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Abstract: This paper describes an image enhancement method for reliable image feature matching.
Image features such as SIFT and SURF have been widely used in various computer vision tasks such
as image registration and object recognition. However, the reliable extraction of such features is
difficult in poorly illuminated scenes. One promising approach is to apply an image enhancement
method before feature extraction, which preserves the original characteristics of the scene. We thus
propose to use the Multi-Scale Retinex algorithm, which is aimed to emulate the human visual
system and it provides more information of a poorly illuminated scene. We experimentally assessed
various combinations of image enhancement (MSR, Gamma correction, Histogram Equalization and
Sharpening) and feature extraction methods (SIFT, SURF, ORB, AKAZE) using images of a large
variety of scenes, demonstrating that the combination of the Multi-Scale Retinex and SIFT provides
the best results in terms of the number of reliable feature matches.

Keywords: image enhancement; image feature extraction and matching; the Multi-Scale Retinex

MSC: 62H35

1. Introduction

Image feature matching is one of the fundamental operations in image processing, used
in various vision and robotic applications such as stereo matching [1], image mosaicking [2],
specific object recognition [3], feature-based robot localization [4], and SLAM (Simultaneous
localization and mapping) [5], among others. Although many robust features extraction
algorithms have been proposed such as Scale -Invariant Feature Transform (SIFT) [6,7]
Speeded-Up Robust Features (SURF) [8,9], and AKAZE [10], they do not work well for
feature extraction in degraded images.

Image degradation is often observed in poorly illuminated environments due to,
for example, darkness, fog, and pollution. The Figure 1 shows several examples of degraded
images. Since the image details are missing in such images, image features are harder
to extract and, even when they are extracted, their characteristics are not well recovered.
In addition, with the visual subjective results improved, this proposal helps in different
fields such as medical, robotics, industrial inspection, SLAM (Simultaneous localization
and mapping) algorithms, defect detection, etc.

There are basically two approaches to dealing with this problem. One is to develop
more robust feature extraction and description methods. The other is to increase inherent
characteristics of the images so that feature extraction and description become more robust.
Thus, we propose to work with the latter one.
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(a) Example 1 (b) Example 2 (c) Example 3

Figure 1. Example images taken under poorly illuminated environments.

A promising approach to image modification is image enhancement algorithms. Ex-
amples of the use of popular methods are gamma correction [11], image sharpening [12],
and histogram equalization [13]. Furthermore, Retinex [14] is a color image enhancement
method which emulates human vision, and it is usually used for improving the quality of
images taken under low illumination conditions. Since most image features are extracted
and described based on image gradient information, Retinex is suitable for enhancing low
contrast regions, thereby making image feature extraction easier and more robust.

In this paper, we propose a method of robust feature extraction using Retinex-based
image enhancement. The method is quantitatively evaluated with various real images in
terms of features extraction and matching performance, with comparison with other image
enhancement methods. Besides, we propose to join the SIFT and MSR algorithms to obtain
more information of the different scenes, and, to generate the correct match, our proposal
demonstrates better results against other ones using the Sensitivity, Specificity, ROC curve,
and SRCC analysis criteria.

2. Related Work
2.1. Feature Extraction and Matching Algorithms

Various image features extraction algorithms have been proposed for years, including
SIFT [6], SURF [8], ORB [15] and AKAZE [10], among others. Mistry et al. [16] made a
comparison between SIFT and SURF, reporting that each algorithm presents good results
in different circumstances. For example, SURF is better than SIFT in terms of rotation
invariance, blur, and warp transform, while SIFT is better than SURF in terms of scale
invariance. Ma et al. [17] proposed to use an improved ORB feature in a low-frequency do-
main obtained by non-subsampled contourlet (NSCT) for remote sensing image matching.
Alcantarilla et al. [10] proposed the AKAZE algorithm, a fast multiscale feature detec-
tion and description approach that exploits the benefits of nonlinear scale spaces. Lecca,
Michela, et al. [18] shows perceptual features such as image brightness, contrast, and reg-
ularity, which enable increases in the accuracy of SIFT and ORB. This study provides a
scheme to evaluate image enhancement from an application viewpoint, to demonstrate bet-
ter results when using an image enhancement together with a feature extraction algorithm.

To make correspondence between image features, a similarity measure between their
descriptors is used. Karim et al. [19] proposed to combine SURF features with FAST [20]
or BRISK [20] descriptors to provide an optimal solution for reliable and efficient feature
matching. Since different image features may have similar descriptors, a robust matching
algorithm needs to be adopted. RANSAC (Random Sample Consensus) [21] is one of the
most powerful algorithms for outlier rejection. Lati et al. [22] developed an extension of
RANSAC with a bidirectional matching with a fuzzy inference. Since the image enhance-
ment algorithms usually increase the number of features, the combination with such a
robust matching algorithm is indispensable.

2.2. Image Enhancement

Image enhancement consists of modifying some characteristics of the original image,
such as sharpness and noise removal, so that the resulting image can be used in specific
applications [23]. Since this paper deals with an improvement of extraction and matching
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of gradient-based image features, we focus on contrast enhancement, which is to provide a
better extraction of features.

Xu et al. [24] presented features’ enhancement of images taken in low-light envi-
ronments using multi-scale fusion. Using the high dynamic range imaging technique,
combined with weight maps, a pyramidal fusion is performed to obtain a layer-by-layer fu-
sion of the different frequency bands. It also develops an extraction of characteristics of the
original image without generating color distortions. Sun et al. [25] reported a digital image
correlation (DIC) method, where, first, a comparison experiment of numerical simulation
speckle images, acquired under different low-light environments, is performed. Then,
an image correction algorithm based on Retinex-multiscale is then applied to eliminate
or reduce non-uniform lighting effects. Finally, the rotation of the rigid body and the
uniaxial traction experiment are quantitatively evaluated to verify the feasibility of the cor-
rection method for the images. There is another option, such as deep learning, for example,
R. Zhang [26], which reported a feature transformation using a self-monitoring feature ex-
tractor pre-trained on a Gaussian-like distribution that allows for reducing the mismatch in
the distribution of features describing images taken in low-light environments, significantly
benefiting meta-training graphics network. On the other hand, R. Zhang [27] present an
analysis using infrared images, working with a novel backbone called Deep-IRTarget.

Systems that use deep learning have the disadvantage of the high computational cost
that is carried out during the process, as well as the use of very large databases, which can
reach a size of 50 GB, for which training neural networks can take a long time, this being a
disadvantage when we intend to work with systems with real-time responses.

To enhance the image contrast, gray level transformation methods are often used such
as gamma correction [11] and histogram equalization [13]. These are effective in many
cases, but some of them need parameter adjustment and may fail to effectively enhance a
local image region in gray and color images. Retinex [14] is an effective method for contrast
enhancement in color images applied in real scenarios. These methods will be discussed in
more detail and evaluated in terms of the effectiveness in feature extraction and matching
in Sections 3 and 5.

2.3. Image Registration and Stitching

Image registration is the process of overlaying images of the same scene taken at
different times, from different viewpoints, and/or by different sensors. Zitova et al. [28]
reviewed classical image registration methods such as the sequential similarity detection
algorithm, cross-correlation, and the Hausdorff distance. Brown and Lowe developed a
fully automatic panoramic image stitching method [29], which performs feature extraction
and matching, bundle adjustment, and photometric adjustment and blending. Robust
feature extraction and matching are keys to high-quality stitching. The quality of stitching
is one of the evaluation criteria, as shown later.

3. Image Enhancement Methods

This section explains the Retinex algorithm and some others which are used for
performance comparison.

3.1. Retinex

The Retinex algorithms are primarily for color recovery independently of illumination
conditions. They can also improve visual conditions of images such as luminosity and
contrast, especially when applied to images taken in low-illumination conditions [14].

The following equation defines the calculation of single-scale Retinex (SSR):

R(x, y) = log I(x, y)− log[F(x, y) ∗ I(x, y)], (1)
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where I(x, y) is the intensity of the image pixel and ∗ is the convolution operator. F(x, y) is
a Gaussian function defined as:

F(x, y) = z exp
{
− x2 + y2

2σ2

}
, (2)

where σ2 is the variance and z is the normalization constant.
Retinex has several extensions, such as Multi-scale Retinex (MSR) [30], Multi-scale

Retinex with color restoration (MSRCR) [31] and Retinex algorithms to high dynamic range
(HDR) [32]. As MSR calculates and combines Retinex values on scales, it provides us with
tonal interpretation and a high dynamic range simultaneously, making the results favorable
for our purpose. The MSR value for channel c (R, G, or B) is defined as:

Rc
MSR =

Ns

∑
s=1

wsRc
s, (3)

where Rc
s is the SSR value obtained by Equation (1) and ws is the scale-wise weight. Ac-

cording to [33], we choose Ns = 3, [80, 154, 250] for the variances, and ws = 1/3. Figure 2
shows the results of applying the MSR algorithm to the images shown in Figure 1. From the
comparison of the histograms before and after the application of MSR, we can observe the
improvements on the dynamic range and perceivable details.

(a) Before MSR (b) After MSR

Figure 2. Comparison between images and their respective histograms applying the MSR.

3.2. Gamma Correction

Gamma correction is usually used for adjusting the different characteristics in bright-
ness and color between monitors. The gamma coefficient is introduced to characterize the
non-linear relationship between the pixel value and its actual luminance [34]. The higher
the gamma value is, the steeper the curve of this relationship is, thereby causing the increase
of contrast [11]. Gamma correction is defined as:

I
′
= Iγ, (4)

where I is the original image, I′ is the correction result, and γ = [−∞, ∞]. We should choose
an appropriate gamma value for an effective conversion. In our case, it is necessary to adjust
the value on an image-by-image due to a variety of illumination conditions over scenes.

3.3. Histogram Equalization

The objective of histogram equalization is to convert the images so that the cumulative
probability of pixel values becomes linear. This is achieved by converting each pixel value
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to the new one so that the number of pixels in each bin of the intensity histogram becomes
as similar as possible, without inverting the pixel orders in terms of intensity.

3.4. Sharpening with Unsharp Masking

Image sharpening with unsharp masking is another image enhancement method [12].
The procedure is to blur the original image (unsharp mask) first, and then subtract the
blurred image from the original image. The method is effective for contrast enhancement.

3.5. Gan-Based Low Light Enhancement Method

EnlightenGAN is a method [35] that can be easily set aside in improving images
acquired in low-light environments since it eliminates the dependence on training data and
it allows working with a wide variety of images from different domains.

3.6. Comparison of Image Enhancement Methods

Figure 3 shows a comparison between the image enhancement methods mentioned
above. We can see the improvements in MSR, histogram equalization, and image sharpen-
ing methods. Besides MSR providing good results in most cases, for example in situations
of well illuminated scenarios, where the perception of more details is noticeably improved
using an MSR algorithm, as shown in Figure 4.

Although the original image may be the best option, when implementing contrast
enhancement software, it will run regardless of the nature of the image, so it is important
that the proposed algorithm continues to perform proper processing by improving the
amount of perceptible information.

(a) Original Image (b) Multi-scale Retinex

(c) Gamma Correction γ = 1.6 (d) Histogram Equalization

(e) Unsharp Masking (f) GAN

Figure 3. Comparison between image enhancement methods.



Mathematics 2022, 10, 2407 6 of 16

(a) Original image (b) Multi-scale Retinex (c) Sharpening

(d) Histogram equalization (e) GAN

Figure 4. Comparison between the analyzed methods.

4. Feature Extraction and Matching
4.1. Feature Extraction

Once the images are properly enhanced, the next step is to extract and describe
feature points, which will then be matched between images to calculate the image-to-image
transformation. In this paper, we use four representative image features: SIFT, SURF, ORB,
and AKAZE, explained below.

4.1.1. SIFT

SIFT is a method of obtaining invariant characteristics of a local image region as
a feature vector called a descriptor. Each descriptor is invariant to translation, scaling,
and rotation. Furthermore, it is robust to illumination changes [6].

The SIFT algorithm detects feature points (called key points) independently of scale vari-
ation, by analyzing the response to the DoG (Difference of Gaussian) function defined as:

ψ(x, y, σ) = g(x, y, dσ)− g(x, y, σ), (5)

in a scale space, which is obtained by repeatedly applying the convolution with a Gaussian
kernel g(x, y, σ) with σ =

√
2 to the input image with a different scale d of Gaussian blurs.

4.1.2. SURF

SURF is a feature detection that uses the integral image to decrease the computation
required to detect and describe interest points. The integral image makes it possible to
calculate the sum of pixels inside a rectangular region of the input image with only three
additions and four memory accesses [8].

Similar to SIFT, SURF is also based on the scale space theory. The difference is that
SURF uses the DoH (Determinant of Hessian) defined as:

H(x, σ) =

[
Lxx(x, σ) Lxy(x, σ)
Lyx(x, σ) Lyy(x, σ)

]
, (6)

where Lxx, Lyy, and Lxy indicate the convolutions of the Gaussian second-order partial
derivatives approximated with the box-type filters based on the integral image in horizontal,
vertical, and diagonal directions, respectively [36].
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4.1.3. ORB

ORB is a feature detection and description algorithm, realized by a combination of the
Oriented FAST detector and the BRIEF descriptor. The orientation component for FAST is
calculated using the intensity centroid [15]. The BRIEF feature is constructed from a set of
n binary tests. The binary test τ is defined as:

τ(p; x, y) =
{

1 if p(x) < p(y)
0 otherwise

, (7)

where p is a smoothed image patch and x and y are points to be compared. The feature is
represented as a n-bit vector:

fn(p) = ∑
1≤i≤n

2i−1τ(p; xi, yi), (8)

and rotated by the FAST orientation for the rotation invariance.

4.1.4. AKAZE

AKAZE is a 2D feature detection and description method that operates completely in
a nonlinear scale-space [10]. The AKAZE detector is based on the determinant of Hessian
Matrix. The use of Scharr filters improves the quality of the rotational invariance. As a
result, the AKAZE features are invariant to scale, rotation, and limited affine. It also has
more distinctiveness at varying scales because of nonlinear scale spaces [37].

4.2. Feature Point Matching Using RANSAC

Once two sets of image features are obtained for an image pair, we determine feature
matches based on the sum of squared differences (SSD) between the feature vectors. Let f 1

i
be the ith feature in image 1 and f 2

j be the closest feature to f 1
i in image 2. Feature match

(i, j) is determined, which satisfies the following two conditions:

SSDi,j ≤ thASSD, (9)

SSDi,j

SSDi,k
≤ thRSSD, (10)

where i and j are the features, k is the index of the second closest feature in image 2, and thASSD
and thRSSD are thresholds. In the experiments shown below, we used thASSD = 8 and
thRSSD = 0.6, which were selected from the ranges [7, 10] and [0.4, 0.8], respectively, by a
different test.

These conditions contribute to eliminating ambiguous matches. However, considering
further the case where multiple non-identical features may have very similar feature
descriptors, we adopt Random sample consensus (RANSAC) [21], one of the most popular
robust matching algorithms in computer vision.

RANSAC first randomly selects the minimum number of feature pairs required to
determine the transformation parameters. It then transforms the other features in one
image to the other using the estimated parameters to find a set of matched points (i.e.,
inliers). The algorithm iterates these steps for a specified time and chooses the parameter
set with the maximum number of inliers. In this paper, we consider the homography
between images as the transformation. Then, the number of parameters is eight [22] and
that of required feature pairs is four.

5. Assessment Results
5.1. Effect of Image Enhancement for Feature Extraction and Matching

The objective of image enhancement in this paper is to increase the number of correct
feature matches for poorly illuminated scenes. We first qualitatively examine how the
image enhancement using MSR improves feature extraction and feature matching, this by
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using the SIFT algorithm, since when working with the characteristics of a local image, we
can have invariant descriptors to translation, rotation and scaling, which helps to make
a better connection between the images that make up the sequence of the scene. Figure 5
shows the detected image features (indicated as green and red points) in the original and
the MSR-enhanced images. The number of detected features are larger for the orignal ones
because of a relatively high noise level in low contrast images. Figure 6 shows the feature
matches (indicated as yellow lines) between two images for both cases, obtained by the
RANSAC-based homography estimation. Apparently, the enhanced image pair has a much
larger number of correct matches. These results show the effect of image enhancement for
feature extraction and matches.

Figure 5. Comparison of keypoint extraction with and without MSR-based image enhancement. First
row: original images; second row: MSR-enhanced images.

Figure 6. Comparison of keypoints matches with and without MSR-based image enhancement. First
row: original images; Second row: MSR-enhanced images.
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5.2. Quantitative Evaluation for a Variety of Scenes

The Figure 4 shows an example where the lighting condition is reasonably good and
image enhancement is not necessarily effective, therefore a quantitative evaluation of the
effectiveness of MSR-based image enhancement was performed, using a set of images with
40 color scenes. The image set was taken by ourselves under a variety of locations and
illumination conditions, using a cellphone camera of 31 Mega Pixels; these images were
acquired in .jpg format (see Figure 7). For each scene, we took five consecutive images,
having a total of 200 images, by moving a camera so that they can be used for feature
matching and image stitching experiments.

Figure 7. Proposal dataset used for the experimentations.

We limited the numbers of features and feature matches to 300 and 200, respectively,
in order to reduce the computation time. The number of iterations in RANSAC is set
to 1000.

We first examine feature detection and matching performance by all combinations
of image enhancement and feature extraction methods in detail for one of the 40 scenes.
Table 1 shows a comparison for the sequence of the first image, which is the leftmost
image in the first row in Figure 7. In the table, the Im2 through to the Im5 column indicate
the number of detected features and that of matched pairs in parentheses. The results
demonstrate that the combination of MSR+SIFT gives the best performance and that of
MSR+AKAZE the second; this is because the SIFT and AKAZE algorithms are more robust
according to the mathematical procedure that describes them. This is by comparing the
image improvement methods that do not use deep learning, since we can see that when we
use the GAN method, the best results are obtained, although to obtain them the process
takes longer due to the training that must be carried out with the neural network. We can
observe that by having an image pre-processing method it is possible to generate a greater
number of characteristics and therefore a better splicing between them.

The same experimentations were realized over all 40 scenes. For each scene, the
total numbers of detected and matched features were normalized. Then, we calculate the
averaged and the standard deviation for all scenes for each combination. The result is
summarized in Table 2. We also examined the ratio of the number of matched features
to that of the detected features, as summarized in Table 3. Again, the combination of
MSR+SIFT exhibits the best performance, demonstrating that it can detect not only a larger
number of features but also more reliable features.
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Table 1. Comparison of combinations of image enhancement methods and image features in terms of
the number of detected and matched features.

Image Enhancement
Method against Image

Feature
Number of Detected and Matched Features Total Number

Im1 Im2 Im3 Im4 Im5

SIFT (no image
enhancement) 170 (130) 165 (145) 168 (148) 172 (150) 167 (158) 842 (731)

SURF (no image
enhancement) 165 (144) 150 (135) 160 (152) 165 (158) 155 (140) 795 (729)

ORB (no image
enhancement) 167 (142) 175 (157) 160 (140) 165 (145) 170 (155) 837 (739)

AKAZE (no image
enhancement) 170 (130) 163 (147) 165 (145) 170 (150) 165 (156) 833 (728)

MSR+SIFT 200 (190) 198 (189) 199 (195) 200 (190) 198 (192) 995 (956)

MSR+SURF 160 (158) 165 (162) 168 (164) 165 (162) 150 (150) 808 (769)

MSR+ORB 162 (156) 170 (160) 164 (159) 168 (165) 164 (158) 828 (798)

MSR+AKAZE 200 (188) 198 (187) 197 (194) 198 (190) 198(190) 991 (949)

Sharpening+SIFT 175 (160) 165 (152) 175 (168) 165 (156) 168 (161) 848 (797)

Sharpening+SURF 155 (140) 145 (132) 158 (144) 140 (132) 144 (135) 742 (683)

Sharpening+ORB 158 (146) 160 (152) 161 (154) 158 (150) 162 (154) 799 (756)

Sharpening+AKAZE 172 (164) 162 (150) 168 (163) 164 (154) 163 (157) 991 (925)

GC+SIFT 120 (100) 125 (123) 130 (127) 110 (108) 128 (125) 613 (583)

GC+SURF 112 (96) 120 (115) 115 (105) 100 (95) 105 (100) 552 (511)

GC+ORB 118 (102) 120 (115) 125 (122) 115 (110) 128 (124) 606 (573)

GC+AKAZE 120 (108) 127 (123) 132 (127) 106 (108) 125 (122) 610 (588)

HE+SIFT 150 (135) 162 (158) 178 (172) 164 (158) 170 (165) 824 (788)

HE+SURF 150 (138) 130 (124) 145 (138) 120 (116) 130 (128) 675 (644)

HE+ORB 158 (153) 160 (155) 152 (148) 155 (149) 160 (156) 785 (761)

HE+AKAZE 150 (144) 162 (154) 180 (174) 162 (154) 167 (162) 821 (788)

GAN+SIFT 200 (194) 198 (192) 200 (195) 200 (197) 198 (195) 996 (973)

GAN+SURF 190 (186) 192 (186) 194 (184) 188 (184) 190 (186) 954 (926)

GAN+ORB 192 (188) 194 (190) 190 (184) 188 (185) 190 (186) 954 (933)

GAN+AKAZE 198 (194) 200 (194) 189 (185) 196 (193) 194 (191) 977 (957)

Table 2. Average and standard deviation of the normalized number of matches.

Enhancement Methods SIFT SURF ORB AKAZE

No enhancement 0.80 (1) 0.80 (0.94) 0.80 (0.90) 0.80 (0.88)

MSR 1 (0.39) 0.83 (0.54) 0.83 (0.51) 0.99 (0.43)

Sharpening 0.85 (0.65) 0.76 (0.72) 0.81 (0.55) 0.86 (0.67)

Gamma correction 0.62 (0.68) 0.53 (0.81) 0.61 (0.51) 0.61 (0.71)

Histogram equalization 0.81 (0.75) 0.74 (0.76) 0.80 (0.61) 0.80 (0.73)

GAN 1 (0.28) 0.95 (0.46) 0.88 (0.50) 1 (0.29)
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Table 3. Average and standard deviation of the ratio of the number of matched features to that of
the detected.

Enhancement Methods SIFT SURF ORB AKAZE

No enhancement 0.90 (0.02) 0.92 (0.04) 0.88 (0.01) 0.92 (0.04)

MSR 0.97 (0.01) 0.94 (0.01) 0.95 (0.02) 0.96 (0.01)

Sharpening 0.96 (0.01) 0.94 (0.01) 0.93 (0.01) 0.95 (0.02)

Gamma correction 0.85 (0.02) 0.84 (0.01) 0.83 (0.01) 0.84 (0.01)

Histogram equalization 0.97 (0.01) 0.94 (0.01) 0.94 (0.01) 0.96 (0.01)

GAN 0.98 (0.01) 0.97 (0.01) 0.96 (0.01) 0.98 (0.01)

Feature extraction and matches depend on the threshold values. If we set loose
thresholds, more matched features are obtained, but more incorrect ones are included. If we
set tight thresholds, less matched features are obtained, but many of them are correct ones.
Therefore, we conducted the ROC analysis [38].

We calculated the sensibility and the specificity for combinations of thresholds, thASSD
and thRSSD, shown in Equations (9) and (10). The ranges of thresholds for thASSD and
thRSSD are [7, 8, 9, 10] and [0.4, 0.5, 0.6, 0.7, 0.8], respectively.

The sensibility and the specificity are defined as:

Sensitivity =
TP

TP + FN
, (11)

Speci f icity =
TN

TN + FP
, (12)

where TP, TN, FP, and FN are the number of true positive cases, that of true negative ones,
that of false positive ones, and that of false negative ones, respectively. In determining
the ground truth data, we use the matches obtained by the threshold pair used (i.e.,
[thASSD, thRSSD] = [8, 0.6]) and the RANSAC-based outlier rejection.

Figure 8 shows the ROC curves of all combinations of image enhancement methods
and features. Each value is the averaged one for all images sequences. Table 4 shows the
numerical results for the threshold we used. MSR+SIFT and MSR+AKAZE exhibit the best
results for all threshold values.

Table 4. Comparison in terms of the sensitivity and the specificity.

Enhancement Methods
Sensitivity Specificity

SIFT SURF ORB AKAZE SIFT SURF ORB AKAZE

No enhancement 0.80 0.79 0.80 0.80 0.72 0.74 0.71 0.71

MSR 0.93 0.90 0.91 0.92 0.92 0.88 0.88 0.92

Sharpening 0.86 0.82 0.80 0.84 0.84 0.83 0.83 0.82

Gamma correction 0.70 0.67 0.70 0.70 0.67 0.64 0.68 0.68

H.E. 0.82 0.80 0.80 0.83 0.79 0.77 0.77 0.80

GAN 0.95 0.92 0.90 0.95 0.94 0.90 0.88 0.94

On the other hand, the Spearman’s rank correlation coefficient (SRCC [39]) analysis
was performed, which indicates the level of correlation that exists between two variables,
in our case, the number of detectors obtained and the number of splices performed correctly,
which is defined by Equation (13), where ρ = Pearson correlation coefficient, d2

i = difference
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between the two ranks of each observation and n = number of observations. To perform
this evaluation, we used the values shown in the last column of Table 1.

ρ = 1−
6 ∑ d2

i
n(n2 − 1)

, (13)

In the Table 5, the second column refers to the detectors located in the image sets,
the fourth column d2

i , knowing that n = 40, the fifth column shows the value of ρ for each
case; when the ρ value is closer or equal to one, the result means that the splicing between
the images presents good results. It is possible to observe that the best splice results were
obtained when using the combination of MSR and SIFT.

Table 5. Spearman’s rank correlation coefficient analysis.

Image Enhancement Method Detectors Matching d2
i ρ

SIFT (no image enhancement) 842 731 36 0.87

SURF (no image enhancement) 795 729 1 0.99

ORB (no image enhancement) 837 739 49 0.77

AKAZE
(no image enhancement) 833 728 25 0.94

MSR+SIFT 995 956 0 1

MSR+SURF 808 769 16 0.97

MSR+ORB 828 798 1 0.99

MSR+AKAZE 991 949 4 0.99

Sharp.+SIFT 848 797 16 0.97

Sharp.+SURF 742 683 9 0.99

Sharp.+ORB 799 756 9 0.99

Sharp.+AKAZE 991 925 9 0.99

GC+SIFT 613 583 16 0.97

GC+SURF 552 511 9 0.99

GC+ORB 606 573 9 0.99

GC+AKAZE 610 588 16 0.97

HE+SIFT 824 788 25 0.94

HE+SURF 675 644 9 0.99

HE+ORB 785 761 16 0.97

HE+AKAZE 821 768 25 0.94

GAN+SIFT 996 973 0 1

GAN+SURF 954 973 0 1

GAN+ORB 954 926 16 0.97

GAN+AKAZE 977 957 9 0.99
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Figure 8. ROC curve of all combinations of image enhancement methods and features.

5.3. Comparison of Enhancement Methods in Image Stitching

Figure 9 compares the image enhancement methods in an image stitching scenario.
For all of five methods, we extract SIFT features and apply the RANSAC-based matching for
image stitching. The quality of image stitching results change depending on the number and
the accuracy of feature matches. The MSR, the histogram equalization and the Sharpening
case show reasonable stitching, while the gamma correction case fails to correctly recover
the geometry.

We evaluate the accuracy of the estimated image-to-image transformation. To obtain
the ground truth transformation for evaluation, we manually matched feature points,
and use the transformation estimated from that set of feature matches as a ground truth.
The number of feature matches is 20.

As a criterion of evaluating the matching accuracy between the images, we use Samp-
son distance, due to the Sampson error, which can be roughly thought as the squared
distance between a point x to the corresponding epipolar line [40], which provides a first-
order approximation of reprojection error and is known to present better estimations than
the other criteria such as Kanatani distance and symmetric epipolar distance [41]. Table 6
results on Sampson distance. The combination of MSR and SIFT gives the best result,
and that of MSR and AKZE gives the second. This is because a larger number of reliable
feature matches are obtained for those combinations than the others, as shown above.

Table 6. Average and standard deviation of the Sampson distances.

Enhancement Methods SIFT SURF ORB AKAZE

No enhancement 4.72 (0.53) 4.94 (0.47) 4.82 (0.54) 4.98 (0.56)

MSR 0.59 (0.04) 0.67 (0.06) 0.62 (0.04) 0.60 (0.05)

Sharpening 0.68 (0.07) 0.75 (0.10) 0.72 (0.97) 0.68 (0.07)

Gamma correction 6.18 (0.73) 6.77 (0.75) 6.36 (0.69) 6.22 (0.76)

Histogram equalization 0.72 (0.05) 0.81 (0.05) 0.76 (0.04) 0.74 (0.05)

GAN 0.48 (0.03) 0.55 (0.04) 0.58 (0.04) 0.48 (0.03)
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(a) Original (b) MSR

(c) Histogram equalization (d) Gamma correction

(e) Sharpening (f) EnlightenGAN

Figure 9. Comparison of image stitching results.

6. Conclusions and Future Work

This paper described some methods of image enhancement for robust feature match-
ing in poorly illuminated environments. Among various image enhancement methods, we
proposed to use RETINEX, more specifically, Multi-scale Retinex (MSR). The quantitative
evaluation using a large variety of 40 sequences of scenes shows that the MSR, when com-
bined with SIFT or AKAZE, gives the best performance in terms of the number of reliable
feature matches as well as the accuracy of the recovered transformation for image stitching.

Although the MSR performs best for almost all scenes, there are complicated scenes
which the MSR does not work properly, for example, when the image is completely dark,
that is, in images taken at night. Therefore, it is future work to analyze and classify
scenes based on the illumination condition so that we can select an appropriate image
enhancement method, including keeping the original image as an option, depending on the
characteristics of the scene. Likewise, it is proposed to use deep learning, more specifically
the method described (EnlightenGAN), since it was verified that it generates good results in
the use of completely dark images and in this way to be able to apply it in specific systems
such as the detection of forest fires.
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