algorithm solution can be adapted in the future not only in the mine
quarry but in the whole mine system, as it is included in the optimization model, while
updating the optimization algorithm to achieve the optimization of the mine system from a
single link to the whole, thus helping the mining enterprises to obtain greater economic
benefits and improve the efficient use of limited mineral resources.
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Abbreviations

Model parameters definition
Indices Definition
B number of mining preparation blocks within the orebody model
R number of mining rooms within the orebody model
K number of mine pillar rooms within the orebody model
H number of metal types
b set of preparation blocks, b ∈ {1, . . . , B}
r set of mine rooms, r ∈ {1, . . . , R}
k set of mine pillars, k ∈ {1, . . . , K}
h set of metal types, h ∈ {1, . . . , H}
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Parameters
Xb Mining preparation work for block b, meter
Yr Ore reserves in the mine room r, ton
Zk Ore reserves in the mine pillar k, ton
D1 Maximum block mining preparation capacity, meter/a plan period
D2 Maximum mine room recovery capacity, ton/a plan period
D3 Maximum mine pillar recovery capacity, ton/a plan period
η Quantity factor of prepared mining blocks during the plan period,1~2
A Ore production during the plan period, ton
A1 Maximum hoisting capacity of underground hoisting equipment, ton
Q Enterprise revenue during the plan period, yuan
ph The price of the h ore produced during the plan period, yuan/ton
U Quantity of ore contained in 1 meter of mining preparation, ton/meter
u Production ore quantity factor for block mining preparation works, ton/meter
sh mineral processing recovery rate of h metal, %
Sh Minimum requirements for h metal production during the plan period, ton
σh The average grade of h metal in the production ore
σ∗h The grade required by the enterprise for h metal in the ore

ebh erh ekh
The average grade of h metal in the mining preparation blocks b, mine room r mine
pillar k, %

Variables
xb Mining preparation work for block b in the mining plan, meter/a period
yr Recovery of ore quantity in mine room r of the mining plan, ton/a period
zk Recovery of ore quantity in mine pillar k of the mining plan, ton/a period
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