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Abstract: In this paper, we propose an augmented barrier certificate-based method for formally
verifying the approximate initial-state opacity property of discrete time control systems. The opacity
verification problem is formulated as the safety verification of an augmented system and is then
addressed by searching for augmented barrier certificates. A set of well-defined verification conditions
is a prerequisite for successfully identifying augmented barrier certificates of a specific type. We first
suggest a new type of augmented barrier certificate which produces a weaker sufficient condition
for approximate initial-state opacity. Furthermore, we develop an algorithmic framework where
a learner and a verifier interact to synthesize augmented barrier certificates in the form of neural
networks. The learner trains neural certificates via the deep learning method, and the verifier solves
several mixed integer linear programs to either ensure the validity of the candidate certificates
or yield counterexamples, which are passed back to further guide the learner. The experimental
results demonstrate that our approach is more scalable and effective than the existing sum of squares
programming method.

Keywords: approximate initial-state opacity; barrier certificate; discrete-time control system; deep

learning; mixed integer linear programming

MSC: 68N30

1. Introduction
1.1. Research Motivation

Cyber-physical systems (CPSs) consist of tightly coupled physical components and
software systems and are deeply involved in safety-critical infrastructure, such as power
plants, medical devices, and self-driving cars. In the last two decades, formal verification
of the safety properties for cyber-physical systems has gained considerable attention [1,2].
However, security properties have not been investigated thoroughly for cyber-physical
systems utill very recently [3,4]. Cyber-physical systems are security-critical, since the tight
interaction between physical components and software systems may have the potential
to release secret information and expose the system to malicious intruders. Therefore,
ensuring the security of cyber-physical systems has become significantly important.

For cyber-physical systems, opacity verification is a vital requirement. Opacity is an
information flow security property that captures whether or not the “secret” of the system
can be revealed to an intruder that can infer the system’s actual behavior based on the
information flow [5,6]. Opacity has been widely investigated in the domain of discrete event
systems [7-10]. For continuous state-space CPSs, the opacity verification can be performed
by abstraction-based techniques in which continuous-space models are approximated by
discrete ones [11,12].

The approximate initial-state opacity property requires the outside intruders to infer
whether the initial state of the system is a secret one by observing the output trajectories of
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the system [8]. A discretization-free barrier certificate-based approach for verifying the ap-
proximate initial-state opacity of discrete-time control systems was developed in [11]. The
barrier certificate-based method is quite popular for the safety verification of CPSs [13-15],
and in [11,12], an augmented barrier certificate is defined for an augmented system con-
structed by augmenting a control system with itself, while the initial and unsafe sets are
designed to capture the secret and initial sets of the original system. Then, the existence of
such barrier certificates can guarantee the approximate initial-state opacity of the original
system. Moreover, a sum of squares (SOS) programming-based methodology is presented
for the construction of the augmented barrier certificates. However, this methodology may
suffer from scalability issues since it requires discretization of the state and input sets of the
original system.

Motivated by the limitation of [11], in this work, we present a novel barrier certificate-
based method for formally verifying the approximate initial-state opacity of discrete-time
control systems. First, we suggest a new type of augmented barrier certificate which can
produce a weaker sufficient condition for the approximate initial-state opacity. Intuitively,
the augmented barrier certificates introduced in [11] guarantee that for any state run of
the system starting from a secret state, all state runs starting from the non-secret state set
have similar output trajectories. Therefore, the sufficient condition for the approximate
initial-state opacity yielded from the augmented barrier certificates introduced in [11]
is more conservative. Usually, a weaker condition for the augmented barrier certificates
means that more augmented barrier certificates can be synthesized, as the expressiveness
of the augmented barrier certificates is stronger.

We then suggest an algorithmic framework for synthesizing augmented barrier cer-
tificates in the form of neural networks. Our framework draws insight from the existing
methods for learning the barrier certificates of hybrid systems [16-18] and consists of two
modules. The learner trains a neural augmented barrier certificate that satisfies the barrier
certificate conditions over a set of sampled data, and the verifier solves a mixed integer
linear program (MILP) to either ensure the validity of the candidate augmented barrier
certificate or yield counterexamples, which are passed back to further guide the learner.
The loop is repeated until a trained candidate augmented barrier certificate is successfully
verified. The main contributions of this paper are summarized as follows:

*  We define a new type of augmented barrier certificate, which can produce a weaker
sufficient condition for the approximate initial-state opacity.

*  We present a framework for synthesizing neural augmented barrier certificates. In the
framework, a counterexample guided procedure is adopted to speed up the construc-
tion of networks, and the verification of Rectified Linear Unit (ReLU) networks can be
efficiently performed via an MILP.

*  We carry out proof-of-concept case studies to empirically show the efficiency and
practicability of the approach.

The structure of this paper is as follows. Section 1.2 introduces the related works. In
Section 2, we give a less conservative sufficient condition with two relation functions to
verify the approximate initial-state opacity, and then we train neural networks to synthesize
the candidate neural barrier certificates and relation functions in Section 3.1 and convert
the verification problem to a group of MILP optimization problems for validation in
Section 3.2. In Section 3.3, we illustrate the barrier certificate and relation function synthesis
algorithm. Section 4 provides an experimental evaluation of our algorithm with three
examples, including linear, three-dimensional and non-polynomial examples. We conclude
and introduce future work in Section 5.

1.2. Relate Work

Opacity is an important information flow property that was initially introduced
in [5]. Specifically, the concept of language-based opacity was proposed in [19]. Aside
from that, several state-based opacities were proposed, including initial-state opacity [20],
K-step opacity [21], current-state opacity [22], and infinite-step opacity [23]. However,
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the conditions of exact opacity could be too strong for the systems. Consequently, they need
to be relaxed in some application scenarios. In [8], approximate opacity was introduced
and verified by approximate opacity preserving the simulation relation. In [24,25], the
authors synthesized a supervisor such that the closed-loop system was opaque.

The verification of opacity has also been widely studied in [26-28]. Four types of
opacity properties have been verified: language-based opacity, initial-state opacity, current-
state opacity, and initial-and-final-state opacity [7]. In [20], the verification problem of
initial-state opacity to an initial-state estimation problem was translated, and this was
addressed by the construction of initial-state estimators. Moreover, current-state and initial-
state opacity problems in bounded Petri nets can be efficiently solved by adopting a compact
representation of the reachability graph [29]. In [30], initial-state opacity for networks
of interconnected control systems was verified. In [31], the verification of opacity for
recursive tile systems is presented. Note that in [32], a finite abstraction-based technique was
presented for verifying approximate opacity of the class of discrete-time stochastic systems,
where the original control systems were approximated by discrete ones. For continuous
state—space CPSs, a barrier certificate was used to verify the approximate initial-state
opacity in [11,12]. However, this methodology may suffer from scalability issues since it
requires discretization of the state and input sets of the original system.

Synthesizing augmented barrier certificates via deep learning methods is subject to
further verification, which is related to formal verification of the neural networks, and much
research focused on formal verification of the neural networks [33-35]. The problem of
neural network verification is NP-hard [36], where a tool was implemented called Reluplex
for validating neural networks with a ReLU activation function. In [37], a framework
to verify deep neural networks based on Satisfiability Modulo Theory (SMT) was intro-
duced. The verification of the properties of deep neural networks was finished based
on the simplex method in [38]. The neural network with a ReLU activation function
was verified by exploiting the dependencies between the ReLU nodes [39]. Furthermore,
with the candidate network with ReLU, the non-linear SMT solver iSAT3 was used for
verification [35]. In [17], candidate neural barrier certificates were synthesized with a
specially structured network, which transformed the verification problems of neural net-
works into a group of mixed-integer linear programming problems and a mixed-integer
quadratically constrained problem. Zhao et al. [40] provides an innovative method for
synthesizing neural networks as barrier certificates, which can give safety guarantees for
neural network-controlled systems.

2. An Augmented Barrier Certificate for Approximate Initial-State Opacity

We denote R, R>( , Q, and N as real numbers, non-negative real numbers, rational
numbers, and natural numbers, respectively, and appropriate subscripts are used to restrict
the sets. The empty set is represented by @. Given a vector x, we use R” to represent an
n-dimensional Euclidean space and || x || to represent the Euclidean norm. Fora, b € N,
and a < b, we use [a, D] to represent a closed interval. Given two sets A and B with A C B,
we define the complement of A with respect to Bas B\A ={a | a € B, a ¢ A}. The Cartesian
product of two sets A and B is defined as A x B={(a,b) |a € A, b € B}.

2.1. Approximate Initial-State Opacity for Discrete-Time Control Systems

In this subsection, we will introduce some preliminaries:

Definition 1 ([11]). A discrete-time control system (dt-cs) is defined by a tuple Il = (X, Xo, X,
Xus, U, f, Y, h) where the following are true:

o X U, andY are the state set, control input set, and output set, respectively;

o Xy, X, and X5 are the initial state set, secret state set, and non-secret state set, respectively,
where Xo, Xs, Xps € X, and Xg N Xps = O

o f: X x U — Xis the state transition function;

*  h:X — Yis the output function.
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Intuitively, the discrete-time control system I1 can be modeled by the following differ-

ence equations:

1 { 4D = ()0 o
y(t) = h(x(t))

where x: N = X, u: N — U, and y: N — Y are the state signal, control input signal, and

output signal, respectively. We use xy, (k) to denote the state reached at time k of IT from

the initial state xg € X under the input signal u and use y, (k) = h(xx,u(k)) to denote

the output corresponding to the state x, . (k).

Given a discrete-time control system I, we want to verify the approximate initial-state
opacity; that is, for each finite state run whose initial state is a secret state, there exists
another finite state run starting from a non-secret state with a similar output trajectory.
The following definition describes the approximate initial-state opacity of the system I1:

Definition 2 ([8]). Consider a discrete-time control system 11 = (X, Xo, Xs, Xys, U, f, Y, h) and a
constant 6 € R>q. The system 11 is J-approximate initial-state opacity if for any xg € Xo N Xs
and any finite state run X,y = {xo, X1 ... , xn1, there exists Xy € Xo () X5 and a finite state run
Xzy0 = (X0, X1 ... , Xn/ such that

h(x) — h(&)| < 6,
ax [[(7(xk) = R(Z) || < ?)

where the threshold parameter § can be interpreted as either the measurement imprecision of the
intruder or the security level the system can guarantee.

It is assumed that the secret of the system is not revealed initially; otherwise, it will vi-
olate J-approximate initial-state opacity initially. Therefore, we assume that Vxg € Xg N X,
where

{x € Xo [ [[1(x) = h(x0)[| <0} € Xoss. ®)

To verify the approximate initial-state opacity of discrete-time control systems, the
authors of [11,12] achieved the goal with the help of barrier certificates. In detail, for a
discrete-time control system I1, the approximate initial-state opacity verification problem
can be cast into checking a safety property of the associated augmented system IT x II
using barrier certificates. More concretely, there is the augmented system

I x IT =(X x X, X x Xo, X5 x X,
Xus X Xy, Ux U, f x f,Y xY,h x h),

which can be regarded as the product of a dt-cs IT and itself. We denote a pair of states in
IT x ITby (x, ) € X x X and use ® = X x X to represent the state space of the augmented
system. Given the initial state (xp, %) of the augmented system II x II and input run
(v, D), we denote the state trajectory of IT x IT with (xy, 0, Xx,,5)-

In order to leverage barrier certificates to verify the approximate initial-state opacity
for a given discrete-time control system I1, the initial state set ®y and the unsafe state set
®, are defined as follows:

0y = {(x,%) € (XoNXs) x (Xo\Xs) [ [[1(x) —h(%)] < 6},

Ou = {(x,%) € Xx X | |h(x) — h(z)| > 6}. @

The following theorem introduces a sufficient condition for verifying the approximate initial-
state opacity of discrete-time control systems via a concept of augmented barrier certificates:

Theorem 1. Given a dt-cs 11, the associated augmented system I1 x 11 and the sets ®g, @y in
Equation (4), if there exists a function B : X x X — R such that

V(x, &) € O B(x, %) < ey, )
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V(x, &) € Oy B(x,%&) > e, (6)
V(x,%) €O,VueU,Ja €U
B(f(x,u), f(%,&)) — B(x, %) <0,

where the constants €1, €2 € R>o, and ey > €; are present, then the -approximate initial-state
opacity of the dt-cs I1 is guaranteed.

@)

The function B(x, &) in Theorem 1 is called an augmented barrier certificate of the
augmented system IT x II. Intuitively, the augmented barrier certificate B(x, &) ensures
that all trajectories of the system II x II originating from the initial state sets ®g never
reach the unsafe region ®,, and then the safety of the dt-cs I1 is guaranteed.

In this paper, we focus on the nonlinear discrete-time control systems, where the
state transition function and output function are represented by multivariate elementary
functions, and the sets X, U, Y, Xy, X, and X5 are bounded polyhedrons each defined
by linear inequalities over a variable x. Concretely, multivariate elementary functions are
expressed by the following grammar:

f,8 w=cx|f|f*|In(f)]sin (f)|cos (f)
e f + gIf — 8lf x 8lf/8

where ¢ € R is a real constant, 4 € Q is a rational constant, and x can be any system
variable.

2.2. A New Augmented Barrier Certificate for Approximate Initial-State Opacity

The augmented barrier certificates introduced in Theorem 1 guarantee that all trajecto-
ries of the augmented system I x IT starting from the initial state set ®y never reach the
unsafe states in ®,. This means that for any state run of the discrete-time control system
IT starting from a secret state xy € X N X, all state runs starting from the non-secret
state set X\ X have similar output trajectories. However, according to Definition 2, the
d-approximate initial-state opacity just requires that for each finite state run whose initial
state is a secret state, there exists another finite state run starting from a non-secret state
with a similar output trajectory. Clearly, the sufficient condition of the augmented barrier
certificates introduced in Theorem 1 is more conservative, which may make the problem of
d-approximate initial-state opacity verification infeasible.

In the following, we introduce a less conservative augmented barrier certificate for the
verification of approximate initial-state opacity:

Theorem 2. Consider a dt-cs I1 and the associated augmented system I1 x I1. If there exists
a function B : X x X — R that satisfies the conditions in Equations (6) and (7) in Theorem 1
and moreover

Vx e XgNXg, & € Xo\Xs

Ih(x) — h(%)|| <0 AB(x,&) < e1. ®)

then the d-approximate initial-state opacity of the dt-cs 11 is quaranteed.

Proof. Consider an arbitrary initial secret state xy and an input sequence u, as well as the
corresponding state sequence xy, , in Il. First note Equations (3) and (8), where {x € X |
[Ih(x) — h(x)|| <6} C Xs. It follows that there exists an initial state &) € Xo\X; for every
initial state xy € Xo N X such that ||h(%g)— h(xp)|| < J, based on Equation (8). Therefore,
the system is initially satisfied for J-approximate initial-state opacity. The existence of an
augmented barrier certificate B(x,X) as described in Theorem 1 guarantees that for any
xp € Xo N X, there exists &y € Xo\X; and a control policy # such that any state sequence of
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IT x IT starting from (xo,%p) never reaches the unsafe region ®, under input run (u, #). In
other words, the following is true:

max (1) ~ h(Ega(t)] < 0 ©)

Since xp and xy,, are arbitrarily chosen, we conclude that I1 is the §-approximate
initial-state opacity. [

Since the condition in Equation (8) is weaker than the initial condition in Theorem 1,
Theorem 2 produces a less conservative sufficient condition for the J-approximate initial-
state opacity of the dt-cs I. Usually, a weaker condition on augmented barrier certificates
means that more augmented barrier certificates can be synthesized, as the associated
expressiveness is stronger. Therefore, the problem of verifying the J-approximate initial-
state opacity for the dt-cs I can be transformed into the problem of computing the relaxed
augmented barrier certificates defined in Theorem 2.

However, the forall-exists quantifiers make the problem of computing the augmented
barrier certificates given in Theorem 2 computationally difficult. From a computational
point of view, the forall-exists statement in Equation (8) can be encoded as

V(x,2) €@y B(x %) <e (10)

where @0 is defined as follows:

(11)

O = {(x,%) € (XoNX;) x (X\Xs) |
¥ = p(x) Alh(x) — h(2)]| <4},

by introducing a function p over x to describe the relation between x and &. Similarly, we
introduce another relation function g over x, &, and u to encode the forall-exists statement:

Theorem 3. Consider a dt-cs 11 and the associated augmented system 11 x I If there exist
functions B: X x X = R, p: X — Rand g : X x X x U — R which satisfy the conditions in
Equations (6) and (10) and moreover

V(x,&) € ©,V(ua) e UxT,
it =¢q(x,%u) € UANB(f(x,u), f(% @) — B(x,&) <0

(12)

then the d-approximate initial-state opacity of the dt-cs I1 is guaranteed.

Now, the problem of verifying the §-approximate initial-state opacity for the dt-cs I'l
can be transformed into the problem of computing the relaxed augmented barrier certificate
B(x, &) and the relation functions p(x), 4(x, &, u) defined in Theorem 3.

3. Synthesis of an Augmented Barrier Certificate via Learning and Verification

In this section, we introduce an iterative framework to synthesize neural barrier
certificates and relation functions to complete the verification of the approximate initial-
state opacity of the dt-cs II. As shown in Figure 1, the procedure is structured as an
inductive loop between a learner and a verifier. At first, we present a less conservative
augmented barrier certificate for the validation of approximate initial-state opacity. Then,
the learner trains the certificate functions simultaneously over sampled data points from the
initial set, the unsafe set, and the state space. After that, the trained candidates are formally
verified by the verifier according to the conditions in Theorem 3. Due to the structure of
ReLU neural networks, the verification problem can be transformed into a set of efficiently
solvable MILP problems.
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update N,

Add counterexamples to datasets

Figure 1. The framework for verifying approximate initial-state opacity.

3.1. Neural Certificate Training

In this subsection, we give the details for training the neural barrier certificates.

3.1.1. The Structure of Neural Networks

Consider a dt-cs IT as defined in Definition 1, where state x and control input u are of n
and m dimensions, respectively. Now, we provide the specific structure of neural networks
for certificate functions B(x, &), p(x) and q(x, &, u).

¢ Oneinput layer, one output layer, and several hidden layers;

. The number of input neurons for B, p, and q is 2n, nn, and 2n + m, respectively;
e  Both B and g have one output neuron, while p has n output neurons;

*  The ReLU function is the only legal activation function.

For the above feedforward neural network, a non-input layer neuron value is com-
puted by the preceding layer neuron values, the layer weight matrix, and the bias vector.
Let xy denote the given neuron value of the input layer, z; and x; (1 < k < 57 — 1) denote the
neuron value of the hidden layer Ly before and after ReLU activation function, respectively,
and x; denote the neuron value of the output layer. Then, the forward propagation of the
neural network is as follows:

zr =Wixg_1+by, k=1,...,7—-1
x = ReLU(zy), k=1,...,7—1 (13)
Xy = Wyxy—1+ by

where 17 — 1 is the number of hidden layers of the neural network. Intuitively, the output
layer of neural network B and g has only one neuron, and hence their outputs are real
numbers. As for the output of p, it is a vector and in the same form of the corresponding
input vector.

According to Universal Approximation Theorem, we can approximate any complex
rational function by the above neural network with the ReLU activation function, which
makes it possible for us to synthesize the barrier certificate and relation functions. By re-
stricting the number of hidden layers and the type of activation function, the verification
problems of Equations (6), (10), and (12) can be transformed into a set of MILP problems.
Then, the verification can be accomplished with the help of the optimization tool Gurobi.

3.1.2. Training Dataset Generation

The procedure for synthesizing neural networks takes a data-driven approach. Here,
we discuss how to generate adequate datasets for training the candidate network. Datasets
are generated while aiming at making the network fulfill the barrier certificate conditions
given by Theorem 3. We sample points from the domain ©, initial secret region Xy N X, and
unsafe region ©,, of the considered system I1 x II for obtaining datasets D1, D, and Dj,
respectively.

The method employed for sampling is mesh generation. At first, we mesh the super
rectangles in the sampling regions bounded with a fixed mesh size. Then, we filter out the
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points that do not satisfy the constraints of Equations (6), (10) and (12). As for the dataset
D, of neural networks g, it is essentially a vector splicing of D3 with the control input
u. Finally, we obtain four finite data sets, D1, Dy, D3, and Dy.

3.1.3. Loss Function Encoding

Given datasets D1, Dy, D3, and Dy, according to Equations (6), (10) and (12) given by
Theorem 3, the neural network B is trained to satisfy the following conditions:

B(x,p(x)) <0 Vx € Dy (14)
B(x,%) >0 V(x,&) € D, (15)
B(f(x,u), f(%,q(x,&u))) — B(x,&) <0 Y(x,&) € D3,Vu e U (16)

According to Equations (14)—(16) and the output bound of the control policy given by
the control input # and p, we construct sub-loss functions that lead the optimizers to build
the network by minimizing the loss.

For satisfying Equation (14), with the input from dataset D, the output of B should
satisfy B(x, p(x)) < 0. Otherwise, there would be a non-zero loss. Let ¢; be a small
non-negative tolerance. The first sub-loss function is defined as follows:

Ly = Y ReLU(B(x,p(x)) +c1) (17)
xeDq

Similarly, for Equation (15), the output of the neural network is supposed to conform
with B(x, &) > 0. A non-zero loss is also incurred if the condition is violated. Given a small
positive constant ¢y, the second sub-loss function is defined as follows:

Ly= )  ReLU(—B(x,%)+cy)

(X,JAC) €D, (18)

To meet Equation (16), with a small positive number c3, the third sub-loss function is
defined as follows:

Ly = Y ReLU(B(f(x,u), f(&,q(x, &, u))) — B(x, %) + c3) (19)

(x,&)€D3,ucU

Aside from this, the output of the control policy g has upper and lower bounds, since
the value of the control input is within the given closed interval. Let [;, u4 be the upper
and lower bounds of the control input, respectively. The output of g is between [; and 14
(i-e., q(x) € [l, ugl). After that, the fourth sub-loss function which leads the training of g is
defined as follows:

Ly= ) (ReLU(q(x, x,u) —uy)
(x,2u)eDy (20)

+ ReLU(—q(x, &, u) + lq)>

According to Equation (11), we know that p(x) € Xp\X; when input x € X N X.
Furthermore, each unit of the output of p will be in [/}, uy]. Then we obtain the sub-loss
function Ls as:

L= Y (Rew(nh(p(x)) @) -6+ cs)
xeDq (21)

+ ReLU(p(x) — up) + ReLU(—p(x) + lp))
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where ¢4 is a small positive constant. The role of the four tolerances c, ¢y, c3, and ¢4 is to
make the non-sampled points in the neighborhood of the sampled data obtain a loss of
zero. Finally, let aq, ay, a3, a4, a5 > 0 denote the weights of the sub-losses. The total loss
function for training B, p, q can be expressed as

L=wa1L1+aply+a3ls+asls +asLs (22)

Significantly, the sub-loss L3 is related to the training of networks B and 4. Hence,
we can make a3 slightly larger to promote effective training. We minimize the total loss L
for training three neural networks and adopt an Adam optimizer, which achieves quick
training. When L decreases to zero, we obtain candidate networks B, p, and g at the
same time.

3.2. Certificate Function Verification

Since the candidate neural certificate functions B, p, and g are trained over the sampled
datasets, the empirical loss L converges to zero, which only guarantees that the candidate
certificate functions satisfy the barrier certificate conditions in Theorem 3 over such sampled
datasets. Thus, the candidate neural certificate functions require further verification. In this
section, we present an approach to formally check whether the candidate neural certificate
functions B, p, and g precisely satisfy the following barrier certificate conditions in Theorem 3:

Y(x, %) € O B(x,£) <0 (23)
V(x,%) € ©, B(x,%) >0, (24)
V(x,%) € ©,Y(u, 1) e UxT,

i =q(x,%,u) € UNB(f(x,u), f(£,1)) — B(x, %) <O0. ®)
By utilizing the special structure of ReLU networks, the problem of verifying the
candidate neural certificate functions B, p, and g can be encoded as several optimization
problems, whose globally optimal objective values can be computed efficiently via the
optimizer Gurobi. In the following, we will verify the neural certificate functions via
MILP-based encoding.
Verifying Condition (Equation (23)). According to Equation (23), the neural augmented
barrier certificate B(x, &) should be nonpositive over the initial set @. To ease the presen-
tation, we use y, and v, to denote the input and output of the neural certificate B(x, &),
respectively, where y, = (xo, &) and y; = B(y,). Based on the forward propagation of the
neural networks in Equation (13), the problem of verifying the condition in Equation (23)
can be transformed into the following optimization problem:

Plnit = Maxyy

xy € XoNXg,

P(xO) € XO\XS/ (26)
s.t. ZkZkak71+bk, k=1,...,7-1,

Y, = ReLU(z), k=1,...,7—-1,

Yy = Wyy, 1 + by,

where 7 is the number of hidden layers of the neural certificate B and p7, ;, is the globally
optimal solution. Clearly, if the globally optimal solution p7,;, > 0, then the condition in
Equation (23) is verified to be satisfied.

The application of ReLU activation functions improves the approximation capability
of the neural networks, but additionally, the nonlinearity of the ReLU function makes
the problem in Equation (26) difficult to solve directly. Fortunately, an exact MILP-based
encoding of ReLU functions is introduced to treat ReLU [33]. More concretely, the ReLU
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function, which is defined over z € [I;, 1;], can be encoded by the following linear and
binary constraints:
—z4+y+1-1-1<0,
z—y <0,
y—u-t<0, (27)
0<vy,
te{0,1},

where ¢t is a binary variable and / and u are constants satisfying [ < [, and u > u,,
respectively. Now, by utilizing the above MILP-based encoding, the optimization problem
in Equation (26) can be rewritten as the following MILP problem:

Plnit = MaxX Yy

xg € Xp N X,

p(xo) € Xo\Xs,

Yo = (x0,p(%0)),

zr = Wiyp_1 + by,

—zp+yp < (e — 1), (28)
st zZk— Y, <0,

Y —Up -t <0,

t, € {0,1},
Yy 20,
k=1,...,n-1,

Yy = Wyy, 1 + by.

For simplicity, we set [, = —10° and u; = 10°. This MILP problem (Equation (28))
can be solved via the optimizer Gurobi. Indeed, Gurobi returns the optimum gy,,;; and
the corresponding optimal solution £},;;, together with the maximum relative error ¢y,
between gp,,;; and the globally optimum p7, .., which is formally expressed as

|O1nit — P?m‘t|

o>
C:-(Imt el ‘plnit|

As stated in [17], if {1, < 1, then pp,; and pj,;, have the same sign. Therefore,
if prnir < 0 while the maximum relative error ¢p,;; < 1, then p7,;, < 0, which means that
the condition in Equation (23) is verified to be satisfied. Otherwise, we randomly sample
a set of points in a neighborhood of the optimal solution ¥;,,;; and add those data points
that violate the condition in Equation (23) to the training dataset D; in the next iteration to
refine the networks.

Verifying Condition (Equation (24)). According to Equation (24), the neural augmented
barrier certificate B(x, &) should be positive over the unsafe set ©,. The verification of the
condition in Equation (24) takes the same form. Based on the forward propagation of neural
networks in Equation (13) and the MILP-based encoding of ReLU functions, the problem of
this verifying condition (Equation (24)) can be transformed into the following MILP problem:

p*llnsufe = min Xy

xO 6 ®M/

Zr = Wixg_1 + by,
—z +xp < (e — 1),

Zk—kaO, (29)
ste xp—up -t <0,

t, € {0,1},

x>0,

k=1,...,y-1,
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By solving the above MILP problem via the optimizer Gurobi, we can obtain the opti-

mum Jyy,s. . and the corresponding optimal solution Xy1,5, 7 together with the maximum
relative error Cupsafe- If Punsafe > 0 while the maximum relative error §ijysar < 1, then the
globally optimum p;;, - fe > 0, and the condition in Equation (24) is verified to be satisfied.
Otherwise, we randomly sample a set of points in a neighborhood of the optimal solution
Xunsafe and add those data points that violate the condition in Equation (24) to the training
dataset D, in the next iteration to refine the networks.
Verifying condition (Equation (25)). For the condition in Equation (25), the difference be-
tween B(f(x,u), f(%, 1)), and B(x, &) should be non-positive over the state set ® and input
set U x U. Here, it = g(x, &, u). Note that the condition in Equation (25) involves the valve of
y, after the transition function; in other words, y, = (x(, &,) = (f(xo, u), f (%o, #t)). There-
fore, the problem of B(f(x)) — B(x) < 0 can be transformed into finding whether the
maximum value of B(y() — B(yy) is negative.

Based on the forward propagation of neural networks in Equation (14) and the MILP-
based encoding of ReLU functions, the problem of this verifying condition (Equation (25))
can be transformed into the following optimization problem:

* . /
PEvol = maxyly Yy

Yo €O,
u, i €U,
Yo = (%0, ),
zk = Wiyp_q + by, zp = Wiy 1 + be,
St —Zk + Yy < lk(tk — 1), _Z]/( + y;( < lk(t;( — 1), (30)
zk— Y <0, 7, -y, <0,
yk_uk‘tkgol y;c_uk't;cgol
t € {0,1}, t, € {0,1},
Yy =Wyy, 1 +by, Yy =Wy, 1 +by,
Y >0, v, >0, k=1,...,7—1.

However, there may exist nonlinear terms in transition function f involved in the
condition in Equation (25). To handle the nonlinearity, a piecewise linear approximation
method is utilized. For a non-linear function g(x) with x € [ly, uy], it can be approximated
by two piecewise linear functions g;(x), g, (x) with the controlled approximation error g,
defined as

gi(x) < g(x) < gu(x), |gu(x) — g1 (x)| < T, Vx € [Iy, uyl.

Consider the condition in Equation (25) again. By utilizing the piecewise linear
approximation method, the optimization problem in Equation (30) can be transformed into
an MILP problem and be solved via the optimizer Gurobi. Thus, we can obtain the optimum
Prvor and the corresponding optimal solution X, together with the maximum relative
error Cryor- If Ppyor > 0 while the maximum relative error ¢g,,; < 1, then the globally
optimum pr. > 0, and the condition in Equation (25) is verified to be satisfied. Otherwise,
we randomly sample a set of points in a neighborhood of the optimal solution %r,,; and add
those data points that violate the condition in Equation (25) to the training dataset D3 in
the next iteration to refine the networks.

3.3. Algorithm

In the previous section, we introduced the complete synthesis process of candidates B,
p, and q and the MILP-based verification method. Next, the synthesis process of the barrier
certificate and relation functions is given in Algorithm 1.
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Algorithm 1 Barrier certificate and relation function synthesis.

Require:
Dt-cs I, control input #, maximum epoch number 7., data batches ny,c;, loss
function parameters a1_s, c1_4, learning rate Ir.
Ensure:
B, p,q
: Initialize parameters of neural network B, p and g
: Generate training datasets D1, Dy, D3, D4 and generate 1y, batches
for i =110 nepe do:
Lepoch = 0;
for j =1 to ny,yy, do:
calculate L,p,cp, according to Equation (22);
update(B, p, 9);
end for
If Lepocn = 0:
return candidate B, p, q;
: Validation of candidate B, p, g by solving MILP problems (28)—(30);
: The optimizer returns the optimal solution; f1,it, Punsafes PEvor and the corresponding
input ¥,jt, Xunsafer XEvol; ~ ~
13: If Plnits pl,lnsafw PEvol have the expected signs and glnitf CUnsufe/ gEvol <L
14:  Return success and B, p, g;
15: Else:
l6:  For the violation ¥y, Xtusafes ¥Evor, Sampling around them and add them to the
training set;
17: Repeat 3-10;
18: return failure;

RN A R e

== e
N = O

First, the respective weights among the layers and biases of neural networks B, p, and
q are stochastically initialized with a standard Gaussian distribution. Then, the training
datasets are generated (lines 1-2). In each epoch, with the loss function according to
Equation (22) and the Adam [41] optimizer, the weights and biases of the networks are
updated in a backpropagation. By minimizing L to zero, we find the candidates B, p, and gq
(lines 3-10). With the help of the optimization tool Gurobi, the verification of candidates B,
p, and q can be transformed into the optimization problems in Equations (28)-(30). We find
the current optimal solutions pyit, Otnsafes PEvor and the corresponding inputs ¥y, Xtinsafer
¥Eyo1 Tespectively. If the current optimal solutions fiyit, Punsafes PEvor have the expected
signs, and &;,,i;, & 1nsa fer Zrool < 1, then the candidates B, p, and g are globally consistent
with the constraints in the conditions in Equations (23)—(25). Then, we return success and
B, p, and g (Line 14). Otherwise, the sampling data points around the counterexamples
are returned and added to the corresponding training datasets to refine the networks
(lines 16-17). The training method based on Counterexample-Guided Inductive Synthesis
(CEGIS) can train the neural network quickly and accurately. The candidates are trained
and refined continuously until finding the real B, p, and g or reaching the maximum epoch
number. Figure 2 is the flowchart of Algorithm 1.
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Unsafes

Return success
and B, p, q

Return Failure

Figure 2. The flowchart of Algorithm 1.

4. Experimental Results and Analysis

We have implemented an augmented barrier certificate synthesis tool based on
Algorithm 1 using the Pytorch 1.7 platform and Gurobi 9.5. We apply our tool to ver-
ify a number of benchmark examples from the literature comprising both polynomial and
non-polynomial dynamics and compare it with the SOS programming method proposed
in [11].

4.1. Examples
Vehicle Model. Consider the following vehicle model [11]:

x1(t+1) = x1(t) + Atxa(t) + 0.5AT?u(t)
IT: ¢ xp(t+1) = xo(t) + Atu(t)
y(t) = h(x(t))

where x; and x; denote the absolute position and velocity of the vehicle, respectively, u
is the control input (acceleration), and AT is the sampling time. The output is assumed to
be the position of the vehicle on the road (i.e., h(x(t)) = x1(t)). Suppose that the initial
positions of the vehicle contain critical information which needs to be kept secret and there
is a malicious intruder who can observe the behavior of the vehicle and intends to carry
out an attack. Thus, we aim to verify the J-approximate initial-state opacity property for
this system, where J captures the security guarantee level in terms of the measurement
precision of the intruder.

Suppose that state space X = [0, 10] x [0,0.1], the initial set Xy = [0,10] x {0}, the se-
cret set X; = [0,1] x [0,0.1], the non-secret set X,,; = [1,10] x [0,0.1], and the control
input set U = [—0.05,0.05]. For the augmented system IT x I1, the initial set ® = {x €
[0,1] x {0} and & € [1,10] x {0}|& = p(x), (x; — #1)? < 62}, where p(x) is a relation func-
tion defined in Equation (10) and the unsafe set @, = {(x;&) € X x X|(x; — £1)? > 6%}.

Now, we set the measurement accuracy to be § = 1 and search for the augmented
barrier certificate B satisfying the conditions in Theorem 2. By applying our approach,
we successfully obtain the neural augmented barrier certificate B and the neural relation
functions p and g, which are represented as once-hidden layer ReLU-activated neural

—~
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networks with 16 neurons per layer. Therefore, the /-approximate initial-state opacity of
the system I1 is guaranteed.

Figure 3 (left) depicts a phase portrait of the augmented system I x IT with x, =
%2 = 0. It is seen that in the projection space on the position plane, the zero sublevel
set of the barrier certificate B(x, %) (the yellow surface) separates ©, (the red region)
from all trajectories starting from o) (the pink line). Note that the initial set O (the pink
line), described by the neural relation function p, is a subset of the initial set ® (the green
triangle), which is defined in [11]. This means that our relaxed augmented barrier certificate
yields a weaker sufficient condition for the §-approximate initial-state opacity.

10

T1

L 1 L 1
0 2 4 6 8 10 Ty

Figure 3. (Left) Phase portrait of Example 1 with xp = ¥ = 0. The pink line and the green, red,
and yellow regions are the initial sets @)0 and Oy, the unsafe set ®, and the sub-level set of B(x, %),
respectively. (Right) State runs of IT x IT on the projection of the position plane starting from .
The blue region represents the unsafe set ®,,.

Figure 3 (right) shows the projection of a number of state trajectories on the position
plane of the augmented system IT x IT starting from the random initial states in ®; under
control input @t = q(x, &, u), with u taking values in U. It can be seen that any trajectory
starting from @y does not reach the unsafe set ®, (the blue region) as the time increases.
Three-dimensional model. In this example, we consider the following three-dimensional system:

x1(t+1) = x1(t) + 0.5x7(t) + x3(t) + 0.5u(t)
xp(t+ 1) = xo(t) + 0.5u(t)
x3(t+1) = 0.2(x3(t))% 4 0.05u(t)
y(t) = x1(t).

Suppose that state space X = [0,4] x [0,0.1] x [0,0.5], the initial set Xy = X, the secret
set X = [0,0.8] x [0,0.1] x [0,0.5], the non-secret set X,,s = [0.8,4] x [0,0.1] x [0,0.5],
and the control input set U = [0.03,0.05]. For the augmented system IT x IT, the initial
set @ = {x € [0,0.8] x [0,0.1] x [0,0.5], & € [0.8,4] x [0,0.1] x [0,0.5]|& = p(x), (x; —
£1)% < 62}, where p(x) is a relation function defined in Equation (10) and the unsafe set
O, = {(x;%) € X x X|(x; — #1)% > 6%}. We aim to verify the 6-approximate initial-state
opacity property for the system, where § = 2.2 captures the security guarantee level in
terms of the measurement precision of the intruder.

It suffices to synthesize certificate functions B, p, and g, satisfying the conditions
in Theorem 3. By applying our approach, we successfully obtain the neural augmented
barrier certificate B, represented as two hidden layer ReLU activated neural networks
with 16 neurons per layer, and the neural relation functions p and g, represented as one
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hidden layer ReLU activated neural networks with 10 neurons per layer. Therefore, the J-
approximate initial-state opacity of the given system I1 is guaranteed.

Figure 4 (left) depicts phase portrait of the augmented system I'1 x IT with x, = £, = 0.05
and x3 = %3 = 0.1. It is seen that in the projection space on the position plane, the zero
sub-level set of the barrier certificate B(x, &) (the yellow surface) separates ®, (the red
region) from all trajectories starting from @y (the pink line). Compared with the initial
set ©p (the green triangle), which is defined in [11], the initial set Op (the pink line) is
much smaller, which means that our relaxed augmented barrier certificate yields a weaker
sufficient condition for the J-approximate initial-state opacity.
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Figure 4. (Left) Phase portrait of Example 2 with x, = ¥ = 0.05 and x3 = ¥3 = 0.05. The pink
line and the green, red, and yellow regions are the initial sets C:)O and ©y, the unsafe set ©,,, and the
sub-level set of B(x, &), respectively. (Right) State runs of IT x IT on the projection of the x; plane
starting from @0. The blue region represents the unsafe set ©,.

Figure 4 (right) shows the projection of a number of state trajectories on the position
plane of the augmented system IT x IT starting from the random initial states in ®; under
control input it = q(x, &, u), with u taking values in U. It can be seen that all such trajectories
do not reach the unsafe set ®, (the blue region).

Non-polynomial model. Consider a non-polynomial system I1:

1(E+1) = x1(t) +xa(t) +u(t)
=14 x(t+1)=e2® +u(t) -1 (31)
(k) = x1 (k).

Suppose that the state set X = [1,5] x [0,0.1], the initial set Xo = [1,5] x [0,0.1],
the secret set X; = [1,1.1] x [0,0.1], the non-secret set X,;s = X\X;, and the control input
set U = [0.03,0.05]. We aim to verify the §-approximate initial-state opacity property for the
system, where § = 0.95 captures the security guarantee level in terms of the measurement
precision of the intruder.

For the augmented system IT x I, the initial set ® = {x € [1,1.1] x [0,0.1],
% € [1.1,5] x [0,0.1]|& = p(x), (x1 — £1)®> < 8%}, where p(x) is a relation function de-
fined in Equation (10) and the unsafe set @, = {[x; %] € X x X|(x; — £1)? > §2}. It suffices
to synthesize certificate functions B, p, and g, satisfying the conditions in Theorem 3. By ap-
plying our approach, we successfully obtain the neural augmented barrier certificate B,
represented as two hidden layer ReLU activated neural networks with 16 neurons per
layer, and the neural relation functions p and g, represented as one hidden layer ReLU acti-
vated neural networks with 16 neurons per layer. Therefore, the §-approximate initial-state
opacity of the given system I1 is guaranteed.
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Figure 5 (left) depicts a phase portrait of the augmented system IT x IT with x, =
%2 = 0. It is seen that in the projection space on the position plane, the zero sub-level set
of the barrier certificate B(x, &) (the yellow surface) separates ©,, (the red region) from
all trajectories starting from @ (the pink line). Clearly, the initial set @ (the pink line) is
much smaller than the initial set @ (the green triangle), which is defined in [11]. Figure 5
(right) shows the projection of a number of state trajectories on the position plane of the
augmented system IT x IT, starting from the random initial states in @, under control input
it =q(x,%, u), with u taking values in U. It is obvious that such trajectories does not reach
the unsafe set ®, (the blue region) as the time increases.

r]

Figure 5. (Left) Phase portrait of Example 2 with xp = ¥, = 0.05. The pink line and the green, red,
and yellow regions are the initial sets C:)O and Oy, the unsafe set ©,, and the sub-level set of B(x, &),
respectively. (Right) State runs of IT x IT on the projection of the x; plane starting from @0. The blue
region represents the unsafe set ®,.

4.2. Performance Evaluation

The statistics of our case studies are summarized in Table 1. |x| denotes the number of
augmented system variables, B, p, and g denote the structure of the neural network barrier
certificates and relation functions, and [r denotes the learning rate. aq, a2, a3, a4, and as
denote the weights of the sub-losses. The tolerances c1, c3, c3, and c4 are used for training
neural barrier certificates and relation functions.

Table 1. Performance evaluation.

Ex x| B p q Ir ®3  M1245 €1 c2 c3 cy
Ex1 4-16-1 2-16-2  5-16-1 0.01 1.2 1 0 0.01 0.01 0.001

4
Ex2 6 6-16-16-1 3-10-3 7-10-1 01 15 1 0.01 0.05 0.01 0.001
Ex3 4 4-16-1 2-16-2 5-16-1 0.01 1.2 1 0.01 0.05 0.01 0.001

For the vehicle model, note that the SOS programming method is presented in [11]
for computing the augmented barrier certificates, but it lacks soundness due to numerical
errors. More concretely, for the augmented barrier certificate B(x, &) and corresponding
control policy #(x, &, u) given in [11], there exist some counterexamples, such as (x1, £1, X2,
%2) =(0.5,1.25, 0, 0), (0, 1.0312, 0.0625, 0.0625), (0.25, 0.0625, 0.0625, 0.0977, —0.0488), which
violate the three conditions of the augmented barrier certificates defined in Theorem 1.

For the three-dimensional model, we also apply the SOS programming method pre-
sented in [11] to search for the augmented barrier certificate and the relation functions.
However, the SOS programming method cannot yield such certificate functions with a
degree less than six within one hour. The reason for this is that the size of the optimization
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problem derived from opacity verification grows exponentially with the number of state
variables and the degree of the polynomial involved in the system, which imposes a serious
size limitation on the system to be verified. For the augmented system I1 x I1, the number
of state variables is six, and the degree of the involved polynomials is three. Therefore,
due to the large size, the bilinear SOS program associated to opacity verification cannot be
solved efficiently.

For the non-polynomial model, note that SOS programming method in [11] cannot deal
with this non-polynomial model directly, and one should combine a recasting procedure to
transform it into an equivalent polynomial model with a much higher dimension.

It is interesting to investigate what impact a less conservative sufficient condition
on the synthesis of neural networks as barrier certificates and relation functions to verify
the approximate initial-state opacity has. For the three examples mentioned above, there
still exist counterexamples after multiple iterations of synthetic neural barrier certificates
and relation functions based on the conditions in [11], and there are also counterexamples
based on the SOS programming. This is because the conditions in [11] are too strict on the
initial region. Based on Theorem 3, we can synthesize the valid neural barrier certificates
and relation functions successfully with no counterexamples. As shown in the left part of
Figures 3-5, the initial region becomes much smaller under the premise of satisfying the
approximate initial-state opacity.

5. Conclusions

In this paper, a method for synthesizing neural augmented barrier certificates to verify
the approximate initial-state opacity of discrete-time control systems is presented. The exis-
tence of augmented barrier certificates can serve as a guarantee for approximate initial-state
opacity. We propose a novel form of augmented barrier certificates that generates a weaker
sufficient condition for the approximate initial-state opacity. We then employ an algorithmic
framework involving a learner for training neural certificates via the deep learning method
and alternate a verifier for verifying the candidate certificates by solving several mixed-
integer linear programs. The verifier either ensures the validity of the candidate certificates
or yields counterexamples for further training. The effectiveness of the proposed approach
is illustrated via several numerical examples.
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