Exponentially-Fitted Fourth-Derivative Single-Step Obrechkoff Method for Oscillatory/Periodic Problems

Ashiribo Senapon Wusu ${ }^{1,2,+(\mathbb{D}}$, Olusola Aanu Olabanjo ${ }^{2,3, *, 4(\mathbb{D})}$ and Manuel Mazzara ${ }^{4,+(\mathbb{D}}$
1 Department of Mathematics, Lagos State University, Lagos 102101, Nigeria; ashiribo.wusu@lasu.edu.ng
2 Africa Center of Excellence for Innovative and Transformative STEM Education (ACEITSE), Lagos State University, Lagos 102101, Nigeria
3 Department of Mathematics, Morgan State University, Baltimore, MD 21251, USA
4 Institute of Software Development and Engineering, Innopolis University, Innopolis 420500, Russia; m.mazzara@innopolis.ru
* Correspondence: olola57@morgan.edu
\dagger These authors contributed equally to this work.

Citation: Wusu, A.S.; Olabanjo, O.A.; Mazzara M. Exponentially-Fitted Fourth-Derivative Single-Step Obrechkoff Method for Oscillatory/ Periodic Problems. Mathematics 2022, 10, 2392. https://doi.org/10.3390/ math10142392

Academic Editors: Vladislav Kovalnogov and Nadezhda Yarushkina

Received: 12 June 2022
Accepted: 1 July 2022
Published: 7 July 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

The quest for accurate and more efficient methods for solving periodic/oscillatory problems is gaining more attention in recent time. This paper presents the construction and implementation of a family of exponentially-fitted Obrechkoff methods using a six-step flowchart discussed in the literature. A single-step Obrechkoff method involving terms up to the fourth derivative was used as the base method. We also present the stability and convergence properties of the constructed family of methods. Two numerical examples were used to illustrate the performance of the constructed methods.

Keywords: exponentially-fitted; Obrechkoff; fourth-derivative; oscillatory; periodic; single-step
MSC: 65L05; 65L06; 65L20

1. Introduction

Ordinary Differential Equations (ODEs) that exhibit pronounced oscillatory or periodic behaviour in their solutions are often encountered in fields such as chemistry, engineering, electronic, mechanics and astrophysics [1-3]. Many of the classical methods for solving prominent classes of problems in ODE have been developed using only monomials as a basis [1,4-8]. In [9], the authors used a hybrid method to examine the direct solution of higher order (second, third and fourth order) initial value problem (IVP) of ordinary differential equations. However, in practice, many classical methods usually perform poorly when applied to problems with pronounced periodic or oscillatory behaviour in their solution $[3,10,11]$. This is due to the fact that for better accuracy to be achieved, a very small step size would be required with corresponding decrease in performance, especially in terms of efficiency [1]. One way to overcome this barrier is to adapt classical methods for such problems. The adaptation which is called "exponential/trigonometric fitting" involves the replacement of some of the highest order monomials of the basis by exponentials or trigonometric [3,11].Detailed analysis of the oscillation-preserving behaviour of some existing RKN-type methods were analysed from the point of view of geometric integration in [12]. Authors in [13] presented surveys on recent advances in the allied challenges of discretizing highly oscillatory ordinary differential equations and computing numerical quadrature of highly oscillatory integrals. They also attempted to sketch the mathematical foundations of a general approach to these issues [13] .

A pioneering work in the use of exponentially-fitted formulae for differential equations was conducted by [14]. The authors in [14] constructed integration formulae which contains free parameters - chosen so that a given function $\exp (q)$ where q is real, satisfies
the integration formulae exactly. The proposed method in [14] was on a one-step formulae, however, in [15], A-stable fourth order exponentially-fitted formulae based on a linear twostep formula was derived. Using the concept proposed in [15], the author in [16] proposed a Multiderivative Linear Multistep Method (MLMM) with $k=1$ in the second derivative formulae. Many authors have proposed specially adapted Runge-Kutta (RK) algorithms to solve this class of problems [17-20]. In this direction, exponentially-fitted RK (EFRK) methods which integrate exactly first-order systems whose solutions can be expressed as linear combinations of functions of the form $\{\exp (\lambda t), \exp (-\lambda t)\}$ or $\{\cos (\omega t), \sin (\omega t)\}$ were introduced in [21,22]. The construction of an implicit trigonometrically-fitted singlestep method with a second derivative using trigonometric basis function was proposed in [23].

In this work, we used the six-step flowchart described in [3] to construct a class of exponentially-fitted single-step fourth-derivative Obrechkoff methods suitable for solving

$$
\begin{equation*}
y^{\prime}=f(x, y), \quad x \in\left[x_{0}, X\right], \quad y\left(x_{0}\right)=y_{0} . \tag{1}
\end{equation*}
$$

2. Construction of Method

A classical fourth-derivative single-step Obrechkoff method for solving the first order initial value problem (1) can generally be written as

$$
\begin{gather*}
y_{j+1}=a_{0} y_{j}+h\left(b_{1} f_{j+1}+b_{0} f_{j}\right)+h^{2}\left(c_{1} f_{j+1}^{\prime}+c_{0} f_{j}^{\prime}\right)+ \tag{2}\\
h^{3}\left(d_{1} f_{j+1}^{\prime \prime}+d_{0} f_{j}^{\prime \prime}\right)+h^{4}\left(e_{1} f_{j+1}^{\prime \prime \prime}+e_{0} f_{j}^{\prime \prime \prime}\right)
\end{gather*}
$$

where $a_{0}, b_{0}, b_{1}, c_{0}, c_{1}, d_{0}, d_{1}, e_{0}$ and e_{1} are coefficients to be determined. Here, we present the construction of the exponentially-fitted variants of (2) using the six-step flowchart described in [3]. Following the six-step flowchart, the corresponding linear difference operator $\mathcal{L}[h, \mathbf{a}]$ is obtained as

$$
\begin{gather*}
\mathcal{L}[h, \mathbf{a}] y(x)=y(x+h)-a_{0} y(x)-h\left(b_{1} y^{\prime}(x+h)+b_{0} y^{\prime}(x)\right)- \\
h^{2}\left(c_{1} y^{\prime \prime}(x+h)+c_{0} y^{\prime \prime}(x)\right)- \tag{3}\\
h^{3}\left(d_{1} y^{\prime \prime \prime}(x+h)+d_{0} y^{\prime \prime \prime}(x)\right)- \\
h^{4}\left(e_{1} y^{\prime \prime \prime \prime}(x+h)+e_{0} y^{\prime \prime \prime \prime}(x)\right)
\end{gather*}
$$

where $\mathbf{a}:=\left(a_{0}, b_{0}, b_{1}, c_{0}, c_{1}, d_{0}, d_{1}, e_{0}, e_{1}\right)$. Step II of the procedure requires that we get the maximum value of M such that the algebraic system

$$
\left\{L_{m}^{*}(\mathbf{a})=\left.h^{-m} \mathcal{L}[h, \mathbf{a}] x^{m}\right|_{x=0}=0 \mid m=0,1,2, \cdots, M-1\right\}
$$

can be solved. The above results in

$$
\begin{align*}
& L_{0}^{*}(\mathbf{a})=1-a_{0}=0 \tag{4}\\
& L_{1}^{*}(\mathbf{a})=-b_{0}-b_{1}+1=0 \tag{5}\\
& L_{2}^{*}(\mathbf{a})=-2 b_{1}-2 c_{0}-2 c_{1}+1=0 \tag{6}\\
& L_{3}^{*}(\mathbf{a})=-3 b_{1}-6 c_{1}-6 d_{0}-6 d_{1}+1=0 \tag{7}\\
& L_{4}^{*}(\mathbf{a})=-4 b_{1}-12 c_{1}-24 d_{1}-24 e_{0}-24 e_{1}+1=0 \tag{8}\\
& L_{5}^{*}(\mathbf{a})=-5 b_{1}-20 c_{1}-60 d_{1}-120 e_{1}+1=0 \tag{9}\\
& L_{6}^{*}(\mathbf{a})=-6 b_{1}-30 c_{1}-120 d_{1}-360 e_{1}+1=0 \tag{10}\\
& L_{7}^{*}(\mathbf{a})=-7 b_{1}-42 c_{1}-210 d_{1}-840 e_{1}+1=0 \tag{11}\\
& L_{8}^{*}(\mathbf{a})=-8 b_{1}-56 c_{1}-336 d_{1}-1680 e_{1}+1=0 \tag{12}
\end{align*}
$$

and the algebraic system is compatible when $M=9$. In addition, the solution only results in the coefficients of the associated classical method to be adapted. To exponentially fit the
associated classical method, we proceed to step III of the six-step flowchart and obtain expressions for $G^{+}(Z, \mathbf{a})$ and $G^{-}(Z, \mathbf{a})$ which are respectively defined as

$$
\begin{align*}
G^{+}(Z, \mathbf{a}) & =\frac{1}{2}\left(E_{0}^{*}(z, \mathbf{a})+E_{0}^{*}(-z, \mathbf{a})\right) \tag{13}\\
G^{-}(Z, \mathbf{a}) & =\frac{1}{2 z}\left(E_{0}^{*}(z, \mathbf{a})-E_{0}^{*}(-z, \mathbf{a})\right) \tag{14}
\end{align*}
$$

where $E_{0}^{*}(\pm z, \mathbf{a})=e^{\mp \omega x} \mathcal{L}[h, \mathbf{a}] e^{ \pm \omega x}$ and $Z=z^{2}$. The expressions for $G^{+}(Z, \mathbf{a})$ and $G^{-}(Z, \mathbf{a})$ are respectively obtained as

$$
\begin{align*}
G^{+}(Z, \mathbf{a})= & -a_{0}+\sinh (\sqrt{Z})\left(-b_{1} \sqrt{Z}-d_{1} Z^{3 / 2}\right)+ \\
& \cosh (\sqrt{Z})\left(-c_{1} Z-e_{1} Z^{2}+1\right)-c_{0} Z-e_{0} Z^{2} \tag{15}\\
G^{-}(Z, \mathbf{a})= & \cosh (\sqrt{Z})\left(-b_{1}-d_{1} Z\right)-b_{0}+ \\
& \sinh (\sqrt{Z})\left(-c_{1} \sqrt{Z}-e_{1} Z^{3 / 2}+\frac{1}{\sqrt{Z}}\right)-d_{0} Z \tag{16}
\end{align*}
$$

where ω, the frequency of oscillation is real or imaginary, $z=\omega h=\omega_{h}$. (For the trigonometric case, i.e., ω is imaginary, we choose $z=\omega h=i \mu h$, i.e., $z^{2}=-\mu^{2} h^{2}=Z$.)

To implement step IV, consider the reference set of M functions:

$$
\left\{1, x, \cdots, x^{K}, \exp (\pm \omega x), x \exp (\pm \omega x), \cdots, x^{P} \exp (\pm \omega x)\right\}
$$

with $K+2 P=M-3$. Since for our method $M=9$, we have five possibilities, which we shall respectively refer to as $\mathbf{S 1 , S 2 , S 3 , S 4}$ and S5:

- S1: $K=8, P=-1$, the classical case with the set

$$
1, x, x^{2}, x^{3}, x^{4}, x^{5}, x^{6}, x^{7}, x^{8}
$$

- S2: $K=6, P=0$, the mixed case with the set

$$
1, x, x^{2}, x^{3}, x^{4}, x^{5}, x^{6}, \exp (\pm \omega x)
$$

- S3: $K=4, P=1$, the mixed case with the set

$$
1, x, x^{2}, x^{3}, x^{4}, \exp (\pm \omega x), x \exp (\pm \omega x)
$$

- S4: $K=2, P=2$, the mixed case with the set

$$
1, x, x^{2}, \exp (\pm \omega x), x \exp (\pm \omega x), x^{2} \exp (\pm \omega x)
$$

- S5: $K=0, P=3$, the mixed case with the set

$$
1, \exp (\pm \omega x), x \exp (\pm \omega x), x^{2} \exp (\pm \omega x), x^{3} \exp (\pm \omega x)
$$

In order to get the corresponding coefficients of the method associated with each case, we implement step V of the algorithm by solving the algebraic system

$$
L_{k}^{*}=0, \quad 0 \leq k \leq K, \quad G^{(p) \pm}(Z, \mathbf{a})=0, \quad 0 \leq p \leq P
$$

and the coefficients of the methods associated with each case are respectively obtained as follows:
$\mathbf{S 1}::(K, P)=(8,-1)$

$$
\left.\begin{array}{l}
a_{0}=1 \tag{17}\\
b_{0}=b_{1}=\frac{1}{2} \\
c_{0}=-c_{1}=\frac{3}{28} \\
d_{0}=d_{1}=\frac{1}{84} \\
e_{0}=-e_{1}=\frac{1}{1680}
\end{array}\right\}
$$

Equation (17) gives the coefficients of the classical method associated with Equation (2).
S2 :: $(K, P)=(6,0)$

$$
\left.\begin{array}{l}
a_{0}=1 \\
b_{0}=b_{1}=\frac{1}{2} \\
c_{0}=-c_{1}=\frac{\left(z^{4}-120\right) \sinh \left(\frac{z}{2}\right)-5 z\left(z^{2}-12\right) \cosh \left(\frac{z}{2}\right)}{10 z^{2}\left(\left(z^{2}+12\right) \sinh \left(\frac{z}{2}\right)-6 z \cosh \left(\frac{z}{2}\right)\right)} \tag{18}\\
d_{0}=d_{1}=\frac{\left(z^{4}-60 z^{2}-720\right) \sinh \left(\frac{z}{2}\right)+360 z \cosh \left(\frac{z}{2}\right)}{120 z^{2}\left(\left(z^{2}+12\right) \sinh \left(\frac{z}{2}\right)-6 z \cosh \left(\frac{z}{2}\right)\right)} \\
e_{0}=-e_{1}=\frac{z\left(z^{2}+60\right) \cosh \left(\frac{z}{2}\right)-12\left(z^{2}+10\right) \sinh \left(\frac{z}{2}\right)}{120 z^{2}\left(\left(z^{2}+12\right) \sinh \left(\frac{z}{2}\right)-6 z \cosh \left(\frac{z}{2}\right)\right)}
\end{array}\right\}
$$

S3 :: $(K, P)=(4,1)$

$$
\left.\begin{array}{l}
a_{0}=1 \\
b_{0}=b_{1}=\frac{1}{2} \\
c_{0}=-c_{1}=\frac{z^{4}-12 z^{2}+\left(z^{2}-36\right) z \sinh (z)+96 \cosh (z)-96}{12 z^{2}\left(z^{2}+z \sinh (z)-4 \cosh (z)+4\right)} \tag{19}\\
d_{0}=d_{1}=\frac{-4\left(z^{2}+6\right)+\left(z^{2}+24\right) \cosh (z)-9 z \sinh (z)}{6 z^{2}\left(z^{2}+z \sinh (z)-4 \cosh (z)+4\right)} \\
e_{0}=-e_{1}=-\frac{z^{4}+12 z^{2}-\left(z^{2}+48\right) z \sinh (z)+12\left(z^{2}+4\right) \cosh (z)-48}{12 z^{4}\left(z^{2}+z \sinh (z)-4 \cosh (z)+4\right)}
\end{array}\right\}
$$

$\mathbf{S 4}::(K, P)=(2,2)$

$$
\left.\begin{array}{l}
a_{0}=1 \\
b_{0}=b_{1}=\frac{1}{2} \\
c_{0}=-c_{1}=\frac{\sinh \left(\frac{z}{2}\right)\left(2 z^{3}+21 z+24 \sinh (z)\right)-18 z^{2} \cosh \left(\frac{z}{2}\right)-3 z \sinh \left(\frac{3 z}{2}\right)}{2 z^{2}\left(\left(2 z^{2}+1\right) \cosh \left(\frac{z}{2}\right)-2 z \sinh \left(\frac{z}{2}\right)-\cosh \left(\frac{3 z}{2}\right)\right)} \tag{20}\\
d_{0}=d_{1}=-\frac{z^{3} \cosh \left(\frac{z}{2}\right)+\sinh \left(\frac{z}{2}\right)\left(3 z^{2}+3 z \sinh (z)-16 \cosh (z)+16\right)}{z^{3}\left(\left(2 z^{2}+1\right) \cosh \left(\frac{z}{2}\right)-2 z \sinh \left(\frac{z}{2}\right)-\cosh \left(\frac{3 z}{2}\right)\right)} \\
e_{0}=-e_{1}=\frac{\sinh \left(\frac{z}{2}\right)\left(-2 z^{3}-21 z+12 \sinh (z)\right)+6 z^{2} \cosh \left(\frac{z}{2}\right)-z \sinh \left(\frac{3 z}{2}\right)}{2 z^{4}\left(\left(2 z^{2}+1\right) \cosh \left(\frac{z}{2}\right)-2 z \sinh \left(\frac{z}{2}\right)-\cosh \left(\frac{3 z}{2}\right)\right)}
\end{array}\right\}
$$

$\mathbf{S 5}::(K, P)=(0,3)$

$$
\begin{align*}
& a_{0}=1 \\
& b_{0}=b_{1}=-\frac{2\left(4 z^{3}-6\left(2 z^{2}+1\right) \sinh (z)+2\left(z^{2}+3\right) z \cosh (z)-6 z+3 \sinh (2 z)\right)}{z\left(\left(z^{2}+3\right) z^{2}-2\left(z^{2}+3\right) z \sinh (z)+6 z^{2} \cosh (z)-3 \sinh ^{2}(z)\right)} \\
& c_{0}=-c_{1}=-\frac{2\left(z^{4}-3 z^{2}(4 \cosh (z)+3)+9 \sinh ^{2}(z)+12 z \sinh (z)\right)}{z^{2}\left(\left(z^{2}+3\right) z^{2}-2\left(z^{2}+3\right) z \sinh (z)+6 z^{2} \cosh (z)-3 \sinh ^{2}(z)\right)} \tag{21}\\
& d_{0}=d_{1}=\frac{2\left(2 z^{3}(\cosh (z)+2)+6 \sinh (z)-3 \sinh (2 z)-6 z(\cosh (z)-1)\right)}{z^{3}\left(\left(z^{2}+3\right) z^{2}-2\left(z^{2}+3\right) z \sinh (z)+6 z^{2} \cosh (z)-3 \sinh ^{2}(z)\right)} \\
& e_{0}=-e_{1}=\frac{z^{4}+2 z^{3} \sinh (z)+z^{2}(3-6 \cosh (z))-3 \sinh ^{2}(z)+6 z \sinh (z)}{z^{4}\left(\left(z^{2}+3\right) z^{2}-2\left(z^{2}+3\right) z \sinh (z)+6 z^{2} \cosh (z)-3 \sinh ^{2}(z)\right)}
\end{align*}
$$

As expected, the exponentially fitted variants reduce to the classical method as $z \rightarrow 0$.

3. Error Analysis :: Local Truncation Error (lte)

The leading term of the local truncation error (lte) for the exponentially-fitted method with respect to the basis functions

$$
\begin{equation*}
\left\{1, x, \cdots, x^{K}, \exp (\pm \omega x), x \exp (\pm \omega x), \cdots, x^{P} \exp (\pm \omega x)\right\} \tag{22}
\end{equation*}
$$

is of the form

$$
\begin{equation*}
l t e^{E F}(t)=(-1)^{P+1} h^{M} \frac{\mathcal{L}_{K+1}^{*}(\mathbf{a}(Z))}{(K+1)!Z^{P+1}} D^{K+1}\left(D^{2}-\omega^{2}\right)^{P+1} y(x) \tag{23}
\end{equation*}
$$

with K, P and M satisfying the condition $K+2 P=M-3$, [3].
For the five methods constructed in this work, the leading terms of the local truncation error are obtained as follows:

- $\quad \mathbf{S} 1::(K, P)=(8,-1)$

$$
\begin{equation*}
\text { lte }_{E F}(t)=\frac{h^{9} y^{(9)}(x)}{25,401,600} \tag{24}
\end{equation*}
$$

- $\quad \mathbf{S 2}::(K, P)=(6,0)$

$$
\begin{align*}
l t e_{E F}(t)=- & h^{9} \frac{\left(20 z\left(z^{2}+42\right) \cosh \left(\frac{z}{2}\right)-\left(z^{4}+180 z^{2}+1680\right) \sinh \left(\frac{z}{2}\right)\right)}{100,800 z^{4}\left(\left(z^{2}+12\right) \sinh \left(\frac{z}{2}\right)-6 z \cosh \left(\frac{z}{2}\right)\right)} \\
& \times\left(u^{(9)}(t)-\omega^{2} u^{(7)}(t)\right) \tag{25}
\end{align*}
$$

- $\quad \mathbf{S 3}::(K, P)=(4,1)$

$$
\begin{align*}
& \text { lte }_{E F}(t)= \frac{h^{9}}{720 z^{8}\left(z^{2}+z \sinh (z)-4 \cosh (z)+4\right)} \\
& \times\left(2880-240 z^{2}+24 z^{4}+z^{6}-\right. \\
& 24\left(z^{4}+50 z^{2}+120\right) \cosh (z)+ \\
&\left.z\left(z^{4}+240 z^{2}+2880\right) \sinh (z)\right) \\
& \times\left(y^{(9)}(x)-2 \omega^{2} y^{(7)}(x)+\omega^{4} y^{(5)}(x)\right) \tag{26}
\end{align*}
$$

- $\quad \mathbf{S} 4::(K, P)=(2,2)$

$$
\begin{align*}
\text { lte }_{E F}(t)=- & \frac{h^{9}}{12 z^{9}\left(\left(2 z^{2}+1\right) \cosh \left(\frac{z}{2}\right)-2 z \sinh \left(\frac{z}{2}\right)-\cosh \left(\frac{3 z}{2}\right)\right)} \\
& \times\left(-z^{3}\left(2 z^{2}+85\right) \cosh \left(\frac{z}{2}\right)+z^{3} \cosh \left(\frac{3 z}{2}\right)+\right. \\
& 2 \sinh \left(\frac{z}{2}\right)\left(192+99 z^{2}+7 z^{4}-192 \cosh (z)+\right. \\
& \left.108 z \sinh (z))-18 z^{2} \sinh \left(\frac{3 z}{2}\right)\right) \\
& \times\left(y^{(9)}(x)-3 \omega^{2} y^{(7)}(x)+3 \omega^{4} y^{(5)}(x)-\omega^{6} y^{(3)}(x)\right) \tag{27}
\end{align*}
$$

- $\quad \mathbf{S 5}::(K, P)=(0,3)$

$$
\begin{align*}
\text { lte }_{E F}(t)= & \frac{h^{9}\left(\frac{4\left(4 z^{3}-6\left(2 z^{2}+1\right) \sinh (z)+2\left(z^{2}+3\right) z \cosh (z)-6 z+3 \sinh (2 z)\right)}{z\left(\left(z^{2}+3\right) z^{2}-2\left(z^{2}+3\right) z \sinh (z)+6 z^{2} \cosh (z)-3 \sinh ^{2}(z)\right)}+1\right)}{z^{8}} \\
& \times\left(y^{(9)}(x)-4 \omega^{2} y^{(7)}(x)+6 \omega^{4} y^{(5)}(x)-4 \omega^{6} y^{(3)}(x)+\omega^{8} y^{\prime}(x)\right) \tag{28}
\end{align*}
$$

4. Convergence and Stability Analysis

Theorem 1 (Dahlquist Theorem). The necessary and sufficient conditions for a linear multistep method to be convergent are that it be consistent and zero-stable [4].

Dahlquist Theorem (1) also holds true for exponetially-fitted-based algorithms but the concepts of consistency and stability have to be adapted since their coefficients are no longer constants.

Definition 1. An exponentially-fitted method associated with the fitting space (22) is said to be of exponential order q, relative to the frequency ω if q is the maximum value of M such that the algebraic system $\left\{\mathcal{L}_{m}^{*}(\boldsymbol{a})=0 \mid m=0, \cdots, M-1\right\}$ is compatible [3].

Definition 2. A linear multistep method is said to be consistent if it has order $\mathcal{P} \geq 1[1,4]$.
Since the order of the constructed method, $M=9 \geq 1$ for all the constructed schemes, the consistency requirement is satisfied. Hence, the constructed schemes are all consistent.

Definition 3. The method Equation (2) is zero stable if no root of the first characteristic polynomial has modulus greater than one and if every root with modulus one is simple [1,2].

In order to establish the stability of (2), we apply Equation (2) to the test problems $y^{\prime}=\lambda y$ and obtain the stability function $R(q)$, of the class of methods as

$$
\begin{equation*}
\frac{y_{n+1}}{y_{n}}=R(q)=\frac{1+b_{0} q+c_{0} q^{2}+d_{0} q^{3}+e_{0} q^{4}}{1-b_{1} q-c_{1} q^{2}-d_{1} q^{3}-e_{1} q^{4}}, \quad \text { with } q=\lambda h . \tag{29}
\end{equation*}
$$

Definition 4. A region of absolute stability is a region in the complex plane, throughout which $|R(q)|<1$. Any closed curve defined by $|R(q)|=1$ is an absolute stability boundary. In addition, any interval (α, β) of the real line is said to be the interval of absolute stability if the method is stable for all $q \in(\alpha, \beta)[1,4]$.

The absolute stability regions for all the methods constructed in this work are the same and given in Figure 1.

From Figure 1, it can be seen that stability region of the methods contains the entire left half plane, hence they are all A-stable and have their absolute stability interval as $(-\infty, 0]$.

Figure 1. Region of absolute stability for the constructed methods

5. Numerical Results

In this section, we considered two test problems. The constructed methods are implemented on these test problems and the obtained results were compared with those of the classical eighth-order Runge-Kutta (RK-8) method.

5.1. Problem 1

The first test problem considered in this work is the initial value problem given as

$$
y^{\prime \prime}-y=0.001 \cos x, \quad y(0)=1, \quad y^{\prime}=0
$$

with exact solution

$$
y(x)=\cos x+0.0005 x \sin x
$$

This problem was studied in $[24,25]$. Using different stepsizes, we implement the constructed methods on this problem and present the maximum absolute errors in Table 1.

For this problem, the exponentially fitted methods gave better results compared with their classical counterpart and the Runge-Kutta method as seen from Table 1.

Table 1. Maximum absolute error for constructed methods on Section 5.1 with step-size $h=2^{-i} \pi, \quad i=0,1,2,3$.

\mathbf{i}	$\mathbf{R K - 8}$	$\mathbf{(K , \mathbf { P }) = (\mathbf { 8 } , \mathbf { - 1 })}$	$(\mathbf{K}, \mathbf{P})=(\mathbf{6 , 0})$	$(\mathbf{K}, \mathbf{P})=(\mathbf{4}, \mathbf{2})$	$(\mathbf{K}, \mathbf{P})=(\mathbf{2 , \mathbf { 1 })}$	$\mathbf{(K , \mathbf { P }) = (\mathbf { 0 } , \mathbf { 3 })}$
0	8.256847×10^{-1}	1.701678×10^{-5}	0.000000	0.000000	0.000000	2.220446×10^{-16}
1	5.921881×10^{-3}	1.485065×10^{-5}	1.516774×10^{-8}	1.160079×10^{-13}	4.170189×10^{-14}	9.992007×10^{-16}
2	9.221257×10^{-5}	6.125912×10^{-8}	6.400131×10^{-11}	1.488434×10^{-11}	6.878617×10^{-12}	7.895672×10^{-13}
3	1.154806×10^{-6}	2.425554×10^{-10}	3.548604×10^{-11}	1.3173×10^{-9}	3.317455×10^{-10}	7.396323×10^{-11}

5.2. Problem 2

The inhomogeneous equation

$$
y^{\prime \prime}+100 y=99 \sin x, \quad y(0)=1, \quad y^{\prime}=11 .
$$

with exact solution

$$
y(x)=\sin (x)+\sin (10 x)+\cos (10 x)
$$

is considered as the second test case. This problem has also been studied by [24,26]. The constructed methods were implemented on it with different stepsizes and the results obtained were also compared with those of the Runge-Kutta method. The table of maximum absolute errors is given in Table 2.

Again, the exponentially fitted methods gave better results compared with their classical counterpart and the Runge-Kutta method as seen from Table 2.

Table 2. Maximum absolute error for constructed methods on Section 5.2 with step-size $h=2^{-i} \pi, \quad i=0,1,2,3,4,5$.

\mathbf{i}	$\mathbf{R K - 8}$	$(\mathbf{K}, \mathbf{P})=(\mathbf{8}, \mathbf{- 1})$	$(\mathbf{K}, \mathbf{P})=(\mathbf{6 , 0})$	$(\mathbf{K}, \mathbf{P})=(\mathbf{4 , 2})$	$(\mathbf{K}, \mathbf{P})=(\mathbf{2 , 1})$	$(\mathbf{K}, \mathbf{P})=(\mathbf{0}, \mathbf{3})$
0	2.385689×10^{27}	2.385402	6.994405×10^{-15}	5.77316×10^{-15}	1.210143×10^{-14}	3.719247×10^{-14}
1	2.779917×10^{37}	2.410011	1.507892×10^{-7}	1.467305×10^{-4}	4.454081×10^{-3}	7.805366
2	1.036922×10^{39}	2.413778	2.714209×10^{-7}	4.764676×10^{-5}	6.398771×10^{-3}	1.120104
3	1.466513×10^{12}	2.377447×10^{-1}	4.035951×10^{-10}	4.450952×10^{-8}	4.873151×10^{-6}	5.310473×10^{-4}
4	4.728532×10^{-1}	1.336235×10^{-3}	1.392109×10^{-12}	1.123486×10^{-10}	1.137188×10^{-8}	1.153992×10^{-6}
5	5.249947×10^{-3}	5.711746×10^{-6}	1.162043×10^{-11}	6.347695×10^{-11}	3.808664×10^{-11}	4.012365×10^{-9}

6. Conclusions

An exponentially-fitted one-step fourth-derivative Obrechkoff method for oscillatory problems was constructed. The new methods are self-starting and of algebraic order eight. The stability and convergence properties of the constructed method were analysed and we showed that the new methods are A-stable. The results obtained from the numerical examples show that the new methods are suitable for solving periodic/oscillatory problems.

Author Contributions: Conceptualization, A.S.W. and O.A.O.; methodology, A.S.W. and O.A.O.; software, A.S.W. and M.M.; validation, A.S.W. and O.A.O.; formal analysis, A.S.W. and O.A.O.; investigation, A.S.W. and O.A.O.; resources, A.S.W. and O.A.O.; data curation, A.S.W. and O.A.O.; writing-original draft preparation, A.S.W. and O.A.O.; writing-review and editing, M.M. and A.S.W.; visualization, A.S.W. and O.A.O.; supervision, M.M. and A.S.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lambert, J.D. Computational Methods in ODEs; Wiley: New York, NY, USA, 1973.
2. Lambert, J. Numerical Methods for Ordinary Differential Systems; Wiley: New York, NY, USA, 1991.
3. Ixaru, L.; Vanden Berghe, G. Exponential Fitting: Mathematics and Its Applications; Kluwer Academic Publishers: Alphen aan den Rijn, The Netherlands, 2004.
4. Butcher, J. Numerical Methods for Ordinary Differential Equations; Wiley: New York, NY, USA, 2008.
5. Akanbi, M.A. On 3-stage Geometric Explicit Runge-Kutta Method for Singular Autonomous Initial Value Problems in Ordinary Differential Equations. Computing 2011, 92, 243-263. [CrossRef]
6. Wusu, A.S.; Okunuga, S.A.; Sofoluwe, A.B. A Third-Order Harmonic Explicit Runge-Kutta Method for Autonomous Initial Value Problems. Glob. J. Pure Appl. Math. 2012, 8, 441-451.
7. Wusu, A.S.; Akanbi, M.A. A Three-Stage Multiderivative Explicit Runge-Kutta Method. Am. J. Comput. Math. 2013, 3, 121-126. [CrossRef]
8. Wusu, A.S.; Akanbi, M.A.; Fatimah, B.O. On the Derivation and Implementation of a Four Stage Harmonic Explicit Runge-Kutta Method. Appl. Math. 2015, 6, 694-699. [CrossRef]
9. Abolarin, O.E.; Adeyefa, E.; Kuboye, J.O.; Ogunware, B.G. A Novel Multiderivative Hybrid Method for the Numerical Treatment of Higher Order Ordinary Differential Equations. Al Dar Res. J. Sustain. 2020, 4, 43-56.
10. Simos, T.E. An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions. Comput. Phys. Commun. 1998, 115, 1-8. [CrossRef]
11. Vanden Berghe, G.; Daele, M. Exponentially-fitted Stomer/Verlet methods. J. Numer. Anal. Ind. Appl. Math. 2006, 1, 241-255.
12. Wu, X.; Wang, B.; Mei, L. Oscillation-preserving algorithms for efficiently solving highly oscillatory second-order ODEs. Numer. Algorithms 2021, 86, 693-727. [CrossRef]
13. Iserles, A. On the Numerical Analysis of Rapid Oscillation. In CRM Proceedings and Lecture Notes; Centre for Mathematical Sciences: Cambridge, UK, 2004; pp. 1-15.
14. Liniger, W.S.; Willoughby, R.A. Efficient Integration methods for Stiff System of ODEs. SIAM J. Numer. Anal. 1970, 7, 47-65. [CrossRef]
15. Jackson, L.W.; Kenue, S.K. A Fourth Order Exponentially Fitted Method. SIAM J. Numer. Anal. 1974, 11, 965-978. [CrossRef]
16. Cash, J.R. On exponentially fitting of composite multiderivative Linear Methods. SIAM J. Numer. Anal. 1981, 18, 808-821. [CrossRef]
17. Coleman, J.P.; Duxbury, S.C. Mixed collocation methods for $y^{\prime \prime}=f(x ; y)$. J. Comput. Appl. Math. 2000, 126, 47-75. [CrossRef]
18. Avdelas, G.; Simos, T.E.; Vigo-Aguiar, J. An embedded exponentially-fitted Runge-Kutta method for the numerical solution of the Schrodinger equation and related periodic initial-value problems. Comput. Phys. Commun. 2000, 131, 52-67. [CrossRef]
19. Franco, J.M. An embedded pair of exponentially fitted explicit Runge-Kutta methods. J. Comput. Appl. Math. 2002, 149, $407-414$. [CrossRef]
20. Bettis, D.G. Runge-Kutta algorithms for oscillatory problems. J. Appl. Math. Phys. (ZAMP) 1979, 30, 699-704. [CrossRef]
21. Vanden Berghe, G.; Meyer, H.D.; Daele, M.V.; Hecke, T.V. Exponentially-fitted explicit Runge-Kutta methods. Comput. Phys. Comтип. 1999, 123, 7-15. [CrossRef]
22. Vanden Berghe, G.; Meyer, H.D.; Daele, M.; Hecke, T. Exponentially fitted Runge-Kutta methods. J. Comput. Appl. Math. 2000, 125, 107-115. [CrossRef]
23. Ngwane, F.F.; Jator, S.N. Trigonometrically-fitted second derivative method for oscillatory problems. SpringerPlus 2014, 3, 304. [CrossRef]
24. Zhai, W.; Chen, B. Exponentially Fitted RKNd Methods for Solving Oscillatory ODEs. Adv. Math. 2013, 42, 393-404.
25. Franco, J. Exponentially fitted explicit Runge-Kutta-Nystrom methods. J. Comput. Appl. Math. 2004, 167, 1-19. [CrossRef]
26. Van de Vyver, H. A Runge-Kutta-Nystrom pair for the numerical integration of perturbed oscillators. Comput. Phys. Commun. 2005, 167, 129-142. [CrossRef]
