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Abstract: The heap-based optimizer (HBO) is an innovative meta-heuristic inspired by human social
behavior. In this research, binary adaptations of the heap-based optimizer B_HBO are presented
and used to determine the optimal features for classifications in wrapping form. In addition, HBO
balances exploration and exploitation by employing self-adaptive parameters that can adaptively
search the solution domain for the optimal solution. In the feature selection domain, the presented
algorithms for the binary Heap-based optimizer B_HBO are used to find feature subsets that maxi-
mize classification performance while lowering the number of selected features. The textitk-nearest
neighbor (textitk-NN) classifier ensures that the selected features are significant. The new binary
methods are compared to eight common optimization methods recently employed in this field,
including Ant Lion Optimization (ALO), Archimedes Optimization Algorithm (AOA), Backtracking
Search Algorithm (BSA), Crow Search Algorithm (CSA), Levy flight distribution (LFD), Particle
Swarm Optimization (PSO), Slime Mold Algorithm (SMA), and Tree Seed Algorithm (TSA) in terms
of fitness, accuracy, precision, sensitivity, F-score, the number of selected features, and statistical
tests. Twenty datasets from the UCI repository are evaluated and compared using a set of evaluation
indicators. The non-parametric Wilcoxon rank-sum test was used to determine whether the proposed
algorithms’ results varied statistically significantly from those of the other compared methods. The
comparison analysis demonstrates that B_HBO is superior or equivalent to the other algorithms used
in the literature.

Keywords: dimensionality reduction; feature selection; meta-heuristics; Heap Based Optimizer (HBO)

MSC: 68T01; 68T20

1. Introduction

On one hand, the massive amounts of data collected in all industries at present provide
more specific and valuable information. On the other side, it is more difficult to analyze this
data when not all the information is important. Identifying the appropriate aspects of data
is a difficult challenge. Dimension reduction is a strategy used to solve classification and
regression problems by identifying a subset of characteristics and eliminating duplicate
ones. This method is very useful when there are numerous qualities, and not all of them
are needed to interpret the data and conduct additional experiments on the attributes. The
essential principle of selecting features is that for many pattern classification tasks, a large
number of features does not necessarily equal a high classification accuracy. Idealistically,
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the selected attributes subset will improve classifier performance and provide a quicker,
more cost-effective classification, resulting in comparable or even higher classification
accuracy than using all of the attributes [1].

Selecting feature subsets with a powerful and distinctive impact for high-dimensional
data analysis is a critical step. High-dimensional datasets have recently become more
prevalent in various real-world applications, including genome ventures, data mining,
and computer vision. However, the high dimensionality of the datasets may result from
unnecessary or redundant features, which can reduce the effectiveness of the learning
algorithm or result in data overfitting [2].

Feature selection (FS) has become a viable data preparation method for addressing
the curse of dimensionality. FS strategies focus on selecting feature subsets using various
selection criteria while keeping the physical meanings of the original characteristics [3]. It
can make learning models easier to comprehend and perceive. FS has proven its efficiency in
various real-world machine learning and data mining problems, such as pattern recognition,
information retrieval, object-based image classification, intrusion detection, and spam
detection, to name only a few [4]. The FS process aims to reduce the search space’s
dimension to improve the learning algorithm’s efficiency [5].

The feature selection methodology derives its strength from two main processes, the
search and the evaluation. Choosing the most valuable features from the original set with
passing all the incoming subsets may face a combinatorial explosion. Therefore, search
methodologies are adopted to select the worthy features efficiently. The traditional greedy
search strategies such as forward and backward search have been used. The problem with
this type of searching is that it may succumb to locally optimal solutions, resulting in non-
optimal features. The evaluation function can handle this issue by assessing each feature
subset’s overall importance, which may help discover the globally optimal or near-optimal
solution. Based on the methods used to evaluate feature subsets, the feature selection
algorithms are categorized into three primary approaches: filter, wrapper, and embedding
methods [6].

Since FS seeks out the near-optimal feature subset, it is considered an optimization
problem. Thus, exhaustive search methodologies will be unreliable in this situation, as they
generate all potential solutions to find only the best one [7].

Meta-heuristic algorithms gain their superiority from their ability to find the most
appropriate solutions in an acceptable, realistic time [8]. In general, meta-heuristic and
evolutionary algorithms can avoid the problem of local-optima better than traditional
optimization algorithms [9]. Recently, nature-inspired meta-heuristic algorithms have been
used most frequently to tackle optimization problems [10].

Typically, the feature selection problem can be mathematically phrased as a multi-
objective problem with two objectives: decreasing the size of the selected feature set and
optimizing classification accuracy. Typically, these two goals are incompatible, and the
ideal answer is a compromise.

Meta-heuristic algorithms are stochastic algorithms that fall into two categories: single-
solution-based and population-based. The solution is randomly generated until it reaches
the optimum result [11]. In contrast, the population-based algorithm’s strategy is based on
evolving a set of solutions (i.e., population) in a given search space during many iterations
until it obtains the best solution. According to the theory of evolutionary algorithms,
population-based algorithms are categorized into physics laws-based algorithms, swarm
intelligence of particles, and bio-inspired algorithms’ biological behavior. Evolutionary
algorithms (EA) are based on the fitness of survival attempts. GA inspires its strategy from
natural evolutionary processes (e.g., reproduction, mutation, recombination, and selection).
Swarm intelligence (SI) techniques are based on swarms’ mutual intelligence. Finally, the
physical processes that motivate the physics law-based algorithms include electrostatic
induction, gravitational force, and heating systems of materials [11].
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Several algorithms proved their efficiency in both optimization and feature selection
fields. The Genetic Algorithms (GA), especially binary GA approaches, are regarded as
leading evolution-based algorithms that have been used to handle FS problems [12].

The Particle Swarm Optimization (PSO) algorithm, constructed for continuous op-
timization issues [13], also has a binary version (BPSO) that was presented for binary
optimization problems[14]. The BPSO has been used, as well, in FS by [15–17]. Further-
more, many other optimization algorithms succeeded in solving FS problems, such as
the Ant Colony Optimization (ACO) algorithm [18], Artificial Bee Colony (ABC) algo-
rithm [19], Binary Gravitational Search Algorithm (BGSA) [20], Scatter Search Algorithm
(SSA) [21], Archimedes Optimization Algorithm (AOA) [22], Backtracking Search Al-
gorithm (BSA) [23], Marine Predators Algorithm (MPA) [24], and Whale Optimization
Algorithm (WOA) [25].

The common challenge of the previously suggested metaheuristics for FS is the slow
convergence rate, bad scalability [26], and lack of precision and consistency. Moreover, the
characteristics of large-scale FS issues with various datasets may differ. As a result, solving
diverse large-scale FS issues using an existing approach with only one candidate solution
generating process may be inefficient [27]. Furthermore, identifying an appropriate FS
approach and parameter values takes time to efficiently address a large-scale FS issue. This
limitation motivates the current study, which proposes a novel algorithm for an FS task
using the Heap Based optimizer.

As a result, In this research, we propose an enhancement to a current optimization
technique known as the Heap Based Optimizer (HBO), which is a brand-new human
behavior-based algorithm [28]. The HBO is a novel meta-heuristic inspired by corporate
rank hierarchy (CRH) and some human behavior. An adaptive opposition strategy is pro-
posed to enable the original algorithm to achieve more precise outcomes with increasingly
complex challenges.

HBO displayed incredibly competitive performance. It demonstrates effectiveness
in optimization issues. HBO provides numerous benefits, including fewer parameters, a
straightforward configuration, simple implementation, and precise calculation. In addition,
this method is superior to other algorithms. The HBO algorithm takes fewer iterations.
All of these features are really beneficial for resolving the FS issue. It has a straightfor-
ward approach, low computational burden, rapid convergence, near-global solution, issue
independence, and gradient-free nature [29,30].

This paper reports the following main contributions:

• An improved Heap Based Optimizer (HBO) algorithm, termed B_HBO, is proposed
for the feature selection problem

• The proposed improved version was tested on 20 datasets, in which 8 belong to a con-
siderably high-dimensional class. The performance of the meta-heuristic algorithms
on FS problems for such high-dimensional datasets is rarely investigated.

• The performance of proposed B_HBO in terms of fitness, accuracy, precision, sen-
sitivity, F-score, and the number of selected features is compared with some recent
optimization methods.

The remainder of the article is as follows: Section 2 demonstrates the process of
reviewing the literature on FS metaheuristic algorithms. Section 3 introduces Continuous Heap
Based Optimizer steps. The binary HBO strategy is detailed in Section 4. The experiment’s
results are discussed in Section 5. In Section 6, conclusions and future work are discussed.

2. Related Works

Real-world numerical optimization problems have become increasingly complicated,
necessitating efficient optimization approaches. The research direction of evolving and
implementing metaheuristics to solve FS problems is still in progress. Generally, identifying
prominent feature subsets requires an evaluation that compares subsets and chooses the
best. When using a wrapper feature selection model, three performance indicators should
be used: a classifier (e.g., Support Vector Machine, k-Nearest Neighbors, Decision Tree),
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feature selection criteria (e.g., accuracy, area under the ROC curve, and false-positive (FP)
elimination rate), and an optimization algorithm to search for the optimal combination of
features [31]. Numerous novel SI optimization algorithms were used as search strategies for
several wrapper feature selection techniques. Several studies are interested in converting
the continuous optimization methods into binary versions to deal with discrete problems
and find the optimal feature subset in classification processes. For instance, different
binary versions of PSO have been proposed in [6,32,33]. The authors of [32] presented an
optimization algorithm based on PSO. This study uses the catfish influence to enhance
binary particle swarm optimization (BPSO). The proposed algorithm concept is to introduce
new particles into the search area that are initialized at the search space’s extreme points,
and then substitute particles with the worst fitness if the global best particle’s fitness does
not improve after several iterations. The authors used the k-NN technique with leave-one-
out cross-validation (LOOCV) to determine the efficacy of the proposed algorithm’s output.

The authors of [33] presented a binary PSO algorithm with a mutation operator
(MBPSO) to address the spam detection problem and minimize false positives caused by
mislabeling non-spam as spam.

Another binary optimization algorithm based on Grasshopper Optimization was devel-
oped in [34]. The authors presented two main methods to produce BGOA. The first method
employs Sigmoid and V-shaped transfer functions to convert continuous solutions to binary
equivalents. In the second method, a novel strategy, BGOA-M repositions the current solution
based on the best solution’s location up to this point. In the same context, the authors of [35]
transformed the continuous version of gray wolf optimization to a binary form (bGWO) to be
used in the classification process. Based on the wrapper model, they created two approaches
for obtaining the optimal features. The first approach tended to pick the best three solutions,
binarize them, and then apply a random crossover. The second approach uses a sigmoid
function to smash the continuous position, which is then stochastically thresholded to obtain
the modified binary gray wolf position. The results of the proposed approaches outperformed
GA and PSO. Another discrete version of GWO, the multi-objective gray wolf optimization al-
gorithm, was presented in [36]. This proposed algorithm’s goal was to reduce the dimensions
of the features for multiclass sentiment classification.

One more neoteric nature-inspired optimization strategy is the Whale optimization
algorithm (WOA). WOA is a strategy that emulates the behavioral patterns of a bubble-net
hunter. As a binary model based on a sigmoid transfer function, it was adopted in [10] for
feature selection and classification problems (S-shape). BWOA works on the principle of
converting any free position of the whale to its binary solutions. This proposed approach
forces the search agents to travel in a binary space by implementing an S-shaped transfer
function for each dimension.

Likewise, the Ant Lion Optimizer (ALO) algorithm was converted to a binary version
by [35]. This binary version was developed using two approaches. The first just converted
the ALO operators to their corresponding binary. The authors used the original ALO and
the proper threshold function to threshold its continuous steps after squelching them in the
second approach. According to this study, the BALO outperformed the original ALO and
other popular optimization algorithms such as GA, PSO, and binary bat algorithm. The
authors of [37] introduced a new version of the Salp Swarm Optimizer (SSA) for feature
selection. The SSA’s position wasupdated in the proposed methodology by a type of Sine
Cosine Algorithm called sinusoidal mathematical function. This study aimed to improve
the exploration process and avoid slumps in a local area.

Furthermore, it tried to enhance the population variety and keep a balance between
exploration and exploitation processes using the Disruption Operator. SSA was also used
to develop two wrapper-based feature selection models in [2]. The first model used eight
transfer functions to transform the continuous version of SSA. The second model added
the crossover operator to improve the swarm behavior with these transfer functions.

Other optimization algorithms, such as the Binary Spotted Hyena Optimizer (BSHO) [38],
Binary bat algorithm (BBA) [39], Binary dragonfly algorithm [40], Henry gas solubility
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optimization algorithm (HGSO) [41], Gradient-based optimizer (GBO) [42], Crow search al-
gorithm (CSA) [43,44], Equilibrium Optimizer (EO) [45], and chaotic cuckoo algorithm [46]
are algorithms that have been used to solve feature selection problems and improve classi-
fication performance.

One of the recent directions in the literature is using hybrid algorithms to improve
performance and efficiency. The authors of [47] introduced a hybrid algorithm that merges
the Flower Pollination Algorithm (FPA) and the Clonal Selection Algorithm to produce
a Binary Clonal Flower Pollination Algorithm (BCFA). Their proposed algorithm used
the Optimum-Path Forest classifier as an objective function. BCFA was tested on three
benchmark datasets and achieved stunning results in selecting the optimal features in less
time. A hybrid feature selection algorithm based on the forest optimization algorithm
(FOA) and minimization of redundancy and maximum relevance (mRMR) was proposed
in [48]. The results showed that applying k-NN and NB classifiers with the proposed FOA
algorithm outperformed standard classifier algorithms. The authors of [49] presented a
binary swallow swarm optimization (BSSO) algorithm with a fuzzy rule-based classifier
to solve the feature selection problem for fuzzy classification. This proposed approach
focused on eliminating more potentially noise-inducing features. However, as mentioned
in this study, the main drawback of BSSO is the significant number of tunable parameters
that must be empirically chosen.

The authors of [50] combined the GA and PSO to benefit from the exploitation ca-
pabilities of GA and the exploration capabilities of PSO. The proposed binary genetic
swarm optimization (BGSO) allows GA and PSO to operate independently. Furthermore,
BGSO integrated its outcome with the average weighted combination method to generate
an intermediate solution to elicit sufficient information from the obtained features. The
classifiers used to obtain the final results were k-NN and MLP.

According to the various mentioned studies, binary versions of optimization algo-
rithms have strengths over traditional feature selection algorithms.

Some other recent notable works of interest which proposed techniques for feature
selection based on fuzzy entropy such as in [51–53]. Other notable works of interest that
proposed metaheuristics for the FS problem are discussed below.

The authors of [54] proposed an improved multi-objective Salp Swarm Algorithm
(SSA) that incorporates a dynamic time-varying strategy and local fittest solutions. The
SSA algorithm relies on these components to balance exploration and exploitation. As
a result, it achieves faster convergence while avoiding locally optimum solutions. The
method is tested on 13 datasets (Nci9, Glioma, Lymphography, PenglungEW, WaveformEW,
Zoo, Exactly, Exactly2, HeartEW, SonarEW, SpectEW, Colon, and Leukemia). The authors
of [55] combined monarch butterfly optimizer (MBO) and a KNN classifier wrapper-based
FS method. The simulations were made on 18 standard datasets. The suggested method
resulted from high classification accuracy of 93% as compared to the related other methods.
The authors of [56] gave two binary versions of the Butterfly Optimization Algorithm
(BOA), which were applied to pick the optimal subset of features for classification with the
help of a wrapper mode. The methods were assessed on 21 datasets of the UCI repository.
The authors of [57] adopted a binary equilibrium optimizer (EO) motivated by controlled
volume mass balance models for determining the dynamic and equilibrium states with a V-
shaped transfer function (BEO-V) to choose the optimal subset of features for classification.
The anticipated method is tested on 19 UCI datasets to gauge the performance. The authors
of [58] proposed a Social Mimic Optimization (SMO) algorithm based on people’s behavior
in society, with the X-shaped transfer function based on crossover operation, to augment the
exploration and exploitation credibility of binary SMO. The anticipated method is analyzed
using 18 benchmark UCI datasets for performance evaluation. Sigmoid transfer function
maps continuous search space into binary space. The authors of [59] suggested a binary
version of Sailfish Optimizer (SFO), called Binary Sailfish (BSF), to deal with FS problems.
To promote the exploitation credibility of the BSF algorithm, they combined it with adaptive
β-hill climbing. The algorithms are evaluated on 18 UCI benchmark datasets, which were
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then compared with ten other meta-heuristics applied for FS methods. The authors of [60]
blended GA with the Great Deluge Algorithm (GDA) used in place of mutation operation,
thus achieving a high degree of exploitation through perturbation of candidate solutions.
The proposed method was evaluated on 15 openly available UCI datasets. The authors
of [61] proffered using a binary Dragonfly Algorithm (BDA) with an improved updating
mechanism to capitalize on the survival-of-the-fittest basis by investigating some functions
and strategies to revise its five main coefficients for the FS problems. The methods were
tested and analyzed with 18 standard datasets, with Sinusoidal-BDA obtaining the best
results. The authors of [62] forwarded a binary symbiotic organism search (SOS) that was
used to map continuous-space to a discrete space with the help of an adaptive S-shaped
transfer function to obtain the optimal subset of features. The method is assessed on
19 datasets of UCI. The authors of [63] suggested a multi-objective FS method based on
forest optimization algorithm (FOA) with archive, grid, and region-based selection. The
performance is evaluated on nine UCI datasets and two microarray datasets. The authors
of [64] proposed an improved Coral Reefs Optimization (CRO) for finding the best subsets
of features. The method applied tournament selection to improvize the initial population’s
diversity. The method outperforms other algorithms.

To summarize, FS is a binary optimization problem that aims to improve the classifica-
tion accuracy of machine learning algorithms using a smaller subset of features. To solve
the FS problem, many meta-heuristic algorithms were proposed to explore the solution
space to determine the optimal or near-optimal solution by belittling the fitness function.
However, deciding a specific subset of features through a meta-heuristic algorithm involves
a transfer function that can convert the continuous search space to a binary one. Most of
the standard datasets from the UCI repository were for evaluation. The literature review
results are summarized in Table 1.

Table 1. Summary of related works for feature Selection.

Reference Optimization Method Dataset

[6] V-shaped binary PSO 10 dataset
[40] Binary dragonfly algorithm 18 dataset
[2] SSA with crossover operator 22 dataset
[34] BGOA and BGOAM 25 dataset
[31] Binary coordinate ascent based FSS algorithm 12 dataset
[36] multi-objective GWO 3 dataset
[44] Binary Crow Search Algorithm with Time Varying Flight Length 20 dataset
[55] MBO with KNN wrapper 18 UCI datasets
[65] MBA-SA 18 UCI datasets
[66] SHO with chaotic maps 21 UCI dataset
[67] CSO with chaos maps and fuzzy c-means function 11 medical datasets
[56] BOA 21 UCI datasets
[59] Binary SFO with adaptive β-hill climbing 18 UCI datasets
[61] BDA with sinusoidal updating function
[62] binary SOS with adaptive S-shaped transfer function 19 UCI datasets
[68] BBHO with chaotic maps Chalcone, Hepatitis, H1N1

The common challenge of the previously suggested metaheuristics for FS is the slow
convergence rate, bad scalability [26], and lack of precision and consistency. It takes time to
identify an appropriate FS approach and parameter values efficiently.

This limitation motivates the current study, which proposes a novel algorithm for an
FS task using the Heap Based optimizer. The HBO was selected as an effective optimization
engine for a wrapper FS approach because, relative to Si-based optimizers, it showed
sufficient efficacy in tackling several optimization difficulties. The HBO is a new optimizer
that has not yet been used to solve FS issues. Its distinctive properties make it a suitable
search engine for global optimization and FS issues. The HBO is initially efficient, adaptable,
simple, and straightforward to deploy. To balance exploration and exploitation, HBO has
only one parameter. This parameter is decreased adaptively across successive iterations,
enabling the HBO to explore the majority of the search space at the beginning of the
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searching process and then exploit the promising regions in the final phases, preventing
the HBO from becoming trapped at local optima. Therefore, we used an improved and
Enhanced algorithm of HBO in this study to select the most optimal features. We proposed
a new dimension reduction approach, the bHBO-based one, based on the k-NN classifier,
for selecting the optimal set of features.

3. Procedure and Methodology

The proposed framework for the Binary Heap-Based optimizer B_HBO for Feature
Selection contains three significant steps illustrated in Figure 1. The Heap Based Optimizer
(HBO) algorithm is the most recent and advanced SI algorithm. HBO was proposed in
2020 by Qamar Askari, Mehreen Saeed, and Irfan Younas [28], and the competition was
fierce. It exhibits effectiveness when it comes to tackling optimization difficulties. HBO
provides a variety of advantages, including fewer parameters, simple configuration, ease
of implementation, and high calculation accuracy. Furthermore, this method surpasses
competing algorithms in terms of performance. It retains optimization findings, showing
that marine predators benefit from a strong memory for recalling both their associates
and the location of successful foraging. Furthermore, the HBO algorithm requires fewer
iterations. It has a simple technique, a low computational cost, rapid convergence, a near-
global solution, problem independence, and a gradient-free nature [28]. All of these benefits
are critical in resolving the FS issue. HBO was ranked second and displayed exceptionally
competitive performance compared to LSHADE-cnEpSin, the highest performing technique
and a CEC 2017 winner. HBO can be called a high-performance optimizer because it
statistically outperforms GA, PSO, GSA, CS, and SSA.

Figure 1. The framework of the proposed B_HBO for feature selection based on KNN classifier.

3.1. Continuous Heap Based Optimizer

This section describes the steps of the heap-based optimizer algorithm (HBO). The
HBO imitates the job titles, duties, and job descriptions of employees [28]. Although the
designations differ from company to company and business to business, they are all struc-
tured hierarchically. Many know them by titles, including corporate rank hierarchy (CRH),
organizational chart tree, and corporate hierarchy structure [69]. The organizational struc-
ture is a set of strategies for dividing tasks into specific responsibilities and coordinating
them. The main body of HBO is presented in Algorithm 1. The mathematical model of the
heap-based optimizer is discussed in this section.
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Algorithm 1 HBO Pseudo-code

for (i← 1 to T) do
γ is calculated using Equation (3).
(p1) is calculated using Equation (6)
(p2) is calculated using Equation (7)
for (i← N down to 2) do

i← heap[I].value
bi ← heap[parent(I)].value
ci ← heap[colleague(I)].value
~B← ~xbi
~S← ~xci
for (k← 1 to D) do

p← rand()
xk

temp ← updatexk
i (t) with Equation (9)

end for
if f (~xtemp) ≺ f (~xi(t)) then

~xi(t + 1)← ~xi(t)
end if
Heapify_Up(I)

end for
end for
return xheap[1].value

3.1.1. Mathematical Formulating of the Collaboration with the Direct Boss

In a centralized organizational structure, upper-level policies and norms are imposed,
and subordinates report to their immediate superior. This behavior may be simulated
by changing each search agent’s position ~xi regarding its parent node B as shown in
Equation (1)

Xk
i (t + 1) = Bk + γλk|Bk − Xk

i (t)| (1)

where t represents the current iteration and k represents the kth component of the
vector, and | | calculates the absolute value. λk represents the kth component of the vector
~λ, which is generated randomly as demonstrated by Equation (2)

~λ = 2r− 1 (2)

where r is an integer generated randomly in between range [0, 1] using the uniform distri-
bution. γ is a well chosen parameter in Equation (1), and it is computed as as shown in
Equation (3)

γ =

∣∣∣∣∣∣2−
(

t mod T
c

)
T
4c

∣∣∣∣∣∣ (3)

where T is the total number of iterations, and C is a user-defined parameter, as described
below. γ decreases linearly from 2 to 0 throughout iterations, and after reaching 0, it begins
to rise again to 2 with more iterations. However, C specifies the number of cycles γ will
complete in T iterations.

To determine the effect of the parameter C on the performance of HBO, we solved a
variety of unimodal and multimodal benchmark functions while varying C from its minimum
to its maximum value. After doing this experiment for many other functions, we chose to
determine the balanced value of C by dividing the maximum number of Iterations by 25.

3.1.2. Mathematical Formulating of the Collaboration between Colleagues

Similar-ranking officials are referred to as “colleagues”. They collaborate to execute
official responsibilities. We assume that nodes on the same level are colleagues in a heap,
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and that each search agent ~xi modifies its position relative to a randomly chosen colleague
~Sr using (4)

The main objective function

Xk
i (t + 1) =

{
Sk

r + γλk |Sk
r − xk

i (t)|, f (~Sr) < f (~xi(t))
xk

i + γλk |Sk
r − xk

i (t)|, f (~Sr) ≥ f (~xi(t))
(4)

where f is the fitness-calculating objective function for the search agent. Equation (4)
position updating process is fairly similar to Equation (1). In contrast, Equation (4) permits
the search agent to explore the region surrounding Sk

r if (~Sr) < f (~xi(t)) and the region
surrounding xk

i otherwise.

3.1.3. Self Contribution of an Employee

This phase’s mapping procedure is relatively straightforward. This phase depicts
the concept of an employee’s self contribution. The behavior is modeled by keeping the
employee’s previous position in the next iteration, as shown in Equation (5)

xk
i (t + 1) = xk

i (t) (5)

The search agent ~xi in Equation (5) does not modify its position for its kth design
variable in the next iteration. This behavior is used to control a search agent’s rate of change.

3.1.4. Putting It All Together

This part explains how the previous subsections’ position updating equations are
combined into a single equation. Calculating the probabilities of selection for all three
equations is a big task, as probabilities play an important part in balancing exploration and
exploitation. A roulette wheel, which is divided into three proportions of p1, p2, and p3, is
designed to balance them. Using Equation (6), a search agent can update its location by
selecting the proportion p1. The p1 limit is calculated as follows:

p1 = 1− t
T

(6)

where t stands for the current and T stands for the total number of iterations. Using
Equation (7), a search agent can update its position by selecting proportion p2. The p2 limit
is calculated as follows:

p2 = p1 +
1− p1

2
(7)

Finally, p3 is chosen to represent updated position using Equation (8), and the limit of
p3 is calculated as follows:

p3 = p2 +
1− p1

2
= 1 (8)

The following equation depicts HBO’s general position update mechanism:

xk
i (t + 1) =



xk
i (t), p ≤ p1

Bk + γλk
∣∣∣Bk − xk

i (t)
∣∣∣, p > p1 and p ≤ p2

Sk
r + γλk

∣∣∣Sk
r − xk

i (t)
∣∣∣, p > p2 and p ≤ p3 and f (~Sr) < f (~xi(t))

xk
i + γλk

∣∣∣Sk
r − xk

i (t)
∣∣∣, p > p2 and p ≤ p3 and f (~Sr) ≥ f (~xi(t))

(9)

where p is a number within the range [0, 1] chosen at random. It is worthwhile to note
that Equation (5) supports exploration, while Equation (1) supports exploitation and con-
vergence, while Equation (4) supports exploration as well as exploitation. Based on these
findings, p1 is initially increased and subsequently linearly decreased over repetitions,
decreasing exploration and increasing exploitation. After the computation of p1, the re-
maining span is split into two equal parts, increasing the chances of attraction to the boss
and coworkers equally likely.



Mathematics 2022, 10, 2396 10 of 33

3.1.5. The HBO Step by Step

This section describes the HBO phases and algorithm in detail.

• Initialize generic parameters such as the size of the population (N), the number of design
variables/dimensions (D), the maximum iteration (T), and the ranges of the model
parameters C = bT/25c are used to compute the algorithm-specific parameter C.

• Create the first population: Create a P by chance population of N-dimensional search
agents with D. Following is a representation of population P:

p =


~xT

1
~xT

2
...

~xT
N

 =


x1

1 x2
1 x3

1 xD
1

x1
2 x2

2 x3
2 xD

2

x1
N x2

N x3
N xD

N

 (10)

A heap is typically represented by a dary tree. To implement CRH, however, the 3ary heap is
used. Due to its completeness, a heap, which is a tree-shaped data structure, can be built quickly
using an array. The following are essential dary heap-based operations that HBO requires:

1. The index of a node is received, and the index of the node’s parent is returned by this
function, assuming the heap is implemented as an array. For example, the following
is the formula for calculating the index of the parent of node (i):

parent(i) =
⌊

i + 1
d

⌋
(11)

b c is the floor operator, which produces the largest integer less than or equal to
the input.

2. (i; j): This method returns the index of the jth child of the given node. A node in a 3ary
heap can have no more than three offspring. According to our concept, a leader may
have no more than three direct reports. The following is the mathematical formula for
this function in constant time:

child(i, j) = d× i− d + j + 1 (12)

3. depth(i): Using the following formula, the depth of any node i may be determined in
constant time if the depth of the previous level equals 0.

depth(i) = dlog(d× i− i + 1)e − 1 (13)

d e is the notation for the ceil function, which returns the smallest integer greater than
or equal to the input.

4. colleague (i): At the node level i, all nodes are considered their colleagues. This
function returns the index of colleague of node i chosen randomly, which may be de-
termined by producing random number in the range dddepth(i)−1)−1

d−1 + 1, f dddepth(i)−1)−1
d−1 .

5. _Up (i) Heapify Up: To maintain the heap property, it searches upward in a heap
and enters the node i in its proper spot. Algorithm 2 contains the pseudo code for
this operation.

Algorithm 2 Heapify_Up (i) Pseudo-code

Inputs: i (The index of the node that is being heaped.)
. Considering the remaining nodes satisfy the heap property

while i 6= root and heap[i].key[]parent(i)].key do
Swap (heap[i], heap[parent(i)]
i← parent(i)

end while

Finally, Algorithm 3 describes the heap-building algorithm.



Mathematics 2022, 10, 2396 11 of 33

Algorithm 3 Build_Heap (P, N) Pseudo-code

Inputs: N is the population size , P is the search agents population
for (i← 1 to N) do

heap[i].value← i
heap[i].key← f (xi)
Heapify_Up (i)

end for

6. Position updating mechanism: Search agents update their positions regularly accord-
ing to the previously described equations to converge on the best global solution.

4. The Proposed Binary HBO (B_HBO) for Feature Selection

This section includes the proposed Heap Based Optimizer’s (HBO) steps for solving
feature selection using KNN as the classifier. The proposed technique is a mix of the B_HBO
and KNN algorithms for classification, feature selection, and parameter optimization. In
B_HBO, KNN parameters are used to identify the best selection accuracy, and the selected
features are used for all cross-validation folds. Figure 1 depicts the suggested B_HBO-KNN
approach’s flowchart, which depicts the three steps of the proposed method. Algorithm 4
shows the pseudocode for the proposed B_HBO with KNN classification algorithm.

Algorithm 4 The Pseudo code of the proposed B_HBO based on KNN classifier.

Inputs: The size of the population, N, and the maximum number of generations T, group
classifier G, characteristic X, dataset set D, and a novel fitness function ( fobj).
Outputs: The prediction accuracy for each iteration (optimal location) and the highest
accuracy value
Randomly Initiate the population X i (i = 1 , 2 , . . . , N)
while thestopconditionisnotmet do

New fitness function computed Using the strategy for selecting call features, Call
k-NN classifier

for (i← 1 to T) do
γ is calculated using Equation(3).
(p1) is calculated using Equation (6)
(p2) is calculated using Equation (7)
for (i← N down to 2) do

i← heap[I].value
bi ← heap[parent(I)].value
ci ← heap[colleague(I)].value
~B← ~xbi
~S← ~xci
for (k← 1 to D) do

Calculation of a new fitness function using the call feature selection tech-
nique.

Call k-NN classifier
p← rand()
xk

temp ← updatexk
i (t) using Equation (9)

end for
if f (~xtemp) ≺ f (~xi(t)) then

~xi(t + 1)← ~xi(t)
end if
Heapify_Up(I)

end for
end for
return xheap[1].value

end while
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4.1. FS for Classification

Classification is the most important problem in data mining, and its fundamental
function is to estimate the class of an unknown object. A dataset (also known as a training
set) typically consists of rows (referred to as objects) and columns (referred to as features)
that correspond to predetermined classifications (decision features). A significant number
of redundant or irrelevant characteristics in the dataset may be the primary factor affecting
a classifier’s accuracy and performance. Redundant characteristics may negatively impact
the classifier’s performance in various ways; adding more features to a dataset involves
adding more examples, which increases the learning time of the classifier. Moreover, a
classification that learns from features in the dataset is more accurate than one that learns
from irrelevant data. This is because irrelevant features can confuse the classifier, overfitting
the data. In addition, the duplicated and irrelevant input will increase the complexity of
the classifier, making it more challenging to comprehend the learned results. As was
demonstrated previously, the selection of a suitable searching strategy in FS techniques is
crucial for optimizing the efficiency of the learning algorithm. FS often aids in detecting
redundant and unneeded features and eliminating them to enhance the classifier’s results in
terms of learning time and accuracy, as well as simplifying the findings to make them more
understandable. By selecting the most informative feature and removing unneeded and
redundant features, the dimension of the feature space is decreased, and the convergence
rate of the learning algorithm is accelerated.

Because of the above, the HBO was selected as an efficient optimization engine in a
wrapper FS method since it has shown sufficient efficacy in solving several optimization
issues compared to Si-based optimization techniques. The HBO is a new optimizer that
has not yet been used to solve FS issues. Its distinctive properties make it a suitable search
engine for global optimization and FS issues. The HBO is initially efficient, adaptable,
simple, and straightforward to deploy. To balance exploration and exploitation, HBO has
only one parameter.

4.2. The Proposed Binary HBO (B_HBO)

Searching for the optimal feature subset in FS is a difficult problem, particularly
for wrapper-based approaches. This is because the supervised learning (e.g., classifier)
must evaluate the selected subset at each optimization step. Consequently, a suitable
optimization approach is crucial to minimize the number of evaluations.

The based on comparative of HBO prompted us to suggest using this method as a
search strategy in a wrapper-based FS procedure. We proposed a binary version of the
HBO to solve the FS problem because the search space may be represented by binary
values [0, 1]. Binary operators are believed to be considerably easier than their continuous
counterparts. In the continuous form of HBO, each agent’s location is updated depending
on its current position, the position of the best solution so far (target), and the positions
of all other solutions, as shown in Equations (1) and (5). The new solution derived from
Equation (4) is obtained by adding the step vector to the target vector (position vector).
However, the addition operator cannot be used in a binary space because the position
vector only includes 0 s and 1 s. The next three subsections elaborate on these approaches.

4.3. B_HBO Proposed for FS Based on KNN

Previous sections demonstrated the significance of an effective search strategy for FS
approaches. Another feature of FS techniques is evaluating the selected subset’s quality.
Since the suggested method is wrapper-based, an algorithm for learning (such as a classifier)
must be incorporated into the evaluation process. This study employs the k-Nearest
Neighbor . The classifying quality of the chosen features is integrated into the proposed
fitness values because the primary problem of this study is the feature selection problem—
not the classification problem—which is tackled by the HBO technique. Each algorithm is
executed 51 times with 1000 iterations; the classification is used to select the iteration with
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the highest accuracy for each run. Therefore, we require the simplicity classifier to reduce
each method’s complexity and execution time.

In this proposed approach, the KNN is employed as a classification to guarantee the
selected features’ quality. When relevant features are selected from a subset, the classifica-
tion accuracy will be enhanced. One of the primary goals of FS approaches is to improve
classification accuracy; another is to reduce the number of selected features. The superiority
of a solution increases as its number of components decreases. In the proposed fitness
function, these two contradicting goals are considered. Equation (16) depicts the fitness
function that considers classification accuracy and the number of selected features when
evaluating a subset of characteristics across all techniques. In HBO, KNN parameters
are used to identify the best selection accuracy, and the selected features are used for all
cross-validation folds. Figure 1 depicts the suggested HBO-KNN approach’s flowchart,
which depicts the three steps of the proposed method. The first step is preprocessing, fol-
lowed by FS and optimization phase, and then the classification and cross-validation phase.
Algorithm 4 shows the pseudocode for the proposed B_HBO based on the KNN classifier.

4.4. Fitness Function for FS

To define FS as an optimization problem, it is necessary to examine two crucial factors:
how to represent a solution and how to evaluate it. A wrapper FS strategy employing HBO as
a search algorithm and a k-NN classifier as an evaluator has been developed. A feature subset
is converted into a binary vector with the same length as the number of selected features
used for this investigation. If the value of a feature is 1, it has been selected; otherwise, it has
not. The quality of a feature subset is determined by the classification accuracy (error rate)
and the number of features selected simultaneously. These two contradicting objectives are
represented by a single fitness function denoted by Equation (14).

Fitness = αγR(D) + β
|R|
|C| (14)

where |R| is the number of selected features in a reduct, |C| is the number of conditional
features in the original dataset, and α ∈ [0, 1],β = (1− α) are two main parameters related
to the significance of classifying performance and subset length.

The proposed fitness function governs the Accuracy of the selected features. During
the iterative process, the solutions HBO finds must be reviewed to verify the performance
of each iteration. Before the evaluation of fitness, a binary conversion is realized using
Equation (15) and the HBO fitness function is defined by Equation (16).

xbin
i =

{
1 if xt

i > 0.5
0 otherwise.

(15)

Fit = 0.99× R + 0.01× |c|
C

(16)

R is the classification error rate computed by k-NN (80% for training and 20% for testing),
where C denotes the total number of features and c indicates the relevant selected features.

As illustrated in Figure 1, HBO is customized to choose the most important and
best features.

5. Results and Discussion

In this section, a comparison between the results of the developed FS approach and
other methods is performed. The proposed B_HBO algorithm is compared with eight
recent evolutionary feature selection algorithms, such as ALO, AOA, BSA, CSA, LFD, PSO,
SMA, and TSA. Each compared algorithm was run 51 times on a population size set to 30
with 1000 iterations. The suggested B_HBO algorithm was constructed in Matlab using the
same interactive environment, which was executed on a computer with an Intel(R) Core i7
2.80 GHz processor and 32 GB RAM.
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The experiment is achieved using different datasets with different characteristics. The
details of the behavior of datasets are given in the following section.

5.1. Datasets and Parameter Setup

Twenty datasets in Table 2 from the UCI machine learning repository [70] are used
in the experiments to evaluate the effectiveness of the suggested method. Each dataset’s
instances are randomly partitioned into 80% for training and 20% for testing. The provided
datasets are arranged from the category of low dimensionality to high dimensionality data.
Low-dimensional datasets have less than ten feature sizes, whereas high dimension is
greater than ten features. The challenge is finding an optimal subset of features with high
accuracy to justify the quality performance. This study employs a wrapper-based method
for feature selection based on the KNN classifier, where K = 5 was determined to be the
optimal choice for all datasets. Table 3 presents the settings of parameters of algorithms
considered in this work to analyze and assess the performance of the proposed method.

Table 2. Details of Used Datasets.

No. Dataset Nunmer of Features Number of Instances Number of Classes

1 Arrhythmia 279 452 5
2 Breastcancer 9 699 2
3 BreastEW 30 569 2
4 Congress 16 435 2
5 Diabetes 8 768 2
6 German 24 1000 2
7 Glass 10 214 7
8 Heart-C 14 303 5
9 Heart-StatLog 13 270 2
10 Hepatitis 19 155 2
11 Hillvalley 101 606 2
12 Ionosphere 34 351 2
13 Iris 4 150 3
14 Lung-Cancer 56 32 3
15 Lymphography 18 148 2
16 Vowel 10 990 11
17 WaveformEW 40 5000 3
18 WDBC 32 596 2
19 Wine 13 178 3
20 zoo 16 101 6

Table 3. Parameters settings of B_HBO and other computational algorithms.

Algorithms Parameters Setting

Common settings Maximum number of iterations : (ItMax = 1000)
Number of independent runs 51
Population size: N = 30

ALO r = rand , r is ranged in [0, 1] ,
Migration coefficient = 2n

AOA c1 = 2 and c2 = 6
α =0.9 , β =0.1

BSA β = 1.5 (Default)
Mix Rate =1
rnd = [0− 1]

AO U = 0.00565 ; r1 = 10 ; ω = 0.005 ; α = 0.1 ; δ = 0.1 ;
G1 ∈ [−1, 1] ; G2 = [2, 0]

PSO Wmax = 0.9 and Wmin = 0.2
c1 = 2 and c2 = 2
Population size = 50

CSA A = 2
SMA z = 0.3 , r = [0, 1] , b = [0, 1]
TSA Pmin = 1 , pmax = 4
HBO sv = 100 , degree = 3
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5.2. Performance Metrics

It is imperative to quantify the relevant performance metrics which can guide to
analysis of the performance behavior of an anticipated algorithm. As a result, the following
evaluation metrics and measures were computed for the proposed method (B_HBO),
developed to solve the feature selection problem [71].

• Average fitness value: is the best fitness value Fitval obtained when running several
algorithms for N times. It represents decreasing the selection ratio and minimizing
the classification error rate. It is calculated by Equation (17):

Mean =
∑N

i=1 Fitval
N

(17)

• Standard Deviation (StdDev): It is an indicator of the stability of the used algorithm.
It is calculated by (18):

StdDev =

√√√√ 1
N − 1

N

∑
i=1

( f itval −mean)2 (18)

• Average accuracy AVGACC: The accuracy metric (ACC) identifies the correct data
classification rate. It is calculated by (19):

ACC =
TP + TN

TP + FN + FP + TN
(19)

In our study, nine different algorithms are running N times, so it is more suitable to
use the AVGACC metric, which is calculated by (20):

AVGACC =
1
N

N

∑
i=1

ACC (20)

• Sensitivity or True Positive Rate (TPR): it presents the rate of predicting positive
patterns. It is calculated by (21):

TPR =
TP

TP + FN
(21)

• Specificity or True Negative Rate (TNR): it indicates the percentage of actual nega-
tives which are correctly detected. Equation (22) is used to calculate it:

TNR =
TN

FP + TN
(22)

5.3. Comparison of B_HBO with Other Metaheuristics

In this section, the comparison of performance of B_HBO with other well-known
meta-heuristic algorithms is performed. The results are discussed in terms of different
performance analyses such as:

• In terms of fitness: The comparison results between the suggested B_HBO and other
competing algorithms are shown in Table 4. It is evident from the obtained results that
our B_HBO provides results better than the others. For example, it has the smallest
results compared with the competitive methods at 17 datasets which represents 85% of
the total number of tested datasets. The ALO follows this, which achieved the smallest
fitness value in the two datasets, while AOA, BSA, and CSA are the worst algorithms.

• In terms of accuracy: The following points can be observed from the results given
in Table 5. First, the B_HBO has higher accuracy at nearly 80% of the total number
of datasets. In addition, it is more stable than all other tested algorithms. However,
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it has the worst accuracy of the three datasets. This indicates the high efficiency
of the proposed B_HBO. This is followed by the ALO, which achieved the second
accuracy rank at seven datasets. At the same time, SMA is the worst algorithm. The
standard deviation is computed to evaluate the stability of fitness value for each FS
method. From the results of Std, it can be seen that the B_HBO is more stable than
other algorithms in 14 datasets.

• In terms of precision: It can be seen from the results presented in Table 6 that list
the precision of the proposed method B_HBO with eight wrapper FS algorithms. By
examining the average precision values for all 20 datasets, it is evident that B_HBO
outperforms all advanced competitor algorithms. For example, the average precision
has the highest results compared with the competitive methods at eight datasets which
represent 40% of the total number of tested datasets. The CSA followed this, achieving
the highest precision value in the five datasets, while LFD, BSA, AOA, and TSA are
the worst algorithms.

• In terms of sensitivity: The results presented in Table 7 demonstrate the sensitivity
of the proposed method B_HBO with eight wrapper FS algorithms. Examining the
average sensitivity values for each of the 20 Datasets reveals that B_HBO outperforms
all advanced competitor algorithms. Eight datasets, or 40% of the total number of
datasets tested, produce the best results based on the average sensitivity. This was
followed by the CSA with the highest value of precision across five datasets. LFD,
BSA, AOA, and TSA are the four worst algorithms.

• In terms of F-score and number of selected features: In terms of F-score, Table 8
reveals that the proposed method B_HBO outperforms all other competitors. It has
the highest results compared with the competitive methods of eight datasets which
represent 40% of the total number of tested datasets. The PSO followed this, which
achieved the highest F-Score value in five datasets, while LFD, BSA, SMA, and TSA
are the worst algorithms.
Based on the results of Table 9, which depicts the number of selected features, the
proposed method B_HBO exhibited excellent performance in selecting relevant fea-
tures from other competitors. It has the smallest results of the competitive methods at
15 datasets, which represents 75% of the total number of tested datasets. The SMA
follows this, achieving the smallest number of selected features at ten datasets.

Table 4. The average fitness values of B_HBO against other recent optimizers.

Data Set
Fitness

ALO AOA BSA CSA LFD PSO SMA TSA HBO

Arrhythmia 0.2262 0.2510 0.2490 0.2432 0.2675 0.2339 0.2372 0.2330 0.2338
Breastcancer 0.0165 0.0181 0.0189 0.0161 0.0228 0.0164 0.0209 0.0185 0.0149
BreastEW 0.0103 0.0136 0.0137 0.0096 0.0180 0.0095 0.0143 0.0121 0.0088
Congress 0.0244 0.0286 0.0273 0.0220 0.0336 0.0244 0.0292 0.0284 0.0202
Diabetes 0.1369 0.1363 0.1438 0.1357 0.1620 0.1359 0.1436 0.1418 0.1341
German 0.1351 0.1503 0.1454 0.1329 0.1640 0.1327 0.1668 0.1413 0.1319
Glass 0.1227 0.1295 0.1383 0.1211 0.1502 0.1192 0.1337 0.1338 0.1138
Heart-C 0.2413 0.2475 0.2525 0.2407 0.2649 0.2391 0.2622 0.2503 0.2348
Heart-StatLog 0.0849 0.0950 0.0979 0.0814 0.1102 0.0874 0.1062 0.0982 0.0802
Hepatitis 0.1409 0.1501 0.1614 0.1407 0.1689 0.1396 0.1562 0.1439 0.1370
Hillvalley 0.1807 0.1859 0.1932 0.1910 0.2082 0.1856 0.1801 0.1861 0.1856
Ionosphere 0.0406 0.0435 0.0569 0.0512 0.0670 0.0449 0.0409 0.0458 0.0451
Iris 0.0204 0.0205 0.0238 0.0203 0.0230 0.0229 0.0210 0.0256 0.0200
Lymphography 0.3258 0.3545 0.3496 0.3200 0.3647 0.3178 0.3794 0.3401 0.3153
Vehicule 0.1350 0.1432 0.1450 0.1341 0.1630 0.1341 0.1456 0.1397 0.1338
Vowel 0.0049 0.0116 0.0079 0.0042 0.0231 0.0045 0.0116 0.0149 0.0035
WaveformEW 0.1010 0.1159 0.1080 0.0985 0.1473 0.0973 0.1349 0.1066 0.0965
WDBC 0.0097 0.0134 0.0143 0.0094 0.0173 0.0092 0.0142 0.0113 0.0081
Wine 0.0023 0.0069 0.0071 0.0025 0.0097 0.0028 0.0072 0.0074 0.0002
Zoo 0.0124 0.0243 0.0215 0.0111 0.0262 0.0113 0.0262 0.0196 0.0089
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Table 5. The average Accuracy of B_HBO against other recent optimizers.

Data Set
Accuracy

ALO AOA BSA CSA LFD PSO SMA TSA HBO

Arrhythmia Avg 0.9985 0.8783 0.7035 0.8468 0.9808 0.6165 0.8352 0.9540 1.0000

Breastcancer Avg 0.8116 0.7451 0.7416 0.7347 0.7621 0.7274 0.7329 0.7541 0.8975
Std 0.0072 0.0163 0.0122 0.0112 0.0105 0.0137 0.0117 0.0136 0.0060

BreastEW Avg 0.8527 0.9120 0.8679 0.8929 0.9266 0.8598 0.8639 0.9159 0.9380
Std 0.0093 0.0122 0.0176 0.0095 0.0121 0.0310 0.0323 0.0231 0.0091

Congress Avg 0.9253 0.8788 0.8747 0.8911 0.9129 0.8413 0.8532 0.9013 0.9445
Std 0.0124 0.0276 0.0260 0.0164 0.0158 0.0342 0.0227 0.02123 0.0201

Diabets Avg 1.0000 0.9547 0.9408 0.9715 1.0000 0.8583 0.9185 0.9968 1.0000
Std 0.0000 0.0573 0.0535 0.0289 0.0000 0.0435 0.0422 0.0104 0.0000

German Avg 0.9873 0.9278 0.9063 0.9063 0.9643 0.8429 0.8810 0.9357 0.9905
Std 0.0136 0.0246 0.0265 0.0257 0.0223 0.0304 0.0258 0.0243 0.0134

Glass Avg 0.9711 0.9729 0.9668 0.9747 0.9739 0.9530 0.9634 0.9733 1.0000
Std 0.0054 0.0064 0.0072 0.0066 0.0044 0.0075 0.0077 0.0069 0.0000

Heart-C Avg 0.9673 0.9463 0.9429 0.9523 0.9646 0.9162 0.9423 0.9607 0.9816
Std 0.0112 0.0161 0.0143 0.0135 0.0052 0.0213 0.0151 0.0078 0.0062

Heart-StatLog Avg 1.0000 0.9925 0.9870 0.9965 1.0000 0.9722 0.9833 1.0000 1.0000
Std 0.0000 0.0130 0.0157 0.0060 0.0000 0.0100 0.0164 0.0000 0.0000

Hepatitis Avg 0.9866 1.0000 1.0000 0.9977 1.0000 0.9904 0.9942 1.0000 1.0000
Std 0.0212 0.0000 0.0000 0.0086 0.0000 0.0253 0.0182 0.0000 0.0000

Hillvalley Avg 0.9922 0.9680 0.9612 0.9672 0.9773 0.9471 0.9626 0.9673 0.9926
Std 0.0005 0.0062 0.0074 0.0062 0.0063 0.0062 0.0071 0.0062 0.0048

Ionosphere Avg 0.9911 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Std 0.0300 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Iris Avg 0.9684 0.9497 0.8543 0.9133 0.9368 0.8101 0.8510 0.8675 1.0000
Std 0.0270 0.0328 0.0330 0.0362 0.0270 0.0352 0.0319 0.0172 0.0000

Lung-Cancer Avg 0.9463 0.9303 0.7284 0.8163 0.8972 0.5942 0.6761 0.7865 0.9225
Std 0.0517 0.0749 0.0448 0.1128 0.0814 0.0442 0.0658 0.0644 0.0771

Lymphography Avg 1.0000 0.9633 0.7178 0.8621 0.9132 0.6621 0.7354 0.7377 0.9922
Std 0.0000 0.0524 0.0379 0.0571 0.0525 0.0159 0.0220 0.0310 0.0220

Vowel Avg 1.0000 1.0000 0.9188 0.9812 0.9968 0.8479 0.8923 0.9434 1.0000
Std 0.0000 0.0000 0.0369 0.0200 0.0112 0.0417 0.0473 0.0385 0.0000

WaveformEW Avg 1.0000 0.9980 0.8627 0.9627 0.9843 0.7961 0.8314 0.8765 1.0000
Std 0.0000 0.0107 0.0446 0.0423 0.0265 0.0336 0.0336 0.0237 0.0000

WDBC Avg 1.0000 1.0000 0.9708 0.9828 1.0000 0.9527 0.9608 0.9635 1.0000
Std 0.0000 0.0000 0.0307 0.0149 0.0000 0.0149 0.0307 0.0244 0.0000

Wine Avg 0.9684 0.9366 0.9069 0.9217 0.9414 0.8573 0.8978 0.9078 1.0000
Std 0.0230 0.0304 0.0163 0.0262 0.0260 0.0261 0.0215 0.0116 0.0000

Zoo Avg 0.5750 0.5569 0.4831 0.5294 0.5521 0.4424 0.4662 0.4931 0.6783
Std 0.0162 0.0182 0.0164 0.0162 0.0203 0.0115 0.0136 0.0137 0.0236

Table 6. The average Precision of B_HBO against other recent optimizers.

Data Set
Precision

ALO AOA BSA CSA LFD PSO SMA TSA HBO

Arrhythmia 0.69602 0.65225 0.66923 0.7196 0.57032 0.69944 0.61707 0.69939 0.73501

Breastcancer 0.97899 0.97807 0.97641 0.98017 0.97357 0.98032 0.9735 0.97834 0.9812

BreastEW 0.99068 0.99023 0.98643 0.99079 0.9824 0.99365 0.98849 0.99115 0.99446

Congress 0.97224 0.97063 0.97108 0.97713 0.96597 0.96983 0.96336 0.9668 0.97678

Diabets 0.85369 0.84612 0.84387 0.85675 0.83947 0.85314 0.85213 0.84902 0.85582
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Table 6. Cont.

Data Set
Precision

ALO AOA BSA CSA LFD PSO SMA TSA HBO

German 0.85433 0.84345 0.84188 0.85536 0.83362 0.85487 0.82364 0.83641 0.85667

Glass 0.90223 0.84802 0.87037 0.8854 0.86668 0.86558 0.8351 0.82104 0.88204

Heart-C 0.71403 0.7496 0.70625 0.67328 0.65387 0.75457 0.75621 0.68932 0.73267

Heart-StatLog 0.91144 0.90911 0.91112 0.91498 0.89747 0.91717 0.89127 0.8920 6 0.9174

Hepatitis 0.86912 0.85952 0.84633 0.8603 0.83735 0.87431 0.84364 0.85234 0.86822

Hillvalley 0.81776 0.81996 0.80125 0.81978 0.79777 0.81183 0.81582 0.80539 0.81496

Ionosphere 0.96595 0.96378 0.95829 0.96182 0.94631 0.96591 0.95788 0.96454 0.96836

Iris 0.98012 0.98012 0.97358 0.976 0.97576 0.97576 0.98012 0.97123 0.98012

Lung-Cancer 0.9861 0.97916 0.97277 0.96638 0.95999 0.97971 0.94152 0.9861 0.97916

Lymphography 0.54359 0.48614 0.48422 0.54567 0.49987 0.59507 0.45346 0.49971 0.54191

Vowel 0.90546 0.89417 0.9021 0.90576 0.88834 0.90546 0.90042 0.89546 0.90546

WaveformEW 0.88087 0.88202 0.88732 0.90344 0.84512 0.90145 0.84952 0.89964 0.90171

WDBC 0.9923 0.98483 0.98724 0.99068 0.98073 0.9915 0.98356 0.99186 0.99207

Wine 0.99773 0.99361 0.99329 1 0.98732 1 0.99815 0.98628 0.99773

Zoo 0.97618 0.97648 0.9538 0.98941 0.95864 0.95713 0.94742 0.97548 0.98147

Table 7. The average Sensitivity of B_HBO against other recent optimizers.

Data Set
Sensitivity

ALO AOA BSA CSA LFD PSO SMA TSA HBO

Arrhythmia 0.4925 0.46676 0.44693 0.45794 0.4058 0.45507 0.48336 0.50149 0.48872

Breastcancer 0.98566 0.98326 0.97947 0.98537 0.97598 0.98402 0.97835 0.98293 0.98643

BreastEW 0.98681 0.98602 0.98226 0.98791 0.97629 0.9901 0.98398 0.98759 0.99057

Congress 0.97462 0.97127 0.97436 0.97947 0.96988 0.97411 0.96591 0.97087 0.97983

Diabets 0.8443 0.83728 0.83921 0.84448 0.83357 0.84397 0.84421 0.8449 0.84593

German 0.81175 0.80722 0.80032 0.82103 0.78762 0.81286 0.79333 0.80175 0.81944

Glass 0.8526 0.86605 0.84753 0.84734 0.80424 0.86312 0.77511 0.79492 0.8531

Heart-C 0.55174 0.56548 0.5372 0.54678 0.50586 0.57511 0.53851 0.54874 0.56413

Heart-StatLog 0.91167 0.90583 0.90889 0.9125 0.895 0.915 0.88611 0.88833 0.915

Hepatitis 0.86417 0.85466 0.83507 0.84987 0.82717 0.86149 0.84201 0.8478 0.85674

Hillvalley 0.81649 0.81867 0.79866 0.81804 0.79476 0.80974 0.8143 0.80311 0.81244

Ionosphere 0.95175 0.94397 0.92635 0.93809 0.91661 0.94603 0.9473 0.94339 0.94429

Iris 0.98 0.98 0.97333 0.97555 0.97555 0.97555 0.98 0.97111 0.98

Lung-Cancer 0.96296 0.94444 0.92592 0.9074 0.88888 0.94444 0.92994 0.96296 0.94444

Lymphography 0.45097 0.41832 0.4173 0.47831 0.42561 0.48819 0.39708 0.4494 0.48434

Vowel 0.9064 0.89495 0.90303 0.90673 0.88855 0.9064 0.90135 0.8963 0.9064

WaveformEW 0.87898 0.8821 0.88743 0.90354 0.84373 0.90152 0.84961 0.89972 0.90182

WDBC 0.98774 0.98133 0.98273 0.98681 0.97789 0.98727 0.98007 0.98695 0.98917

Wine 0.99843 0.9953 0.9953 1 0.99061 1 0.99843 0.98754 0.99843

Zoo 0.98204 0.97142 0.92728 0.99046 0.95475 0.94285 0.92142 0.95237 0.9857
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Table 8. The average test F− score of B_HBO against other recent optimizers.

Data Set
F-score

ALO AOA BSA CSA LFD PSO SMA TSA HBO

Arrhythmia 0.5762 0.5441 0.5359 0.5592 0.4731 0.5497 0.5412 0.5838 0.5864

Breastcancer 0.9823 0.9807 0.9779 0.9828 0.9748 0.9822 0.9759 0.98063 0.9838

BreastEW 0.9887 0.9881 0.9843 0.9894 0.9793 0.9919 0.9862 0.9894 0.9925

Congress 0.9734 0.9709 0.9727 0.9783 0.9679 0.9719 0.9646 0.9688 0.9783

Diabetes 0.8489 0.8417 0.8415 0.8506 0.8365 0.8485 0.8482 0.8469 0.8508

German 0.8325 0.8249 0.8206 0.8378 0.8099 0.8333 0.8082 0.8186 0.8377

Glass 0.8767 0.8569 0.8585 0.8659 0.8341 0.8640 0.8038 0.8072 0.867

Heart-C 0.6219 0.6443 0.6102 0.6027 0.5693 0.6527 0.628 0.6096 0.6369

Heart-StatLog 0.9116 0.9075 0.91 0.9137 0.8962 0.9162 0.8887 0.8901 0.9162

Hepatitis 0.8666 0.857 0.8407 0.855 0.8322 0.8678 0.8428 0.8501 0.8624

Hillvalley 0.8171 0.8193 0.7999 0.8189 0.7963 0.8108 0.8151 0.8043 0.8137

Ionosphere 0.9588 0.9538 0.942 0.9498 0.9312 0.9559 0.9525 0.9539 0.9562

Iris 0.9801 0.9801 0.9735 0.9758 0.9757 0.9757 0.9801 0.9712 0.9801

Lung-Cancer 0.9743 0.9615 0.9487 0.9359 0.9231 0.9615 0.9356 0.9743 0.9615

Lymphography 0.4929 0.4475 0.4464 0.5089 0.4578 0.5352 0.4229 0.4729 0.5115

Vowel 0.9059 0.8946 0.9026 0.9063 0.8885 0.9059 0.90088 0.8959 0.9059

WaveformEW 0.8799 0.8821 0.8874 0.9035 0.8444 0.9015 0.8496 0.8997 0.9018

WDBC 0.99 0.9831 0.9849 0.9888 0.9793 0.98934 0.9818 0.9894 0.9906

Wine 0.9981 0.9945 0.9943 1 0.9889 1 0.9983 0.9869 0.9981

Zoo 0.9791 0.9739 0.9403 0.9899 0.9567 0.9499 0.9342 0.9636 0.9836

Table 9. The number of selected features of B_HBO against other recent optimizers.

Data Set
Number of Selected Features

ALO AOA BSA CSA LFD PSO SMA TSA HBO

Arrhythmia 91 28 139 128 143 133 12 123 135

Breastcancer 9 6 6 8 6 7 8 5 5

BreastEW 14 10 20 19 18 16 16 14 9

Congress 8 9 8 12 10 9 11 8 4

Diabets 4 3 3 6 4 5 4 3 3

German 14 10 15 18 12 16 8 10 15

Glass 5 4 6 6 7 6 4 4 4

Heart-C 8 7 8 9 8 8 7 7 4

Heart-StatLog 12 8 9 12 9 11 6 9 6

Hepatitis 11 6 11 14 10 9 4 9 12

Hillvalley 16 12 46 51 50 53 5 46 53

Ionosphere 7 9 13 15 12 16 5 12 4

Iris 2 2 3 2 3 3 2 3 2

Lung-Cancer 29 17 27 34 32 26 12 26 12

Lymphography 11 10 13 11 11 11 8 10 8
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Table 9. Cont.

Data Set
Number of Selected Features

ALO AOA BSA CSA LFD PSO SMA TSA HBO

Vowel 10 8 8 9 6 10 8 6 6

WaveformEW 27 17 24 25 21 24 6 19 19

WDBC 14 14 15 20 17 16 15 14 6

Wine 8 8 10 9 7 7 8 8 7

Zoo 12 8 11 10 8 10 8 9 8

In this paper, we can see that the performance of the proposed B_HBO algorithm for
feature selection and classification was investigated using six different statistical metrics
(e.g., average fitness value, average accuracy, average sensitivity, average precision, average
F_score, and number of selected features over 51 runs for each algorithm) Table 5 displays
the average accuracy for the proposed B_HBO and the eight other compared algorithms.
As shown, the proposed B_HBO recorded the best fitness values in all the used datasets.
The findings presented in Table 5 demonstrate that the suggested B_HBO outperformed
competing methods in nearly all datasets. Additionally, this method has the highest
accuracy rate in 80% of the dataset. ALO is ranked the second algorithm in performance
after the proposed B_HBO while SMA takes the third rank in performance. The proposed
B_HBO algorithm achieved the best result for most datasets.

Precision and sensitivity are shown in Tables 6 and 7. The higher the algorithm’s
precision and sensitivity, the better its performance. It is easy to see that the proposed
B_HBO has high precision and sensitivity values in eight datasets. At the same time, the
CSA algorithm provides better precision and sensitivity in only six datasets. The ALO
algorithm takes the third level in performance in three datasets. Previous results ensure the
superiority of the proposed B_HBO algorithm over other compared algorithms.

Table 8 shows that the proposed B_HBO provides a higher F-score rate than others.
The proposed B_HBO algorithm provides a higher f-score by 160% than (CSA, PSO) while
it is higher by 200% than (ALO). So HBO is ranked the first algorithm in performance, then
CSA and PSO came in the second rank followed by ALO ranked the third in performance.
We notice that BSA and LFD algorithms ranked last and performed worst.

Table 9 displays the number of selected features for each technique during its evalua-
tion. The results demonstrate that B HBO is highly effective for the FS procedure.

5.4. Convergence Curve

This section is devoted to the asymptotic evaluation of the proposed B_HBO algorithm
for the FS problem on various carefully chosen datasets. It illustrates the relationship
between the number of optimization iterations, the prediction error attained thus far, and
the graphical convergence curve of the proposed B_HBO technique.The convergence curve
of B_HBO with varying MHs, such as ALO, AOA, BSA, CSA, LFD, PSO, SMA, and TSA on
20 medical benchmark datasets, is shown in Figures 2–5. It illustrated convergence curves
of B_HBO with k-NN.

As can be observed in the graphs, almost every B_HBO had better outcomes than
the others because their curves were higher than the other algorithms. It can be shown
that B_HBO causes an increase in the convergence rate toward the optimal solutions.
For example, this can be noticed in the Diabetes, German, Iris, Lymphography, Vowel,
Waveform_EW, Wine, and Zoo datasets. Most of these high rates of convergence are
obtained at high dimension datasets.



Mathematics 2022, 10, 2396 21 of 33

(a) (b)

(c) (d)

(e)

Figure 2. (a) Convergence Curve of the proposed approach for Arrhythmia dataset; (b) Convergence
Curve of the proposed approach for Breast-cancer dataset; (c) Convergence Curve of the proposed
approach for BreastEW dataset; (d) Convergence Curve of the proposed approach for CongressEW
dataset; (e) Convergence Curve of the proposed approach for Diabets dataset. Convergence Curve of
the proposed approach (B_HBO) over 1000 iterations as a stop criterion for Arrhythmia, Breastcancer,
BreastEW, CongressEW, and Diabetes datasets.
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(a) (b)

(c) (d)

(e)

Figure 3. (a) Convergence Curve of the proposed approach for German dataset; (b) Convergence
Curve of the proposed approach for Glass dataset; (c) Convergence Curve of the proposed approach
for Heart-C dataset; (d) Convergence Curve of the proposed approach for Heart-StatLog dataset;
(e) Convergence Curve of the proposed approach for Hepatitis dataset.
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(a) (b)

(c) (d)

(e)

Figure 4. (a) Convergence Curve of the proposed approach for Hillvalley dataset; (b) Convergence
Curve of the proposed approach for Ionosphere dataset; (c) Convergence Curve of the proposed
approach for Iris dataset; (d) Convergence Curve of the proposed approach for Lung-Cancer dataset;
(e) Convergence Curve of the proposed approach for Lymphography dataset.
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(a) (b)

(c) (d)

(e)

Figure 5. (a) Convergence Curve of the proposed approach for Vowel dataset; (b) Convergence
Curve of the proposed approach for WaveformEW dataset; (c) Convergence Curve of the proposed
approach for WDBC dataset; (d) Convergence Curve of the proposed approach for Wine dataset;
(e) Convergence Curve of the proposed approach for Zoo dataset.

5.5. Boxplot

The boxplot is used to analyze further the behavior of B_HBO in terms of different perfor-
mance measures. Figures 6–9 show boxplots of the accuracies for all datasets achieved by the
optimizers; ALO, AOA, BSA, CSA, LFD, PSO, SMA, and TSA on 20 medical benchmark datasets,
and the proposed method B_HBO with k-NN. The minimum, maximum, median, first quartile
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(Q1), and third quartile (Q3) of the data are the five elements of a boxplot. In addition, the
red line inside the box indicated the median value representing the algorithms’ categorization
accuracy. Compared to the other algorithms, B_HBO has a higher number of boxplots.

(a) (b)

(c) (d)

(e)

Figure 6. (a) Classification error of the proposed approach for Arrhythmia dataset; (b) Classification
error of the proposed approach for Breastcancer dataset; (c) Classification error of the proposed
approach for BreastEW dataset; (d) Classification error of the proposed approach for Congress
dataset; (e) Classification error of the proposed approach for Diabets dataset.

It is evident that the B_HBO has the lowest boxplot for fitness value in most tested
datasets, especially those with high dimensions, except for four datasets (arrhythmia, Hep-
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atitis, Hillvalley, and Lymphography). By analyzing the boxplot results, the following
points can be reached: First, the presented B_HBO has a lower boxplot at 80% of the
datasets. In addition, there are some datasets’ boxplot plots that indicate that the com-
petitive FS methods nearly have the same statistical description. In addition, most of the
obtained results belong to the first quartile, which indicates that the proposed B_HBO
obtained a small classification error.

(a) (b)

(c) (d)

(e)

Figure 7. Boxplots of the results achieved by the B_HBO regarding classification error over German,
Glass, Heart-C, Heart-StatLog, and Hepatitis datasets regarding classification error. (a) Classification
error of the proposed approach for German dataset. (b) Classification error of the proposed approach
for Glass dataset. (c) Classification error of the proposed approach for Heart-C dataset. (d) Classifica-
tion error of the proposed approach for Heart-StatLog dataset. (e) Classification error of the proposed
approach for Hepatitis dataset.
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We can conclude that the B_HBO with k-NN has the best boxplots for most datasets
compared with the other algorithms. The B_HBO algorithm’s median has a greater value.
Depending on the dataset, the second-best algorithm is ALO.

(a) (b)

(c) (d)

(e)

Figure 8. Boxplots of the results achieved by the B_HBO regarding classification error over Hillvalley,
Ionosphere, Iris, Lung-Cancer, and Lymphography datasets regarding classification error. (a) Classifi-
cation error of the proposed approach for Hillvalley dataset. (b) Classification error of the proposed
approach for Ionosphere dataset. (c) Classification error of the proposed approach for Iris dataset.
(d) Classification error of the proposed approach for Lung-Cancer dataset. (e) Classification error of
the proposed approach for Lymphography dataset.
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(a) (b)

(c) (d)

(e)

Figure 9. Boxplots of the results achieved by the B_HBO regarding classification error over Vowel,
WaveformEW, WDBC, Wine, and Zoo datasets regarding classification error. (a) Classification error
of the proposed approach for Vowel dataset. (b) Classification error of the proposed approach
for WaveformEW dataset. (c) Classification error of the proposed approach for WDBC dataset.
(d) Classification error of the proposed approach for Wine dataset. (e) Classification error of the
proposed approach for Zoo dataset.

Finally, it is clear that:

• box plots Let us note that B_HBO outperforms Ant Lion Optimizer (ALO), Archimedes
Optimization Algorithm (AOA), Backtracking Search Algorithm (BSA), Crow Search
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Algorithm (CSA), Levy flight distribution (LFD), Particle Swarm Optimization (PSO),
Slime Mold Algorithm (SMA), and Tree Seed Algorithm (TSA) (TSA).
In final, it is easy to note that:

• The performance of the proposed method is compared to the performance of eight
different algorithms. The results reveal the higher categorization, accuracy, number of
selected characteristics, sensitivity, and specificity of our proposed method.

5.6. The Wilcoxon Test

Statistical analysis is necessary to compare the efficiency of B_HBO to that of other
competitive algorithms. Wilcoxon’s test assesses the superiority of the presented B_HBO
over the other FS methods. The main aim of using Wilcoxon’s test is to determine whether
there is a significant difference between B_HBO (as control group) and each of the tested
FS methods. Since Wilcoxon’s test is the pair-wise non-parametric statistical test, in this test,
there are two hypotheses: the first one is called null and supposes there is no significant
difference between the B_HBO and other methods. The second hypothesis is called the
alternative, and it assumes there is a significant difference. The alternative hypothesis
is accepted if the p-value is less than 0.05. Table 10 shows the p-value obtained using
Wilcoxon’s rank-sum test for the accuracy. From the results, it can be seen that B_HBO
has a significant difference in accuracy value with ALO, AOA, BSA, CSA, LFD, PSO, SMA,
and TSA at 17 datasets. In most cases, there is a significant difference with other methods,
with nearly more than 14 datasets. The combination of MRFO and SCA enhances the
performance of determining the relevant features with increasing classification accuracy.
Following this criterion, B_HBO outperforms all other algorithms to varying degrees, indi-
cating that B_HBO benefits from extensive exploitation. In general, B_HBO is statistically
significant with 85% of algorithms. Therefore, we can conclude that B_HBO has a high
exploration capability to investigate the most promising regions of the search space and
provides superior results compared to competing algorithms.

Table 10. Wilcoxon ranksum Statistical test based on Accuracy.

Data Set
Accuracy

ALO AOA BSA CSA LFD PSO SMA TSA HBO

Arrhythmia 1.32× 10−20 1.35× 10−20 1.33× 10−20 1.28× 10−20 1.33× 10−20 1.31× 10−20 1.35× 10−20 1.36× 10−20 1.29× 10−20

Breastcancer 7.95× 10−21 1.10× 10−20 1.16× 10−20 3.41× 10−21 1.27× 10−20 6.50× 10−21 1.19× 10−20 1.10× 10−20 2.31× 10−21

BreastEW 9.24× 10−21 1.14× 10−20 1.12× 10−20 8.54× 10−21 1.19× 10−20 8.71× 10−21 1.21× 10−20 1.16× 10−20 4.83× 10−21

Congress 1.02× 10−20 1.20× 10−20 9.92× 10−21 5.33× 10−21 1.22× 10−20 9.95× 10−21 1.27× 10−20 1.27× 10−20 4.66× 10−21

Diabets 3.70× 10−21 2.28× 10−21 1.16× 10−20 6.91× 10−22 1.38× 10−20 1.11× 10−21 4.10× 10−21 8.74× 10−21 9.57× 10−24

German 1.35× 10−20 1.37× 10−20 1.36× 10−20 1.31× 10−20 1.37× 10−20 1.36× 10−20 1.38× 10−20 1.38× 10−20 1.33× 10−20

Glass 8.68× 10−21 1.09× 10−20 1.30× 10−20 1.04× 10−20 1.27× 10−20 9.44× 10−21 1.08× 10−20 1.26× 10−20 1.63× 10−21

Heart-C 1.14× 10−20 1.30× 10−20 1.28× 10−20 1.18× 10−20 1.27× 10−20 1.19× 10−20 1.32× 10−20 1.23× 10−20 7.77× 10−21

Heart-StatLog 1.10× 10−20 1.29× 10−20 1.25× 10−20 8.22× 10−21 1.29× 10−20 7.56× 10−21 1.25× 10−20 1.30× 10−20 8.39× 10−21

Hepatitis 1.08× 10−20 1.13× 10−20 1.20× 10−20 1.03× 10−20 1.08× 10−20 1.11× 10−20 1.21× 10−20 1.20× 10−20 8.71× 10−21

Hillvalley 1.35× 10−20 1.36× 10−20 1.34× 10−20 1.27× 10−20 1.32× 10−20 1.30× 10−20 1.33× 10−20 1.34× 10−20 1.23× 10−20

Ionosphere 1.07× 10−20 1.10× 10−20 1.28× 10−20 1.14× 10−20 1.24× 10−20 1.23× 10−20 1.23× 10−20 1.24× 10−20 1.10× 10−20

Iris 2.46× 10−23 2.45× 10−23 3.78× 10−21 1.55× 10−23 2.66× 10−21 1.58× 10−21 5.66× 10−23 6.24× 10−21 9.57× 10−24

Lung-Cancer 6.97× 10−14 3.86× 10−19 3.48× 10−17 1.19× 10−17 1.80× 10−21 7.42× 10−12 3.86× 10−19 4.35× 10−14 2.23× 10−16

Lymphography 1.22× 10−20 1.26× 10−20 1.28× 10−20 1.13× 10−20 1.27× 10−20 1.23× 10−20 1.25× 10−20 1.22× 10−20 8.79× 10−21

Vowel 4.40× 10−21 1.31× 10−20 1.00× 10−20 3.96× 10−22 1.36× 10−20 5.24× 10−21 1.29× 10−20 1.34× 10−20 3.02× 10−22

WaveformEW 1.38× 10−20 1.39× 10−20 1.38× 10−20 1.38× 10−20 1.39× 10−20 1.38× 10−20 1.39× 10−20 1.38× 10−20 1.35× 10−20

WDBC 9.74× 10−21 1.20× 10−20 1.14× 10−20 9.21× 10−21 1.21× 10−20 8.81× 10−21 1.10× 10−20 9.79× 10−21 5.33× 10−21

Wine 7.52× 10−6 1.73× 10−15 5.79× 10−15 3.66× 10−6 4.71× 10−18 2.67× 10−8 5.58× 10−14 5.93× 10−14 0.15933

Zoo 1.39× 10−20 1.22× 10−19 5.12× 10−21 1.22× 10−18 5.55× 10−21 2.80× 10−17 6.13× 10−21 5.71× 10−18 3.69× 10−18

Zoo 16/0/4 17/0/2 16/2/2 10/1/9 17/2/1 14/0/6 18/1/1 18/0/2 3/11/6

6. Conclusions

This paper presents a novel feature selection method based on the Heap-Based Opti-
mizer (HBO). This paper proposes a new binary version of the basic Heap-based optimizer
(HBO) called BHBO to solve the FS problem. The experiments are applied to 20 benchmark
datasets from UCI datasets, and five evaluation criteria are performed to investigate the per-
formance of the proposed algorithm. The experimental results revealed that the proposed
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algorithms achieved superior results versus eight of the recent state-of-the-art algorithms,
including ALO, AOA, BSA, CSA, LFD, PSO, SMA, and TSA, according to the experimental
results. Furthermore, the results proved that B_HBO had achieved the smallest number of
features with better classification accuracy. The findings and results showed that the HBO
achieved the minimum number of selected features with the best accuracy in a reasonable
amount of time for most datasets. The HBO exhibited a considerable benefit for signifi-
cantly big datasets. Regarding average accuracy, sensitivity, specificity, and feature size,
HBO came in first, with the least number of specified features. After, HBO, ALO and CSA
are ranked second in terms of performance.
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Abbreviations
The following abbreviations are used in this manuscript:

ACO Ant Colony Optimization
ALO Ant Lion Optimization
AOA Archimedes Optimization Algorithm
BALO Binary Ant Lion Optimization
BCFA Binary Clonal Flower Pollination Algorithm
BGOA Binary Grasshopper Optimization Algorithm
BGSA Binary Gravitational Search Algorithm
BGWO Binary Gray Wolf Optimization
B_HBO Binary Heap Based Optimizer
BSA Back Tracking Search Algorithm
BSSO Binary Swallow Swarm Optimization
BSHO Binary Spotted Hyena Optimizer
BPSO Binary Particle Swarm Optimization
BWOA Binary Whale Optimization Algorithm
CSA Crow Search Algorithm
EO Equilibrium Optimizer
FOA Forest Optimization Algorithm
FPA Flower Pollination Algorithm
FS Feature Selection
GA Genetic Algorithm
GBO Gradient-Based Optimizer
GSA Gravitational Search Algorithm
GWO Gray wolf Optimizer
HBO Heap-Based Optimizer
HGSO Henry Gas Solubility Optimization Algorithm
LFD Levy flight Distribution
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PSO Particle Swarm Optimization
SCA Sine Cosine Algorithm
SMA Slime Mold Algorithm
SSA Salp Swarm Algorithm
TSA Tree Seed Algorithm
WOA Whale Optimization Algorithm
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