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Abstract: Traditional electricity price forecasting tends to adopt time-domain forecasting methods
based on time series, which fail to make full use of the regional information of the electricity market,
and ignore the extra-territorial factors affecting electricity price within the region under cross-regional
transmission conditions. In order to improve the accuracy of electricity price forecasting, this paper
proposes a novel spatio-temporal prediction model, which is combined with the graph convolutional
network (GCN) and the temporal convolutional network (TCN). First, the model automatically
extracts the relationships between price areas through the graph construction module. Then, the
mix-jump GCN is used to capture the spatial dependence, and the dilated splicing TCN is used to
capture the temporal dependence and forecast electricity price for all price areas. The results show
that the model outperforms other models in both one-step forecasting and multi-step forecasting,
indicating that the model has superior performance in electricity price forecasting.

Keywords: electricity price forecasting; graph convolutional network; temporal convolutional net-
work; spatio-temporal forecasting algorithm

MSC: 68T07

1. Introduction

Over the past few decades, as electricity reforms have progressed, in many countries,
electricity markets have shifted from traditional government monopolies to a deregulated
and competitive market [1]. In a free competitive market, electricity can be traded like
ordinary commodities, and its price can truly reflect the supply and demand situation in
the market, and directly affect the interests of market players [2]. Consequently, accurate
and effective forecasting of electricity price is of great importance for market entities to
make decision plans and grasp market laws. For power generators, accurate forecasting of
electricity prices allows them to develop reasonable bidding strategies to maximize revenue.
For power sales companies, advance forecasting of electricity prices allows them to buy
power at the lowest possible price. Market managers can better manage and optimize the
electricity market by anticipating changes in electricity prices. However, how to accurately
predict electricity price trends is still a problem that deserves more in-depth study [3],
since the series is susceptible to geography, weather, and various other conditions, and is
nonlinear and nonstationary in nature [4].

There are two main directions of research on electricity price forecasting. One is
the market simulation forecasting method, which uses the mechanism of electricity price
formation to simulate market transactions by forecasting the electricity supply and demand
in the market to obtain the electricity price [5]. The other is data analysis forecasting, which
is based on the assumption that electricity price series data are cyclical and regular, and
analyzes and uses the past electricity price to achieve the forecast of the future electricity
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price. As mentioned above, electricity price is susceptible to other factors, and the huge
data size of the current electricity market and the complex electrical connection between
price areas make it difficult to apply market simulation forecasting methods to actual
decision-making. Therefore, the data analysis forecasting method has become the main
research direction of electricity price forecasting [6].

According to the relevant literature [7], data analysis and prediction methods are
mainly focused on two aspects, namely, statistical prediction methods and artificial intelli-
gence (AI) based methods [8]. Common statistical models mainly contain autoregressive
moving average (ARMA) [9], autoregressive integrated moving average (ARIMA) [10],
vector auto-regression (VAR) [11], and generalized autoregressive conditional heteroskedas-
ticity (GARCH) [12], which perform well in relatively stable electricity price series [13].

Due to the nonlinear and nonstationary nature of electricity price, statistical models
have been criticized for their limitations in handling this type of data [14]. In recent years,
emerging artificial intelligence algorithms have been widely used in the prediction of
electricity price. For instance, Li et al. [15] forecasted electricity price based on a long short-
term memory (LSTM) neural network, using a test period of 4 weeks. Aslam et al. [16]
focused on the performance of a convolutional network (CNN) in medium-term electricity
price forecasting, and showed that the CNN model performs well. Yang et al. [17] built an
innovative model based on a deep neural network (DNN) for electricity price forecasting,
using a test dataset spanning a month. Chen et al. [18] developed a bidirectional recurrent
neural network (RNN) to forecast prices in the French market, and the proposed model
was compared with the deep learning method and a regression method. Xiao et al. [19]
used an innovative model based on an extreme learning machine (ELM) to implement day-
ahead electricity price forecasting, and it was found that ELM is suitable for the day-ahead
electricity price forecasting task.

The above improvements enhance the performance of the algorithm, but they are all
based on a single time series data analysis and algorithm improvement in the time domain,
ignoring the geospatial influence factors under cross-regional transmission conditions of
a large grid [20]. In order to expand markets and increase market entities to enhance
competition and promote the optimal allocation of resources, major economies are actively
promoting the cross-region and cross-border power markets, such as AEMO in Australia,
PJM in the United States, and Nord Pool in Europe [21]. The increasing frequency of cross-
region and cross-border power market transactions and the long-distance transmission of
power have also introduced extraterritorial market entities to the region, which affects the
electricity price in the region [22]. In other words, forecasting regional electricity price in
the electricity market relies not only on the historical series of the region, but also on the
influence of neighboring regional electricity price on it.

Mathematically speaking, this is multivariate time series forecasting, and one of its
basic assumptions is that its variables are interdependent. However, the above time-domain-
based approaches do not effectively capture the potential spatial dependence between price
areas. Statistical methods, such as VAR and GARCH, although widely used for single
time series forecasting due to their simplicity and interpretability, do not scale well to
multivariate time series data because the model complexity of this method increases at a
high rate with the number of variables, and when there are more variables, the problem of
over-fitting is encountered. [23]. Deep learning-based methods are excellent for capturing
nonlinear patterns, such as LSTNet [24] and TPA-LSTM [25], which use CNN to obtain local
dependencies between variables and RNN to maintain long-term temporal dependencies.
However, the interactions between variables are encapsulated into a global hidden state,
which weakens the interpretability of the model.

Graph is a special data form that is widely used to describe power system topology.
However, because the graph data carried by the graph model is a non-Euclidean structure,
it has long been difficult for it to be trained by ordinary neural networks. Recently, GCN has
been considered to be better able to handle graph data due to their local connectivity and
combinatorial nature [26]. GCN enables each node in the graph to extract information from
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surrounding nodes, allowing information to be propagated through the graph structure.
From a graph perspective, the variables in a multivariate time series can be considered as
nodes in a graph, which interact with each other through potential dependencies [27].

The performance of the prediction models including GCN is superior compared to the
common method [28]. However, GCN still faces the following problems in implementing
multivariate time series prediction tasks: (1) existing GCN methods need to be based on a
pre-given graph structure; however, multivariate time series do not have an explicit graph
structure. Hidden relationships between variables need to be mined from the data. (2) Even
with available graph structures, existing GCN methods ignore the fact that manually
predefined graph structures may not be optimal and should be optimized during training.

Based on the above analysis, a novel spatio-temporal prediction model is proposed to
improve the forecasting accuracy of electricity price, termed as T-GCN. Firstly, the model
extracts the graph adjacency matrix between variables based on multivariate time series
data through a graph construction module. Next, the mix-jump GCN is used to capture
the spatial dependence and the dilated splicing TCN is used to capture the temporal
dependence. Finally, the output module converts the hidden states into the required output
dimension to obtain the forecast sequence of electricity prices.

Based on the above research, the main innovations and contributions of this paper
can be summarized as the following three aspects: (1) Creatively using GCN to forecast
electricity prices in multiple price areas in the electricity market from the perspective of
time and space. (2) This paper proposed a novel graph construction module to capture
the hidden spatial correlation between variables, which solves the problem that there is
no predefined graph structure for multivariate time series and the graph structure is not
optimal. (3) This paper develops a modified mix-jump GCN that avoids the gradient
problem that often occurs with GCN. An improved dilated splicing TCN is also developed
in order to be able to capture multiple common time models.

The rest of this article is composed as follows. Section 2 describes in detail the
mathematical principle of the prediction task and the proposed spatio-temporal prediction
model used in this paper. After establishing the proposed model, in Section 3, the electricity
price series of fifteen price areas from Nord Pool are collected for empirical research.
Section 4 is the concluding remarks.

2. Methods
2.1. Electricity Price Series Modeling

Before presenting the network structure, we first analyze the nature of the AI network-
based model that realizes electricity price forecasting. Suppose a known series of electricity
price x0, . . . , xT is given as input, and we wish to predict some corresponding electricity
price series y0, . . . , yN as output. Formally, the AI network that accomplishes the electricity
price prediction task is any function f that generates the mapping

ŷ0, . . . , ŷN = f (x0, . . . , xT) (1)

and satisfies the causal constraint that ŷ0, . . . , ŷN , depending only on previously observed
x0, . . . , xT and not on any “future” inputs. In the electricity price prediction task, the
AI network uses learning methods, such as gradient descent, to iteratively update the
parameters in the network f based on historical data (i.e., the training set), with the goal of
minimizing the expected loss between the mapped predicted electricity price and the actual
electricity price L(y0, . . . , yN , f (x0, . . . , xT)), thereby establishing a mapping relationship
from input to output.

The electricity price in the power market undergoes changes in the time domain,
which are subject to geographical factors, human life, and production laws, and reflect
certain periodicity and regularity. Therefore, the mapping relationship of past electricity
price (i.e., the training set) also holds for future electricity price (i.e., the test set), thus
enabling the prediction of future electricity price. The intrinsic regularity of electricity
prices in the electricity market provides the theoretical support for this AI network model.



Mathematics 2022, 10, 2366 4 of 16

2.2. Graph Convolution Module
2.2.1. Traditional Propagation Layer

The complex spatial dependence between different price areas in the electricity market
is a key problem in electricity price forecasting. Traditional convolutional neural networks
(CNN) cannot handle complex topologies reflecting a large-scale cross-regional transmis-
sion network, and thus cannot accurately capture spatial correlations. Recently, GCN,
which can handle irregular graph structure data, has attracted extensive attention. A
graph is formulated as G = (V, E), where V is the set of nodes, and E is the set of edges.
GCN propagates the implicit graph information using the structural information about the
edge–vertex connections of the graph and the attribute information attached to the graph
structure. The traditional GCN model with the following layer-wise propagation rule:

H(l+1) = f (H(l), A) = σ(D̃−
1
2 ÃD̃−

1
2 H(l)W(l)) (2)

where H(l) is the output of l layer, H(l) ∈ Rn×d; n is the number of nodes in the graph,
G = (V, E); and each node is represented by a d-dimensional feature vector. A is the adja-
cency matrix of the undirected graph, Ã = A + IN ; IN is the identity matrix; D̃ is the degree
matrix; D̃ = ∑j Ãij; W(l) ∈ Rd×his the parameter to be trained. h is the output dimension;
σ(·) denotes an activation function.

GCN is concerned with the information within the kth-order neighbors centered at
a node in the graph. Single layer GCN can only extract the information of first-order
neighbors. In order to extract information from a wider range of nodes in the graph, this
can be achieved by stacking multiple layers of GCN, as shown in Figure 1.
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Figure 1. Schematic diagram of GCN extracting spatial features. Figure 1. Schematic diagram of GCN extracting spatial features.

2.2.2. Mix-Jump Propagation Layer

GCN can merge a node’s information with its neighbors’ information. For each
node, in order to extract its multi-order neighbors’ information, it is necessary to stack
multi-layer graph convolutional layers. However, as the number of graph convolution
layers increases, the node hiding state gradually converges to a single point, which means
that some information of the nodes’ original state will be lost [29]. Therefore, this paper
proposes the mix-jump propagation layer to cope with information flow between graph
nodes, which retains a part of the nodes’ original state during the propagation, so that the
nodes’ state can maintain the locality and globality after propagation. The composition



Mathematics 2022, 10, 2366 5 of 16

relationship between the graph convolution module and the mix-jump propagation layer
is shown in Figure 2.
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The proposed mix-jump layer consists of two parts: information propagation and
information filtering. As shown in Figure 3, it first propagates information horizontally and
then filters information vertically. The information propagation part is defined as follows:

H(l+1) = αHin + (1− α)(D̃−
1
2 ÃD̃−

1
2 H(l)) (3)

where α is the ratio of keeping the nodes’ original state, Hin is the hidden states output by
the preceding layer, H(0) = Hin. Typically, not all neighborhood information is valuable;
the information filtering part is used to filter out the unimportant information generated at
each jump. The information filtering part is defined as follows:

Hout =
L

∑
l=0

H(l)W(l) (4)

where L is the depth of propagation, Hout represents the output of this layer.
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2.3. Graph Construction Module

Existing GCN methods depend on manually predefined graphical structures to achieve
time series prediction. However, in most cases, there is no explicit graphical structure
for the multivariate time series, and the spatial dependence between multivariate time
series must be discovered from the data rather than provided as basic facts. Even if the
graphical structure is available, the manually predefined graphical structure may not be
optimal and should be updated during training [30]. To address this problem, based on
the findings of the literature [31], graphs can be trained from the backpropagation of the
loss function using gradient descent, and this paper proposes a graph construction module.
This module can model multivariate time series data, treat the variables in the multivariate
time series as nodes in the graph, describe the relationships between the nodes using a
graph adjacency matrix, and learn and update the internal graph structure simultaneously
during the training process. The basic steps of the graph construction model are as follows:

First, start with node embedding, i.e., the nodes are mapped to a low-dimensional
feature space and represented as a matrix, which can be expressed as:

G1 = tanh(βU1θ1) (5)

G2 = tanh(βU2θ2) (6)

where U1, U2 represent node embedding random initialization, which will be learned
during training; θ1, θ2 are model parameters; tanh is hyperbolic tangent function; β is the
saturation rate of the activation function.

Second, it generates graph adjacency matrix using the following equation:

A = ReLu(tanh(β(G1GT
2 − G2GT

1 ))) (7)

where ReLu is a rectified linear unit that regularizes the adjacency matrix.
Finally, for each node, choose the k nodes with the strongest spatial association with it

as connected nodes, and set the non-connected node weights to zero while preserving the
connected node weights. For i = 1, 2, . . . , n, compute the A as:

key = nontopk(A[i, :]) (8)

A[i, key] = 0 (9)

where n is the number of nodes in the graph, and nontopk(·) gets the index of non-top k
maximum value of a vector.

2.4. Temporal Convolution Module

The temporal dependence is another vital problem in electricity price forecasting.
Recurrent neural networks (RNN) are models dedicated to sequence data; however, the
architecture of RNN determines that it is prone to gradient explosion or gradient disap-
pearance during training. LSTM [32] and GRU [33] are used to solve the above problems,
but they have longer training time, more model parameters, and are prone to overfitting.
Recently, temporal convolutional networks (TCN) [34] have been shown to perform signifi-
cantly better than generic recurrent architectures, such as LSTM and GRU, in processing
sequence data, and they exhibit longer memory than recurrent architectures with the same
capacity. TCN captures the time dependence of sequence data through a one-dimension
convolutional filter. In order to capture associations between temporal models with differ-
ent lengths and process long time series, this paper proposes two dilated splicing layers
making up a temporal convolution module. There is a tangential hyperbolic activation
function behind one layer and a sigmoid activation function behind the other, both of which
act as gates to control the amount of information that can be passed to the next module.
The composition relationship between the dilated splicing layer and temporal convolution
module is shown in Figure 4.
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2.4.1. Splicing Architecture

Choosing the right convolutional kernel size is a critical step in building a convolu-
tional network: not too small to capture long-term temporal models fully or too large to
represent short-term temporal models delicately. Therefore, the convolution in this paper
is performed by applying the splicing architecture method, i.e., connecting the outputs of
convolution filters with different kernel sizes. Time models typically have several common
cycles, such as 7, 12, and 24. Therefore, splicing architecture in improved TCN consists of
four convolution kernels of sizes 1 × 2, 1 × 3, 1 × 6, and 1 × 7. These filter combinations
can capture the common cycles described above. For example, the combination of filters
1 × 7 and 1 × 6 can capture cycle 12.

2.4.2. Dilated Convolution

The receptive field of the convolutional network is linearly related to the network
depth and the kernel size. In order to deal with long-term sequences, it is often necessary
to use deeper networks or larger filters, which will increase the complexity of the model.
This paper adopts dilated convolution to reduce complication.

Dilated convolution is a convolution that skips input values of a certain step size in
order to obtain a larger receptive field. [35]. It is equivalent to convolution with a larger
filter that is obtained by dilating the original filter with zeros, but is significantly more
efficient. Figure 5 shows dilated convolution with dilation factors 1, 2, 4, and 8. Note that
dilated convolution with a dilation factor of 1 is equivalent to the standard convolution.
With only a few layers of dilated convolution, the network can have a large receptive field
while maintaining its computational efficiency.
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=
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where k is the filter size, d is the dilation factor. 

Figure 5. Visualization of a stack of dilated convolutional layers.
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2.4.3. Dilated Splicing Layer

Formally, the structure of modified TCN that incorporates splicing and dilated con-
volution is shown in Figure 6. For a 1D sequence input x ∈ RT and filters containing
f1×2 ∈ R2, f1×3 ∈ R3, f1×6 ∈ R6, and f1×7 ∈ R7, the modified TCN is expressed as follows:

x = splice(x� f1×2, x� f1×3, x� f1×6, x� f1×7) (10)

taking the output length of the largest filter as the standard, the outputs of the four filters
are truncated to the same length and connected across the channel dimension, the dilated
convolution operation x� f1×k on element t is defined as:

x� f1×k(t) =
k−1

∑
i=0

f1×k(i)x(t− d× i) (11)

where k is the filter size, d is the dilation factor.
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2.5. Residual Connections

Residual connections have been repeatedly shown to be important in maintaining the
stability and improving the accuracy of TCN [36]. Formally, the residual block is defined
as:

y = Activation(x + F(x)) (12)

where x and y are the input and output of the residual block, F is a series of transformations.
This ensures that layers are not learning the entire transformation, but rather, changes in
the identity mapping.

2.6. Model

As displayed in Figure 7, the proposed T-GCN model consists of a graph construc-
tion module, graph convolution modules, and temporal convolution modules. First, to
discover latent spatial dependencies between price areas, the graph construction module
computes the graph adjacency matrix by loss function and gradient descent, and then
feeds it into all the graph convolution modules. Then, graph convolution modules and
temporal convolution modules are interleaved to capture the spatio-temporal correlation
between multivariate time series data. Figure 7 illustrates the collaboration between graph
convolution modules and temporal convolution modules. To improve the stability and
accuracy of the model, the residual modules are used to connect the output of temporal
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convolution modules and the input of the output module. Finally, the output module
converts the hidden states into the required output dimension.
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We observe that multi-step forecasting generates much higher losses than one-step
forecasting. Therefore, in order to improve the prediction accuracy, this paper uses a
training algorithm for multi-step prediction task. Based on the idea of “from easy to
difficult”, the algorithm starts from solving the simplest one-step prediction task, and the
number of prediction steps gradually increases with the increase of iteration times until
the model can complete the more difficult multi-step prediction. The details are shown in
Algorithm 1.

Algorithm 1 The training algorithm of T-GCN.

1: Input: The initialized T-GCN model f with Ω, batch size b, step size s, learning rate ζ, the price
dataset O
2: set iter = 1, h = 1
3: repeat
4: extract a batch (x ∈ Rb×T×n×D, y ∈ Rb×T’×n) from O.
5: if iter% s = 0 and h < = T’ then
6: h = h + 1
7: end if
8: compute ŷ = f (x[:, :, :, :]; Ω)
9: compute L = loss (ŷ [:, : h, :], y[:, : h, :])
10: compute the stochastic gradient of Ω according to L.
11: update model parameters Ω according to their gradients and the learning rate ζ.
12: iter = iter + 1
13: until convergence

3. Experiments
3.1. Data Collection

This paper uses 15 regional electricity price series from the Nordic electricity market
for the empirical study. The Nordic electricity market is a regional electricity market that
includes several countries, such as Denmark, Sweden, and Norway. Due to geographical
and demographic factors, there is a mismatch between power resources and load in the
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Nordic region, with cheap hydropower concentrated in northern Norway, and expensive
thermal power concentrated in Denmark and Finland. In addition, the northern part of
the Nordic region is sparsely populated, and the load is low, whereas the load is mainly
concentrated in the densely populated and industrialized southern region. At the same
time, due to climatic factors, the generation capacity of hydropower also varies seasonally,
so that during the high wet season, hydropower concentrated in the northern part of
Norway is delivered to the southern part, whereas during the dry season, thermal power
from Denmark is delivered to the northern part. The above factors objectively contribute
to the formation of the Nordic regional market, which is divided into 15 price areas,
corresponding to the distribution of price areas as shown in Figure 8, with significantly
different electricity price series in different price areas. Therefore, the case used in this
paper can effectively reflect the validity of the proposed model.
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The electricity price in the Nordic electricity market has 24 observations per day, i.e.,
the time interval between observations is one hour. In this paper, electricity price data for
15 price areas from 1 June 2018 to 31 August 2018, with a total of 2208 observations, are
selected to demonstrate the usability of the proposed model. In addition, the first 80% of
the data is defined as the training set, and the last 20% as the training set.

For market players in the electricity market, multi-step-ahead forecasting is more
valuable than single-step-ahead forecasting. However, the accuracy of multi-step-ahead
prediction is usually inferior to that of single-step-ahead prediction due to the accumulation
of errors and the increase of uncertainty factors. [37]. This study is devoted to building
a new spatio-temporal forecasting model to achieve higher accuracy multi-step-ahead
electricity price forecasting.

To reduce the training time, we normalize the input data to the interval [0, 1].

3.2. Evaluation Metrics

This paper uses three common evaluation metrics to evaluate the effectiveness of the
proposed model, namely, mean absolute error (MAE), root mean square error (RMSE),
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and mean absolute percentage error (MAPE). The computational formulas of these three
evaluation metrics are provided as follows:

MAE =
1

MN

M

∑
j=1

N

∑
i=1

∣∣∣yj
i − ŷj

i

∣∣∣ (13)

RMSE =

√√√√ 1
MN

M

∑
j=1

N

∑
i=1

(yj
i − ŷj

i)
2

(14)

MAPE =
1

MN

M

∑
j=1

N

∑
i=1

∣∣∣∣∣y
j
i − ŷj

i

yj
i

∣∣∣∣∣ (15)

where yj
i and ŷj

i represent the real electricity price value and predicted value of the jth
observation point in the ith price area, respectively. M is the number of observations in the
time series; N is the number of price areas.

Specifically, smaller values of MAE, RMSE, and MAPE represent better predictions.

3.3. Experimental Results

We compare the performance of the T-GCN model with the following methods:

1. Autoregressive integrated moving average model (ARIMA) [38].
2. Support vector regression model (SVR) [39].
3. Graph convolutional network model (GCN), see Section 2.2 for details.
4. Temporal convolutional network model (TCN), see Section 2.4 for details.

The performance of the T-GCN model and other methods in the multi-step-ahead
electricity price forecasting task is shown in Table 1. It is not difficult to see that compared
with other methods, the T-GCN model has achieved the best evaluation index in all fore-
casting tasks, which proves its effectiveness in multi-regional electricity price forecasting
tasks. Figure 9 provides three histograms of MAE, RMSE, and MAPE values based on
different models, which present more intuitively the performance differences between the
different methods.

Table 1. Comparison of prediction performances of different models.

T Index ARIMA SVR GCN TCN T-GCN

1-h MAE 5.1537 3.3396 2.2115 2.0220 1.5979
RMSE 8.1943 5.3433 3.4941 3.1745 2.4799

MAPE(%) 9.33 6.04 3.82 3.63 2.82

2-h MAE 6.2299 5.1288 3.2331 2.5614 2.2652
RMSE 9.6862 8.2573 5.0759 4.0162 3.4912

MAPE(%) 11.15 9.23 5.68 4.51 3.98

3-h MAE 6.2376 5.9534 3.8765 2.9550 2.6800
RMSE 9.7306 9.4063 6.0473 4.6157 4.1127

MAPE(%) 11.17 10.71 7.01 5.38 4.71

4-h MAE 6.2539 6.2182 4.0456 3.3649 2.9038
RMSE 9.6935 9.9491 6.2707 5.2156 4.4272

MAPE(%) 11.19 11.31 7.20 6.07 5.12
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3.4. Discussion

(1) Higher prediction accuracy. It was found that neural network-based approaches that
include temporal feature modeling, such as T-GCN models and TCN models, typically
have better prediction accuracy than other methods, such as ARIMA models and SVR
models. For example, for a 1-h electricity price prediction task, compared with the
ARIMA model, MAE errors of the T-GCN model and TCN model are reduced by
68.99% and 60.76%, respectively; RMSE errors are reduced by 69.73% and 61.25%,
respectively. Compared with the SVR model, MAE errors of the T-GCN model and
TCN model are reduced by 52.15% and 39.45%, and RMSE errors are reduced by
53.59% and 40.59%. This is mainly due to the difficulty of methods such as ARIMA
and SVR to handle complex non-stationary time series data.

(2) Spatio-temporal prediction capability. We compared the T-GCN model with the GCN
model and TCN model to verify the ability of the T-GCN model to capture its temporal
and spatial characteristics from electricity price data of multiple price areas. As shown
in Figure 9, the T-GCN model based on spatio-temporal features has higher prediction
accuracy than the GCN and TCN models based on a single feature, indicating that
the T-GCN model can capture spatio-temporal features from the electricity price data.
For example, the MAE error of the T-GCN model is reduced by about 27.74% and
29.94% for the 1-h and 2-h prediction tasks, respectively, compared with the GCN
model that considered only spatial features, indicating that the T-GCN model can
capture spatial dependence. Compared with the TCN model, which only considers
temporal characteristics, the MAE error of the T-GCN model is reduced by about
20.97% and 11.56% for 1-h and 2-h electricity price forecasts, respectively, indicating
that the T-GCN model is able to capture temporal correlation well.

(3) Long-term forecasting capability. The T-GCN model can obtain the best prediction
performance by training, regardless of the change of the prediction horizon, indicating
that the proposed model is insensitive to the prediction horizons and has strong
stability. Therefore, the T-GCN model can be used for both short-term and long-term
forecasting. Figure 9 shows the comparison of RMSE of different models, with the
T-GCN model achieving the best results for different prediction horizons. Figure 10
shows the changes of T-GCN’s performance at different forecasting horizons. It can
be seen that the trend of increasing error is small and has some stability.
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3.5. Further Illustration of the Model

To better understand the contribution of the constructed graph adjacency matrix,
Figure 11 shows the geographic location of the three price areas, LV, EE, and FI, where
LV is the area geographically bordering EE, and FI is the constructed maximum weighted
neighbor of EE. We plot the raw price data for these three regions in Figure 12.We observe
that LV is closer to EE on the map, but the price data are less correlated. In contrast, the
constructed maximum weighted neighbor FI is further away from EE, but their electricity
price data are strongly correlated. Based on the flow data for the period, as shown in
Figure 11, FI is the area that delivers the most power to EE, 5331.3 MWh more than LV,
which shows that the T-GCN model can mine the potential dependence between variables
through multivariate time-series data.

Figure 11. Geographical location of the three price areas, FI, EE, and LV.
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4. Conclusions

In this paper, we propose an effective method to capture the intrinsic dependencies
among multiple electricity price series and build a new electricity price prediction model,
T-GCN, to solve the electricity price prediction problem through a graph-based deep
learning approach. On the one hand, the connection structure between nodes in the graph
is captured by GCN to obtain spatial dependencies; on the other hand, TCN is used to
capture the dynamic changes of nodes’ own attributes to obtain temporal dependencies.
Evaluated on a Nordic electricity market dataset containing 15 price areas, the T-GCN
model achieves better performance in different forecasting ranges compared with the
ARIMA model, SVR model, GCN model, and TCN model. In conclusion, the T-GCN
model successfully captures the spatio-temporal characteristics of multiple electricity price
data and realizes high-precision forecasting. From the mathematical point of view, this
is because our method has strong fitting ability for multiple time series with potential
dependence, and can better map the relationship between input and output. Therefore, it
can be applied to other multivariable time series prediction tasks with hidden dependency,
such as multi region wind power generation prediction, distributed photovoltaic output
prediction, etc.

Author Contributions: Conceptualization, H.S. and X.P.; methodology, H.S.; software, H.S. and
K.W.; validation, H.L., H.Q., and Z.C.; investigation, K.W.; writing—original draft preparation, H.S.;
writing—review and editing, H.Q. and Z.C.; visualization, H.L.; supervision, X.P. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was supported by Nation Natural Science Foundation of China (61903091)
and the Planning Project of Guangdong Power Grid Co., Ltd. (No. 031000QQ00210003).

Informed Consent Statement: Not applicable.

Data Availability Statement: This research data can be found at https://www.nordpoolgroup.com/
(accessed on 11 June 2022).

Acknowledgments: Sincere thanks to everyone who suggested revisions and improved this article.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.nordpoolgroup.com/


Mathematics 2022, 10, 2366 15 of 16

References
1. Liu, J.; Wang, J.; Cardinal, J. Evolution and reform of UK electricity market. Renew. Sustain. Energy Rev. 2022, 161, 112317.

[CrossRef]
2. Shamsi, M.; Cuffe, P. A Prediction Market Trading Strategy to Hedge Financial Risks of Wind Power Producers in Electricity

Markets. IEEE Trans. Power Syst. 2021, 36, 4513–4523. [CrossRef]
3. Mashlakov, A.; Kuronen, T.; Lensu, L.; Kaarna, A.; Honkapuro, S. Assessing the performance of deep learning models for

multivariate probabilistic energy forecasting. Appl. Energ. 2021, 285, 116405. [CrossRef]
4. Sun, W.; Huang, C. A carbon price prediction model based on secondary decomposition algorithm and optimized back propaga-

tion neural network. J. Clean. Prod. 2020, 243, 118671. [CrossRef]
5. Fraunholz, C.; Kraft, E.; Keles, D.; Fichtner, W. Advanced price forecasting in agent-based electricity market simulation. Appl.

Energ. 2021, 290, 116688. [CrossRef]
6. Lu, H.; Ma, X.; Ma, M.; Zhu, S. Energy price prediction using data-driven models: A decade review. Comput. Sci. Rev. 2021,

39, 100356. [CrossRef]
7. Rabiya, K.; Nadeem, J. A survey on hyperparameters optimization algorithms of forecasting models in smart grid. Sustain. Cities

Soc. 2020, 61, 102275.
8. Lago, J.; Marcjasz, G.; De Schutter, B.; Weron, R. Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms,

best practices and an open-access benchmark. Appl. Energ. 2021, 293, 116983. [CrossRef]
9. Sujit, K.D.; Pradipta, K.D. Short-term mixed electricity demand and price forecasting using adaptive autoregressive moving

average and functional link neural network. J. Mod. Power Syst. Clean 2019, 7, 1241–1255.
10. Radhakrishnan, A.C.; Anupam, M.; Mitch, C.; Hossein, S.; Timothy, M.H.; Jeremy, L.; Prakash, R. A Multi-Stage Price Forecasting

Model for Day-Ahead Electricity Markets. Forecasting 2018, 1, 26–46.
11. Shibalal, M. Estimating and forecasting residential electricity demand in Odisha. J. Public Aff. 2020, 20, e2065.
12. Zheng, L.; Yushan, W.; Jiayu, W.; Lin, Z.; Jian, S.; Xu, W. Short-term electricity price forecasting G-LSTM model and economic

dispatch for distribution system. IOP Conf. Ser. Earth Environ. Sci. 2020, 467, 012186.
13. Wendong, Y.; Jianzhou, W.; Rui, W. Research and Application of a Novel Hybrid Model Based on Data Selection and Artificial

Intelligence Algorithm for Short Term Load Forecasting. Entropy 2017, 19, 52.
14. Lehna, M.; Scheller, F.; Herwartz, H. Forecasting day-ahead electricity prices: A comparison of time series and neural network

models taking external regressors into account. Energ Econ. 2022, 106, 105742. [CrossRef]
15. Li, W.; Becker, D.M. Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and

feature selection algorithms under consideration of market coupling. Energy 2021, 237, 121543. [CrossRef]
16. Aslam, S.; Ayub, N.; Farooq, U.; Alvi, M.J.; Albogamy, F.R.; Rukh, G.; Haider, S.I.; Azar, A.T.; Bukhsh, R. Towards Electric Price

and Load Forecasting Using CNN-Based Ensembler in Smart Grid. Sustainability 2021, 13, 12653. [CrossRef]
17. Yang, H.; Schell, K.R. Real-time electricity price forecasting of wind farms with deep neural network transfer learning and hybrid

datasets. Appl. Energ. 2021, 299, 117242. [CrossRef]
18. Yiyuan, C.; Yufeng, W.; Jianhua, M.; Qun, J. BRIM: An Accurate Electricity Spot Price Prediction Scheme-Based Bidirectional

Recurrent Neural Network and Integrated Market. Energies 2019, 12, 2241.
19. Xiao, C.; Sutanto, D.; Muttaqi, K.M.; Zhang, M.; Meng, K.; Dong, Z.Y. Online Sequential Extreme Learning Machine Algorithm

for Better Predispatch Electricity Price Forecasting Grids. IEEE Trans. Ind. Appl. 2021, 57, 1860–1871. [CrossRef]
20. Yi-Kuang, C.; Hardi, K.; Philipp, A.G.; Jon, G.K.; Klaus, S.; Hans, R.; Torjus, F.B. The role of cross-border power transmission in a

renewable-rich power system—A model analysis for Northwestern Europe. J. Environ. Manag. 2020, 261, 110194.
21. Jorge, M.U.; Stephanía, M.; Montserrat, G. Characterizing electricity market integration in Nord Pool. Energy 2020, 208, 118368.
22. Egerer, J.; Grimm, V.; Kleinert, T.; Schmidt, M.; Zöttl, G. The impact of neighboring markets on renewable locations, transmission

expansion, and generation investment. Eur. J. Oper Res. 2020, 292, 696–713. [CrossRef]
23. Tessoni, V.; Amoretti, M. Advanced statistical and machine learning methods for multi-step multivariate time series forecasting

in predictive maintenance. Procedia Comput. Sci. 2022, 200, 748–757. [CrossRef]
24. Guokun, L.; Wei-Cheng, C.; Yiming, Y.; Hanxiao, L. Modeling Long- and Short-Term Temporal Patterns with Deep Neural

Networks. In Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval,
Ann Arbor, MI, USA, 8–12 July 2018; pp. 95–104. [CrossRef]

25. Shih, S.Y.; Sun, F.K.; Lee, H.Y. Temporal pattern attention for multivariate time series forecasting. Mach. Learn. 2019, 108,
1421–1441. [CrossRef]

26. Zhang, Z.; Cui, P.; Zhu, W. Deep Learning on Graphs: A Survey. IEEE Trans. Knowl. Data Eng. 2020, 34, 249–270. [CrossRef]
27. Asif, N.A.; Sarker, Y.; Chakrabortty, R.K.; Ryan, M.J.; Ahamed, M.H.; Saha, D.K.; Badal, F.R.; Das, S.K.; Ali, M.F.; Moyeen, S.I.;

et al. Graph Neural Network: A Comprehensive Review on Non-Euclidean Space. IEEE Access 2021, 9, 60588–60606. [CrossRef]
28. Cui, Z.; Henrickson, K.; Ke, R.; Wang, Y. Traffic Graph Convolutional Recurrent Neural Network: A Deep Learning Framework

for Network-Scale Traffic Learning and Forecasting. IEEE Trans. Intell. Transp. Syst. 2019, 21, 4883–4894. [CrossRef]
29. Zhou, X.; Wang, H. The Generalization Error of Graph Convolutional Networks May Enlarge with More Layers. Neurocomputing

2020, 424, 97–106. [CrossRef]
30. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural

Netw. Learn. Syst. 2020, 32, 4–24. [CrossRef]

http://doi.org/10.1016/j.rser.2022.112317
http://doi.org/10.1109/TPWRS.2021.3064277
http://doi.org/10.1016/j.apenergy.2020.116405
http://doi.org/10.1016/j.jclepro.2019.118671
http://doi.org/10.1016/j.apenergy.2021.116688
http://doi.org/10.1016/j.cosrev.2020.100356
http://doi.org/10.1016/j.apenergy.2021.116983
http://doi.org/10.1016/j.eneco.2021.105742
http://doi.org/10.1016/j.energy.2021.121543
http://doi.org/10.3390/su132212653
http://doi.org/10.1016/j.apenergy.2021.117242
http://doi.org/10.1109/TIA.2021.3051105
http://doi.org/10.1016/j.ejor.2020.10.055
http://doi.org/10.1016/j.procs.2022.01.273
http://doi.org/10.1145/3209978.3210006
http://doi.org/10.1007/s10994-019-05815-0
http://doi.org/10.1109/TKDE.2020.2981333
http://doi.org/10.1109/ACCESS.2021.3071274
http://doi.org/10.1109/TITS.2019.2950416
http://doi.org/10.1016/j.neucom.2020.10.109
http://doi.org/10.1109/TNNLS.2020.2978386


Mathematics 2022, 10, 2366 16 of 16

31. Lin, G.; Kang, X.; Liao, K.; Zhao, F.; Chen, Y. Deep graph learning for semi-supervised classification. Pattern Recogn. 2021,
118, 108039. [CrossRef]

32. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
33. KyungHyun, C.; Bart, V.M.; Dzmitry, B.; Yoshua, B. On the Properties of Neural Machine Translation: Encoder-Decoder

Approaches. arXiv 2014, arXiv:1409.1259.
34. Bai, S.; Kolter, J.Z.; Koltun, V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling.

arXiv 2018, arXiv:1803.01271.
35. Oord, A.V.D.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.; Kavukcuoglu, K.

WaveNet: A Generative Model for Raw Audio. arXiv 2016, arXiv:1609.03499.
36. Kaiming, H.; Xiangyu, Z.; Shaoqing, R.; Jian, S. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385.
37. Souhaib, B.T.; Gianluca, B.; Amir, F.A.; Antti, S. A review and comparison of strategies for multi-step ahead time series forecasting

based on the NN5 forecasting competition. Expert Syst. Appl. 2012, 39, 7067–7083.
38. Patrícia, R.; Nicolau, S.; Rui, R. Performance of state space and ARIMA models for consumer retail sales forecasting. Robot.

Comput. Integr. Manuf. 2015, 34, 151–163.
39. Alex, J.S.; Bernhard, S.L. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222.

http://doi.org/10.1016/j.patcog.2021.108039
http://doi.org/10.1162/neco.1997.9.8.1735

	Introduction 
	Methods 
	Electricity Price Series Modeling 
	Graph Convolution Module 
	Traditional Propagation Layer 
	Mix-Jump Propagation Layer 

	Graph Construction Module 
	Temporal Convolution Module 
	Splicing Architecture 
	Dilated Convolution 
	Dilated Splicing Layer 

	Residual Connections 
	Model 

	Experiments 
	Data Collection 
	Evaluation Metrics 
	Experimental Results 
	Discussion 
	Further Illustration of the Model 

	Conclusions 
	References

