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Abstract: This paper puts forward a novel output feedback model reference adaptive control (MRAC)
scheme for solving an adaptive output tracking problem. The proposed control scheme only needs a
scalar function to be updated online, which decreases the system adaptation complexity, compared
to the existing MRAC schemes. Furthermore, the closed-loop signal boundedness and asymptotic
output tracking are guaranteed with the proposed MRAC scheme. A simulation study is carried out
to verify the effectiveness of the established approach.
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1. Introduction

Mathematical models are essential for capturing and investigating the physical phenom-
ena that undergo spatiotemporal evolution in most scientific and engineering applications.
These models are generally obtained using the first principles of physics and fundamental
physical laws. Generally, it is difficult or impossible to construct a precise mathematical
model of physical plants due to various uncertainties and disturbances. As a result, how to
control uncertain systems is one of the most challenging and meaningful topics.

It is well-known that robust control techniques can be employed for dynamical sys-
tems when mathematical models fail to accurately reflect physical phenomena due to the
uncertainties of these systems [1–3]. However, such control approaches need the knowl-
edge of characterized boundaries coming from system uncertainty parameterization, which
may not be easy to determine in practice. Furthermore, in the presence of great uncertainty
levels, these methods may not meet the designed system-performance requirements. On
the other hand, adaptive control techniques [4–6] can handle high levels of uncertainty and
require less modeling information compared to robust control approaches. Due to these
factors, the adaptive control methodology is a viable option for numerous scientific and
technical applications [7–9]. For example, in [7], an adaptive neuro-fuzzy system (ANFIS)
was applied for grasping the force regulation of an unknown contact mechanism. For
uncertain Rössler chaotic systems with unknown delays, an adaptive memoryless control
scheme was developed in [9] to suppress chaotic phenomena with multiple delays and
unknown uncertainties.

The model reference adaptive control (MRAC), which was originally introduced by
Whitaker et al. [10,11], is a widely used adaptive control technique. The essential feature of
MRAC is to develop feedback controller structures and controller parameter-updating laws
to ensure the asymptotic output or state tracking of an ideal reference model system, as well
as closed-loop signals boundedness, despite the system parameters uncertainties [12–14].
Much effort has been dedicated to the development of MRAC theory. The current results
include state feedback MRAC for state tracking [15,16]; state feedback MRAC for output
tracking [17,18]; and output feedback MRAC for output tracking [19,20]. When the whole
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state vector is difficult to obtain, output feedback MRAC for output tracking receives
increasing attention. It is well-known that the adaptive controller with a standard update
law [5] can make the output error dynamics between a controlled system and its reference
model converge to zero asymptotically. However, its controller structure is complicated,
and the computational burden is large, which may limit its applications.

In this paper, we focus on the synthesis of an output feedback MRAC for a class of
dynamical systems described by a transfer function, with the system’s input and output as
the only available signals. The structure of the controller is inspired by the work of Ioannou
and Sun [19]. The major contributions of this work include:

1. Developing a novel output feedback MRAC scheme that can guarantee asymptotic
output tracking and closed-loop signal boundedness;

2. Using the proposed control scheme, only a scalar function needs to be updated
online, which reduces the system adaptation complexity compared to the current
MRAC scheme;

3. Conducting a comprehensive analysis of stability and tracking performance for the
MRAC design.

The paper is organized as follows. The problem statement is formulated in Section 2.
Section 3 explains the adaptive controller structure. The novel adaptive approach for
updating the controller parameters is proposed in Section 4, as well as an investigation
of its stability properties. In Section 5, the simulation results are reported. The work’s
conclusions are found in Section 6.

2. Statement of the Problem

We consider the single-input single-output (SISO) dynamical system, which is repre-
sented by

ẋp(t) = Apxp(t) + Bpu(t);

yp(t) = hT
p xp(t)

(1)

where u : R+ → R is the input, and yp : R+ → R is the output, and xp : R+ → Rn

is the n-dimensional system state vector. Let the triple {hT
p , Ap, Bp} be observable and

controllable and have unknown elements. In the case of systems where the whole state is
not accessible, only the system output is measured. The corresponding transfer function of
the system is provided by

Wc(s) = kc
Zc(s)
Rc(s)

(2)

where Zc(s) and Rc(s) are monic polynomials of order n− 1 and n, respectively.
The reference model is chosen as follows:

ym(t) = Wm(s)[r](t) = km
Zm(s)
Rm(s)

[r](t), (3)

where ym(t) ∈ R is the reference model output, and r(t) ∈ R is a uniformly bounded and
piecewise-continuous reference input. Zm(s) and Rm(s) are monic Hurwitz polynomials of
degrees n− 1 and n, respectively.

The objective is to determine an output feedback controller u(t), so that all the system
parameters and signals remain bounded, and, ideally, that the output signal yp(t) asymp-
totically approaches the desired reference model output ym(t) under the holding of the
following assumptions:
Assumptions:

(1) Zc(s) and Rc(s) are coprime polynomials.
(2) Zc(s) is Hurwitz polynomial, that is, its roots lie on the left half-plane or imaginary

axis of the complex plane.
(3) Wm(s) is a strictly positive real (SPR) transfer function.
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Assuming that the system output yp(t) is equal to the reference output ym(t) produces

ym(t) = Wm(s)[r](t) = Wc(s)[u∗](t) = yp(t). (4)

The desired input u∗(t) ∈ R is constructed as u∗(t) = θ∗Tw(t), where θ∗ is the desired
controller parameter vector. On this basis, the goal of this paper is transformed into the
estimation of the parameter θ∗ before ym(t) is perfectly approached by yp(t). The actual
controller is u(t) = θT(t)w(t), where parameter vector θ(t) is the estimate of the desired
controller parameter vector θ∗. Details of the controller structure can be shown in the
next section.

3. Controller Structure

The controller structure selected in this paper is shown in Figure 1.

Figure 1. Visualization of the controller structure.

The controller is described completely by the differential equation

ẇ1(t) = Λw1(t) + `u(t);

ẇ2(t) = Λw2(t) + `yp(t);

w(t)T , [r(t), wT
1 (t), yp(t), wT

2 (t)];

θ(t)T , [k(t), θT
1 (t), θ0(t), θT

2 (t)];

u(t) = θ(t)Tw(t)

(5)

where k : R+ → R, θ1, w1 : R+ → Rn−1, θ0 : R+ → R, θ2, w2 : R+ → Rn−1, Λ ∈
R(n−1)×(n−1) is an asymptotically stable matrix with M(s) as its characteristic polyno-
mial, and (Λ, `) is controllable. It follows that, when the control parameters k(t), θ1(t),
θ0(t), θ2(t) assume constant values kv, θ1v, θ0v, θ2v, respectively, the transfer functions of the
feedforward and the feedback controllers are, respectively,

W1c(s) = kv
M(s)

M(s)− C(s)

where
C(s)
M(s)

, θT
1v(sI −Λ)−1`,

and

W2c(s) =
D(s)
M(s)

, θ0v + θT
2v(sI −Λ)−1`.

The overall transfer function of the system combined with the controller can be
written as

W(s) =
kvkcZc(s)M(s)

(M(s)− C(s))Rc(s)− kcZc(s)D(s)
(6)
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where M(s) is a monic polynomial of degree n− 1 and C(s) and D(s) are polynomials of
degree n− 2 and n− 1, respectively. The parameter vector θ1 determines the coefficients of
C(s), while θ0 and θ2 together determine those of D(s).

Let C∗(s) and D∗(s) be polynomials in s such that

M(s)− C∗(s) = Zc(s), Rc(s)− kcD∗(s) = Rm(s).

Further,let M(s) = Zm(s). Then scalars k∗, θ∗0 and vectors θ∗1 and θ∗2 exist such that

k∗ =
km

kc
,

θ∗T1 (sI −Λ)−1` =
C∗(s)
M(s)

,

θ∗0 + θ∗T2 (sI −Λ)−1` =
D∗(s)
M(s)

.

Choosing θ(t) ≡ θ∗, where the ideal controller parameter vector θ∗ is defined as

θ∗T , [k∗, θ∗T1 , θ∗0 , θ∗T2 ],

the transfer function W(s) becomes

W(s) = km
Zc(s)Zm(s)

Zc(s)[Rc(s)− kcD∗(s)]
= Wm(s).

The differential equation describing the system together with the controller can be
expressed as

ẋp(t) = Apxp(t) + Bp(θ(t)Tw(t));

ẇ1(t) = Λw1(t) + `(θ(t)Tw(t));

ẇ2(t) = Λw2(t) + `(hT
p xp(t)).

(7)

In the adaptive case, we define the parameter errors as follows:

k̃(t) , k(t)− k∗, θ̃0(t) , θ0(t)− θ∗0 , θ̃1(t) , θ1(t)− θ∗1 ,

θ̃2(t) , θ2(t)− θ∗2 , φ(t)T , [k̃(t), θ̃T
1 (t), θ̃0(t), θ̃T

2 (t)].

Then, (7) can be rewritten as

ẋ(t) = Acx(t) + Bc(φ
T(t)w(t) + k∗r(t));

yp(t) = hT
c x(t)

(8)

where

Ac =

 Ap + θ∗0 BphT
p Bpθ∗T1 Bpθ∗T2

θ∗0`hT
p Λ + `θ∗T1 `θ∗T2

`hT
p 0 Λ

,

Bc =

 Bp
`
0

;

hc =
[

hT
p 0 0

]T
, x =

[
xT

p wT
1 wT

2

]T
. (9)
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Since W(s) ≡ Wm(s) when θ(t) ≡ θ∗, it follows that the reference model can be
described by the (3n− 2)th order difference equation

ẋmr(t) = Acxmr(t) + Bck∗r(t);

ym(t) = hT
c xmr(t) = hT

p xm(t)
(10)

where

xmr = [xT
m, wT

m1, wT
m2]

T ,

hT
c (sI − Ac)

−1Bc =
kc

km
Wm(s).

(11)

As a result, the error equation for the over system can be written as

ė(t) = Ace(t) + Bc[φ(t)Tw(t)];

e1(t) = hT
c e(t)

(12)

where e(t) = x(t)− xmr(t) is inaccessible and e1(t) = yp(t)− ym(t) corresponds to the
output error. In addition, in this configuration,

We(s) = hT
c (sI − Ac)

−1Bc =
1
k∗

Wm(s) (13)

is a transfer function that is strictly positive real (SPR).
The standard adaptive update law [5] for the dynamical systems with the relative

degree n∗ = 1 can be expressed as

θ̇(t) = −Γsw(t)e1(t) (14)

where Γs = ΓT
s > 0 is a gain matrix, and e1(t) = yp(t)− ym(t) is the output error. The adap-

tive controller with standard update law (14) can make the output error dynamics between
the controlled system and reference model converge to zero asymptotically. However, this
controller has a large computational burden. In detail, the adaptive controller requires
estimating a number of unknown updated parameters online. θ(t) ∈ R2n is an updated
parameters vector satisfying 2n update laws. Furthermore, the number of adaption param-
eters to be updated online with this classical control scheme will increase as the number of
system states increases. This undoubtedly increases the computational cost and resource
consumption for increasingly complex dynamic systems. Thus, reducing the number of
parameters to be updated online is a significant problem for the output feedback MRAC.

4. Design and Stability Properties of the Proposed MRAC Scheme

In this section, we provide the design and stability properties of the proposed MRAC scheme.
Following the aforementioned analysis, we further explore an adaptive control scheme

that reduces the number of adaptive update laws. For this purpose, we design the scalar
function ψ(t) ∈ R. Accordingly, θ̇(t) = δψ̇(t), where δ = (δi) ∈ R2n is a design parameter
vector satisfying δi 6= 0 for some i ∈ (1, . . . , n). Now, let the parameter error have the
form given by φ(t) = δψ(t) to find the scalar update law for the MRAC. The system error
dynamics can, thus, be written as follows:

ė(t) = Ace(t) + BcδTψ(t)w(t);

e1(t) = hT
c e(t).

(15)

The following theorem presents the major finding of this study.
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Theorem 1. Consider the dynamical system denoted by (1), the designed reference model denoted
by (3) under the aforementioned assumptions, and the control law defined by (5). When the
parameter update laws are designed as

θ̇(t) = δψ̇(t) (16)

with the scalar update law

ψ̇(t) = −
eT

1 (t)δ
Tw(t)

tr(δTΓδ)
, (17)

where Γ = ΓT > 0, e1(t) = yp(t)− ym(t). Then, all closed-loop signals are bounded, and the
asymptotic tracking is achieved as lim

t→∞
| yp(t)− ym(t) |= 0.

Proof. Consider the following Lyapunov function candidate, which is positive definite and
decrescent

V(e(t), ψ(t)) = 1
2 eT(t)Pe(t) + 1

2 tr[(δTψ(t))Γ(δψ(t))] (18)

where P and Γ are a constant symmetric and positive definite matrix.
Differentiating expression (18) yields

V̇(e(t), ψ(t)) = eT(t)Pė(t) + tr[(δTψ(t))Γ(δψ̇(t))]. (19)

Substituting expression (15) in (19) and using the properties of the transposition, we obtain

V̇(e(t), ψ(t)) =
1
2

eT(t)(PAc + AT
c P)e(t) + eT(t)PBcδTψ(t)w(t) + tr[(δTψ(t))Γ(δψ̇(t))]

=
1
2

eT(t)(PAc + AT
c P)e(t) + eT(t)PBcδTψ(t)w(t) + ψ(t)tr(δTΓδ)ψ̇(t).

(20)

Since the transfer function (13) is SPR, using the Meyer–Kalman–Yakubovich (MKY)
Lemma [5], we can ensure that given a matrix Q = QT > 0, there exists a P = PT > 0,
such that {

PAc + AT
c P = −Q,

bT
c P = hT

c .
(21)

Using this fact in (21), it follows that

V̇(e(t), ψ(t)) = −1
2

eT(t)Qe(t) + eT(t)hcδTψ(t)w(t) + ψ(t)tr(δTΓδ)ψ̇(t)

= −1
2

eT(t)Qe(t) + eT
1 (t)δ

Tψ(t)w(t) + ψ(t)tr(δTΓδ)ψ̇(t).
(22)

If we choose the scalar update law as

ψ̇(t) = −
eT

1 (t)δ
Tw(t)

tr(δTΓδ)
, (23)

then the derivative of the Lyapunov function (22) becomes

V̇(e(t), ψ(t)) = −1
2

eT(t)Qe(t). (24)

Accordingly,

V̇(e(t), ψ(t)) ≤ −1
2

λmin(Q)‖e(t)‖2 ≤ 0. (25)

In addition, V̇(e(t), ψ(t)) can be shown to be uniformly continuous by examing the
boundedness of its derivative. Then, using Barbalat’s Lemma [21], we can deduce that
V̇(e(t), ψ(t)) → 0, and hence e1(t) → 0. Therefore, the output tracking error is asymp-
totically stable and closed-loop signals remain bounded. This completes the proof of
Theorem 1.
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Complexity analysis. To better illustrate the computational advantage of the pro-
posed MRAC scheme and the clarity of presentation, we, respectively, list the adaptive
controllers and update laws involved as follows:

From Table 1, we can see that the form of the adaptive controller we designed is the
same as the standard adaptive controller; both of them are u(t) = θ(t)Tw(t). They all need
to design θ(t). The difference between the calculation method in the standard adaptive
controller and ours is that the standard adaptive controller needs to calculate 2n update
laws online, θ̇(t) = −Γsw(t)e1(t), and ours only needs to calculate one, θ̇(t) = δψ̇(t) =

−δ
eT

1 (t)δ
Tw(t)

tr(δTΓδ)
. Moreover, the computational complexity of each update law in the standard

adaptive controller is similar to that of the scalar update law in our method. In general, the
computational complexity of the adaptive controller in the standard adaptive controller is
2n times that of ours.

Table 1. The adaptive controllers and update laws in the standard MRAC and this paper.

Adaptive Controller The Update Law

The adaptive controller with standard update law (14) u(t) = θ(t)Tw(t) θ̇(t) = −Γsw(t)e1(t)

The adaptive controller based on the scalar update law (16) u(t) = θ(t)Tw(t) θ̇(t) = δψ̇(t) = −δ
eT

1 (t)δ
Tw(t)

tr(δTΓδ)

Remark 1. To further illustrate the effectiveness of the adaptive controller based on the scalar
update law (16) more briefly, we give a comparison of the number of update laws and the stability
property of the output error dynamics with the adaptive controller with standard update law (14) in
Table 2.

Table 2. The comparison of computation and stability property.

Controller
The Number Stability Property of the

of Update Laws Output Error Dynamics
The adaptive controller with standard update law (14) 2n asymptotically stable

The adaptive controller based on the scalar update law (16) 1 asymptotically stable

Remark 2. Similar to the study of the classical error models [5,22], we can obtain that if the
signal vector w(t) satisfies the persistent excitation (PE) condition [23], namely, there exist positive
constants T and ε0, the following equation holds for any t ≥ t0∫ t+T

t
w(τ)w(τ)Tdτ ≥ ε0 I,

then the parameter error φ(t) can converge to zero.

5. Simulation

In this section, the following adaptive control issue will be simulated to show the
utility of the suggested approach.

The transfer functions of the controlled system and the reference model are selected
to be

Wc(s) =
s + 1

s2 − 5s + 6
(26)

and
Wm(s) =

s + 2
s2 + 3s + 6

(27)

respectively. The fix control parameters Λ and ` in (5) were chosen as Λ = −2 and
` = 1. In addtion, therefore, we obtain that the true values of the control parameter are
θ∗ = [1, 1,−8, 16]T . From (14) and (16), we can obtain that the number of update laws in
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the adaptive controller with the method in standard MRAC and of this paper are 4 and 1,
respectively.

To validate the tracking effectiveness of the developed adaptive controller, we apply
our proposed MRAC scheme to the adaptive parameters. For convenience, we chose
Γ = I2, δ = [−1, 1, 3, 2]T , yp(0) = [0.2, 0.2]T , ym(0) = [0, 0]T ; the other initial conditions
were set to be zero. The simulation findings are given in Figure 2 for the case r(t) =
30 ∗ sin(8 ∗ t) + 20 ∗ cos(6 ∗ t).

The time response of the controlled system output and the reference model output
is shown in Figure 2a. We can see that the system response follows the reference trajec-
tory rapidly.

Figure 2b presents the time evolution of the control input signal, confirming that
the control signal remains within acceptable ranges. Figure 2c,d show the system output
tracking error and adaptation parameter vectors, respectively, where we demonstrate the
online adaptation of the controller parameter such that the tracking error convergence
towards zero and closed-loop system signals are bounded. Moreover, Figure 2e,f show
the time evolution of scalar function ψ(t) and state error e(t), respectively, illustrating the
boundedness of the scalar function ψ(t), and the asymptotic convergence of e(t) to zero.

Furthermore, under the same condition, we compared the system output y and the
output error e1 with the standard MRAC. For convenience, we chose Γs = I2 in the standard
adaptive controller. Figure 3 shows the simulation findings.

From Figure 3, we can find that both the proposed MRAC scheme and the standard
MRAC scheme can make the output error dynamic asymptotically stable. In addition, we
can also see that the proposed controller maintains better control performance compared to
the standard adaptive controller, in terms of tracking precision and rapidity.

In addition, we also compared the running times of the system with these two adaptive
controllers. The running results show that it needs 0.1490 s to complete computation with
the standard MRAC scheme, while in this example it only takes 0.0480 s using the proposed
controller. Therefore, the method in this paper is computationally less demanding than the
methods in standard MRAC. Based on the above numerical results, our control strategy can
have fewer update parameters and less computational burden than the standard MRAC
scheme, while maintaining the asymptotic stability of the system output error dynamics.
Case o f inter f erence:

In order to make the simulation more realistic, an additive interference was inserted
to the system (26) at t = 10 s. For this case, the simulation result is shown in Figure 4. This
example shows that, even in case of parametric variations, the proposed MRAC scheme
maintains its performances and the asymptotic tracking of the reference model trajectory.
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6. Conclusions

Due to various uncertainties, it is difficult or impossible to construct accurate mathe-
matical models of physical plants. When the whole state vector is difficult to obtain, output
feedback MRAC can deal with system uncertainty, so it has received increasing attention
among researchers. However, the existing adaptive controller structure is complicated, and
the computational burden is large, which may limit its applications. Therefore, in this paper,
we developed a novel output feedback MRAC framework that ensures asymptotic output
tracking and signal boundedness in a closed loop. Using the control scheme, only one
parameter needs to be updated online, so the computational burden problem in the existing
output feedback MRAC can be reduced. The adaptive control design’s closed-loop system
stability and tracking performance were thoroughly analyzed. We also presented simula-
tion results for the proposed approach, demonstrating that the required adaptive control
system performance was achieved. Further work will include extensions to fractional-order
model reference adaptive control (FOMRAC).
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