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Abstract: The quest for accurate and more efficient methods for solving periodic/oscillatory problems
is gaining more attention in recent time. This paper presents the construction and implementation
of a family of exponentially-fitted Obrechkoff methods using a six-step flowchart discussed in the
literature. A single-step Obrechkoff method involving terms up to the fourth derivative was used
as the base method. We also present the stability and convergence properties of the constructed
family of methods. Two numerical examples were used to illustrate the performance of the con-
structed methods.
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1. Introduction

Ordinary Differential Equations (ODEs) that exhibit pronounced oscillatory or periodic
behaviour in their solutions are often encountered in fields such as chemistry, engineering,
electronic, mechanics and astrophysics [1–3]. Many of the classical methods for solving
prominent classes of problems in ODE have been developed using only monomials as
a basis [1,4–8]. In [9], the authors used a hybrid method to examine the direct solution
of higher order (second, third and fourth order) initial value problem (IVP) of ordinary
differential equations. However, in practice, many classical methods usually perform
poorly when applied to problems with pronounced periodic or oscillatory behaviour in
their solution [3,10,11]. This is due to the fact that for better accuracy to be achieved, a very
small step size would be required with corresponding decrease in performance, especially
in terms of efficiency [1]. One way to overcome this barrier is to adapt classical methods for
such problems. The adaptation which is called “exponential/trigonometric fitting” involves
the replacement of some of the highest order monomials of the basis by exponentials or
trigonometric [3,11].Detailed analysis of the oscillation–preserving behaviour of some
existing RKN–type methods were analysed from the point of view of geometric integration
in [12]. Authors in [13] presented surveys on recent advances in the allied challenges of
discretizing highly oscillatory ordinary differential equations and computing numerical
quadrature of highly oscillatory integrals. They also attempted to sketch the mathematical
foundations of a general approach to these issues [13] .

A pioneering work in the use of exponentially–fitted formulae for differential equa-
tions was conducted by [14]. The authors in [14] constructed integration formulae which
contains free parameters - chosen so that a given function exp(q) where q is real, satisfies
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the integration formulae exactly. The proposed method in [14] was on a one-step formulae,
however, in [15], A-stable fourth order exponentially-fitted formulae based on a linear two-
step formula was derived. Using the concept proposed in [15], the author in [16] proposed
a Multiderivative Linear Multistep Method (MLMM) with k = 1 in the second derivative
formulae. Many authors have proposed specially adapted Runge—Kutta (RK) algorithms
to solve this class of problems [17–20]. In this direction, exponentially–fitted RK (EFRK)
methods which integrate exactly first–order systems whose solutions can be expressed as
linear combinations of functions of the form {exp(λt), exp(−λt)} or {cos(ωt), sin(ωt)}
were introduced in [21,22]. The construction of an implicit trigonometrically-fitted single-
step method with a second derivative using trigonometric basis function was proposed
in [23].

In this work, we used the six–step flowchart described in [3] to construct a class of
exponentially–fitted single-step fourth-derivative Obrechkoff methods suitable for solving

y′ = f (x, y), x ∈ [x0, X], y(x0) = y0. (1)

2. Construction of Method

A classical fourth-derivative single-step Obrechkoff method for solving the first order
initial value problem (1) can generally be written as

yj+1 = a0yj + h
(
b1 f j+1 + b0 f j

)
+ h2

(
c1 f ′j+1 + c0 f ′j

)
+

h3
(

d1 f ′′j+1 + d0 f ′′j
)
+ h4

(
e1 f ′′′j+1 + e0 f ′′′j

) (2)

where a0, b0, b1, c0, c1, d0, d1, e0 and e1 are coefficients to be determined. Here, we present
the construction of the exponentially-fitted variants of (2) using the six-step flowchart
described in [3]. Following the six-step flowchart, the corresponding linear difference
operator L[h, a] is obtained as

L[h, a]y(x) = y(x + h)− a0y(x)− h
(
b1y′(x + h) + b0y′(x)

)
−

h2(c1y′′(x + h) + c0y′′(x)
)
−

h3(d1y′′′(x + h) + d0y′′′(x)
)
−

h4(e1y′′′′(x + h) + e0y′′′′(x)
) (3)

where a := (a0, b0, b1, c0, c1, d0, d1, e0, e1). Step II of the procedure requires that we get the
maximum value of M such that the algebraic system{

L∗m(a) = h−mL[h, a]xm|x=0 = 0|m = 0, 1, 2, · · · , M− 1
}

can be solved. The above results in

L∗0(a) = 1− a0 = 0 (4)

L∗1(a) = −b0 − b1 + 1 = 0 (5)

L∗2(a) = −2b1 − 2c0 − 2c1 + 1 = 0 (6)

L∗3(a) = −3b1 − 6c1 − 6d0 − 6d1 + 1 = 0 (7)

L∗4(a) = −4b1 − 12c1 − 24d1 − 24e0 − 24e1 + 1 = 0 (8)

L∗5(a) = −5b1 − 20c1 − 60d1 − 120e1 + 1 = 0 (9)

L∗6(a) = −6b1 − 30c1 − 120d1 − 360e1 + 1 = 0 (10)

L∗7(a) = −7b1 − 42c1 − 210d1 − 840e1 + 1 = 0 (11)

L∗8(a) = −8b1 − 56c1 − 336d1 − 1680e1 + 1 = 0 (12)

and the algebraic system is compatible when M = 9. In addition, the solution only results
in the coefficients of the associated classical method to be adapted. To exponentially fit the
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associated classical method, we proceed to step III of the six–step flowchart and obtain
expressions for G+(Z, a) and G−(Z, a) which are respectively defined as

G+(Z, a) =
1
2
(E∗0 (z, a) + E∗0 (−z, a)) (13)

G−(Z, a) =
1
2z

(E∗0 (z, a)− E∗0 (−z, a)) (14)

where E∗0 (±z, a) = e∓ωxL[h, a]e±ωx and Z = z2. The expressions for G+(Z, a) and G−(Z, a)
are respectively obtained as

G+(Z, a) = −a0 + sinh
(√

Z
)(
−b1
√

Z− d1Z3/2
)
+

cosh
(√

Z
)(
−c1Z− e1Z2 + 1

)
− c0Z− e0Z2 (15)

G−(Z, a) = cosh
(√

Z
)
(−b1 − d1Z)− b0 +

sinh
(√

Z
)(
−c1
√

Z− e1Z3/2 +
1√
Z

)
− d0Z (16)

where ω, the frequency of oscillation is real or imaginary, z = ωh = ωh. (For the trigono-
metric case, i.e., ω is imaginary, we choose z = ωh = iµh, i.e., z2 = −µ2h2 = Z.)

To implement step IV, consider the reference set of M functions:{
1, x, · · · , xK, exp (±ωx), x exp (±ωx), · · · , xP exp (±ωx)

}
with K + 2P = M− 3. Since for our method M = 9, we have five possibilities, which we
shall respectively refer to as S1, S2, S3, S4 and S5:

• S1: K = 8, P = −1, the classical case with the set

1, x, x2, x3, x4, x5, x6, x7, x8

• S2: K = 6, P = 0, the mixed case with the set

1, x, x2, x3, x4, x5, x6, exp(±ωx)

• S3: K = 4, P = 1, the mixed case with the set

1, x, x2, x3, x4, exp(±ωx), x exp(±ωx)

• S4: K = 2, P = 2, the mixed case with the set

1, x, x2, exp(±ωx), x exp(±ωx), x2 exp(±ωx)

• S5: K = 0, P = 3, the mixed case with the set

1, exp(±ωx), x exp(±ωx), x2 exp(±ωx), x3 exp(±ωx)

In order to get the corresponding coefficients of the method associated with each case,
we implement step V of the algorithm by solving the algebraic system

L∗k = 0, 0 ≤ k ≤ K, G(p)±(Z, a) = 0, 0 ≤ p ≤ P

and the coefficients of the methods associated with each case are respectively obtained
as follows:
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S1 :: (K,P) = (8,-1)

a0 = 1
b0 = b1 = 1

2
c0 = −c1 = 3

28
d0 = d1 = 1

84
e0 = −e1 = 1

1680

 (17)

Equation (17) gives the coefficients of the classical method associated with Equation (2).

S2 :: (K,P) = (6,0)

a0 = 1
b0 = b1 = 1

2

c0 = −c1 =
(z4−120) sinh( z

2 )−5z(z2−12) cosh( z
2 )

10z2((z2+12) sinh( z
2 )−6z cosh( z

2 ))

d0 = d1 =
(z4−60z2−720) sinh( z

2 )+360z cosh( z
2 )

120z2((z2+12) sinh( z
2 )−6z cosh( z

2 ))

e0 = −e1 =
z(z2+60) cosh( z

2 )−12(z2+10) sinh( z
2 )

120z2((z2+12) sinh( z
2 )−6z cosh( z

2 ))


(18)

S3 :: (K,P) = (4,1)

a0 = 1
b0 = b1 = 1

2

c0 = −c1 =
z4−12z2+(z2−36)z sinh(z)+96 cosh(z)−96

12z2(z2+z sinh(z)−4 cosh(z)+4)

d0 = d1 =
−4(z2+6)+(z2+24) cosh(z)−9z sinh(z)

6z2(z2+z sinh(z)−4 cosh(z)+4)

e0 = −e1 = − z4+12z2−(z2+48)z sinh(z)+12(z2+4) cosh(z)−48
12z4(z2+z sinh(z)−4 cosh(z)+4)


(19)

S4 :: (K,P) = (2,2)

a0 = 1
b0 = b1 = 1

2

c0 = −c1 =
sinh( z

2 )(2z3+21z+24 sinh(z))−18z2 cosh( z
2 )−3z sinh( 3z

2 )
2z2((2z2+1) cosh( z

2 )−2z sinh( z
2 )−cosh( 3z

2 ))

d0 = d1 = − z3 cosh( z
2 )+sinh( z

2 )(3z2+3z sinh(z)−16 cosh(z)+16)
z3((2z2+1) cosh( z

2 )−2z sinh( z
2 )−cosh( 3z

2 ))

e0 = −e1 =
sinh( z

2 )(−2z3−21z+12 sinh(z))+6z2 cosh( z
2 )−z sinh( 3z

2 )
2z4((2z2+1) cosh( z

2 )−2z sinh( z
2 )−cosh( 3z

2 ))


(20)

S5 :: (K,P) = (0,3)

a0 = 1

b0 = b1 = − 2(4z3−6(2z2+1) sinh(z)+2(z2+3)z cosh(z)−6z+3 sinh(2z))
z((z2+3)z2−2(z2+3)z sinh(z)+6z2 cosh(z)−3 sinh2(z))

c0 = −c1 = − 2(z4−3z2(4 cosh(z)+3)+9 sinh2(z)+12z sinh(z))
z2((z2+3)z2−2(z2+3)z sinh(z)+6z2 cosh(z)−3 sinh2(z))

d0 = d1 =
2(2z3(cosh(z)+2)+6 sinh(z)−3 sinh(2z)−6z(cosh(z)−1))
z3((z2+3)z2−2(z2+3)z sinh(z)+6z2 cosh(z)−3 sinh2(z))

e0 = −e1 = z4+2z3 sinh(z)+z2(3−6 cosh(z))−3 sinh2(z)+6z sinh(z)
z4((z2+3)z2−2(z2+3)z sinh(z)+6z2 cosh(z)−3 sinh2(z))


(21)

As expected, the exponentially fitted variants reduce to the classical method as z→ 0.
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3. Error Analysis :: Local Truncation Error (lte)

The leading term of the local truncation error (lte) for the exponentially-fitted method
with respect to the basis functions{

1, x, · · · , xK, exp (±ωx), x exp (±ωx), · · · , xP exp (±ωx)
}

(22)

is of the form

lteEF(t) = (−1)P+1hM L
∗
K+1(a(Z))

(K + 1)!ZP+1 DK+1(D2 −ω2)P+1y(x) (23)

with K, P and M satisfying the condition K + 2P = M− 3, [3].
For the five methods constructed in this work, the leading terms of the local truncation

error are obtained as follows:

• S1 :: (K, P) = (8,−1)

lteEF(t) =
h9y(9)(x)

25,401,600
(24)

• S2 :: (K, P) = (6, 0)

lteEF(t) = −h9
(
20z
(
z2 + 42

)
cosh

( z
2
)
−
(
z4 + 180z2 + 1680

)
sinh

( z
2
))

100,800z4
(
(z2 + 12) sinh

( z
2
)
− 6z cosh

( z
2
))

×
(

u(9)(t)−ω2u(7)(t)
)

(25)

• S3 :: (K, P) = (4, 1)

lteEF(t) =
h9

720z8(z2 + z sinh(z)− 4 cosh(z) + 4)

×
(

2880− 240z2 + 24z4 + z6−

24
(

z4 + 50z2 + 120
)

cosh(z) +

z
(

z4 + 240z2 + 2880
)

sinh(z)
)

×
(

y(9)(x)− 2ω2y(7)(x) + ω4y(5)(x)
)

(26)

• S4 :: (K, P) = (2, 2)

lteEF(t) = − h9

12z9
(
(2z2 + 1) cosh

( z
2
)
− 2z sinh

( z
2
)
− cosh

( 3z
2
))

×
(
−z3

(
2z2 + 85

)
cosh

( z
2

)
+ z3 cosh

(
3z
2

)
+

2 sinh
( z

2

)(
192 + 99z2 + 7z4 − 192 cosh(z)+

108z sinh(z))− 18z2 sinh
(

3z
2

))
×
(

y(9)(x)− 3ω2y(7)(x) + 3ω4y(5)(x)−ω6y(3)(x)
)

(27)
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• S5 :: (K, P) = (0, 3)

lteEF(t) =

h9
(

4(4z3−6(2z2+1) sinh(z)+2(z2+3)z cosh(z)−6z+3 sinh(2z))
z((z2+3)z2−2(z2+3)z sinh(z)+6z2 cosh(z)−3 sinh2(z))

+ 1
)

z8

×
(

y(9)(x)− 4ω2y(7)(x) + 6ω4y(5)(x)− 4ω6y(3)(x) + ω8y′(x)
)

(28)

4. Convergence and Stability Analysis

Theorem 1 (Dahlquist Theorem). The necessary and sufficient conditions for a linear multistep
method to be convergent are that it be consistent and zero-stable [4].

Dahlquist Theorem (1) also holds true for exponetially-fitted-based algorithms but
the concepts of consistency and stability have to be adapted since their coefficients are no
longer constants.

Definition 1. An exponentially-fitted method associated with the fitting space (22) is said to be
of exponential order q, relative to the frequency ω if q is the maximum value of M such that the
algebraic system {L∗m(a) = 0|m = 0, · · · , M− 1} is compatible [3].

Definition 2. A linear multistep method is said to be consistent if it has order P ≥ 1 [1,4].

Since the order of the constructed method, M = 9 ≥ 1 for all the constructed schemes,
the consistency requirement is satisfied. Hence, the constructed schemes are all consistent.

Definition 3. The method Equation (2) is zero stable if no root of the first characteristic polynomial
has modulus greater than one and if every root with modulus one is simple [1,2].

In order to establish the stability of (2), we apply Equation (2) to the test problems
y′ = λy and obtain the stability function R(q), of the class of methods as

yn+1

yn
= R(q) =

1 + b0q + c0q2 + d0q3 + e0q4

1− b1q− c1q2 − d1q3 − e1q4 , with q = λh. (29)

Definition 4. A region of absolute stability is a region in the complex plane, throughout which
|R(q)| < 1. Any closed curve defined by |R(q)| = 1 is an absolute stability boundary. In addition,
any interval (α, β) of the real line is said to be the interval of absolute stability if the method is stable
for all q ∈ (α, β) [1,4].

The absolute stability regions for all the methods constructed in this work are the same
and given in Figure 1.

From Figure 1, it can be seen that stability region of the methods contains the entire left
half plane, hence they are all A-stable and have their absolute stability interval as (−∞, 0].
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Out[ ]= -

-

 1+b0 q+c0 q2+d0 q3+e0 q4
1-b1 q-c1 q2-d1 q3-e1 q4

 < 1

Figure 1. Region of absolute stability for the constructed methods

5. Numerical Results

In this section, we considered two test problems. The constructed methods are imple-
mented on these test problems and the obtained results were compared with those of the
classical eighth-order Runge-Kutta (RK-8) method.

5.1. Problem 1

The first test problem considered in this work is the initial value problem given as

y′′ − y = 0.001 cos x, y(0) = 1, y′ = 0

with exact solution
y(x) = cos x + 0.0005x sin x

This problem was studied in [24,25]. Using different stepsizes, we implement the con-
structed methods on this problem and present the maximum absolute errors in Table 1.

For this problem, the exponentially fitted methods gave better results compared with
their classical counterpart and the Runge–Kutta method as seen from Table 1.

Table 1. Maximum absolute error for constructed methods on Section 5.1 with step-size
h = 2−iπ, i = 0, 1, 2, 3.

i RK-8 (K, P) = (8,−1) (K, P) = (6, 0) (K, P) = (4, 2) (K, P) = (2, 1) (K, P) = (0, 3)

0 8.256847 × 10−1 1.701678 × 10−5 0.000000 0.000000 0.000000 2.220446 × 10−16

1 5.921881 × 10−3 1.485065 × 10−5 1.516774 × 10−8 1.160079 × 10−13 4.170189 × 10−14 9.992007 × 10−16

2 9.221257 × 10−5 6.125912 × 10−8 6.400131 × 10−11 1.488434 × 10−11 6.878617 × 10−12 7.895672 × 10−13

3 1.154806 × 10−6 2.425554 × 10−10 3.548604 × 10−11 1.3173 × 10−9 3.317455 × 10−10 7.396323 × 10−11

5.2. Problem 2

The inhomogeneous equation

y′′ + 100y = 99 sin x, y(0) = 1, y′ = 11.

with exact solution
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y(x) = sin(x) + sin(10x) + cos(10x)

is considered as the second test case. This problem has also been studied by [24,26].
The constructed methods were implemented on it with different stepsizes and the results
obtained were also compared with those of the Runge-Kutta method. The table of maximum
absolute errors is given in Table 2.

Again, the exponentially fitted methods gave better results compared with their
classical counterpart and the Runge-Kutta method as seen from Table 2.

Table 2. Maximum absolute error for constructed methods on Section 5.2 with step-size
h = 2−iπ, i = 0, 1, 2, 3, 4, 5.

i RK-8 (K, P) = (8,−1) (K, P) = (6, 0) (K, P) = (4, 2) (K, P) = (2, 1) (K, P) = (0, 3)

0 2.385689 × 1027 2.385402 6.994405 × 10−15 5.77316 × 10−15 1.210143 × 10−14 3.719247 × 10−14

1 2.779917 × 1037 2.410011 1.507892 × 10−7 1.467305 × 10−4 4.454081 × 10−3 7.805366
2 1.036922 × 1039 2.413778 2.714209 × 10−7 4.764676 × 10−5 6.398771 × 10−3 1.120104
3 1.466513 × 1012 2.377447 × 10−1 4.035951 × 10−10 4.450952 × 10−8 4.873151 × 10−6 5.310473 × 10−4

4 4.728532 × 10−1 1.336235 × 10−3 1.392109 × 10−12 1.123486 × 10−10 1.137188 × 10−8 1.153992 × 10−6

5 5.249947 × 10−3 5.711746 × 10−6 1.162043 × 10−11 6.347695 × 10−11 3.808664 × 10−11 4.012365 × 10−9

6. Conclusions

An exponentially-fitted one-step fourth-derivative Obrechkoff method for oscillatory
problems was constructed. The new methods are self-starting and of algebraic order eight.
The stability and convergence properties of the constructed method were analysed and
we showed that the new methods are A-stable. The results obtained from the numerical
examples show that the new methods are suitable for solving periodic/oscillatory problems.
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