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Abstract: Environment perception and understanding represent critical aspects in most computer
vision systems and/or applications. State-of-the-art techniques to solve this vision task (e.g., semantic
instance segmentation) require either dedicated hardware resources to run or a longer execution time.
Generally, the main efforts were to improve the accuracy of these methods rather than make them
faster. This paper presents a novel solution to speed up the semantic instance segmentation task. The
solution combines two state-of-the-art methods from semantic instance segmentation and optical
flow fields. To reduce the inference time, the proposed framework (i) runs the inference on every 5th
frame, and (ii) for the remaining four frames, it uses the motion map computed by optical flow to
warp the instance segmentation output. Using this strategy, the execution time is strongly reduced
while preserving the accuracy at state-of-the-art levels. We evaluate our solution on two datasets
using available benchmarks. Then, we conclude on the results obtained, highlighting the accuracy of
the solution and the real-time operation capability.

Keywords: machine vision; scene understanding; semantic instance segmentation; dense optical

flow; real-time

MSC: 68T45

1. Introduction

The advances of the deep learning solutions led to a revolution in many fields. Com-
puter vision benefited from this, and in recent years, many problems (e.g., image classifi-
cation, object detection, semantic segmentation) have been solved by applying different
deep learning techniques. Computer vision is present in a wide range of applications,
from mobile robot navigation and industrial inspection to human—computer interaction
(HCI), assistive devices, surveillance and autonomous driving.

Computer vision tries to replicate human vision by employing a great variety of
solutions. Sight and vision represent two different aspects. Sight helps people acquire
images from the environment, and on the other side, vision represents the process of
interpreting these images (what happens in the brain). So, sight and vision help people
to perceive and understand their surroundings. Thus, we can conclude that the goal of
computer vision is to replicate human sight and vision by using a computer.

Environment perception and understanding is still a hot topic in this field, as solving
this task means offering a solution to many real-world problems such as autonomous
driving, scene perception and understanding for visually impaired, mobile robot navigation,
surveillance and many others. Even if object detection and semantic segmentation held
impressive results in the last decade, semantic instance segmentation remains an open
challenge in the computer vision field. Many of the solutions proposed to solve this task
focus on improving the accuracy of the method rather than achieving real-time processing.
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Therefore, they either require dedicated high-performance computing units to run or the
inference is really slow, needing a high amount of time to perform the prediction.

In this paper, we present a novel framework for performing environment perception
and understanding by semantic instance segmentation. The framework derived from [1],
combines two computer vision tasks: semantic instance segmentation and dense optical
flow, to achieve real-time operation capability while preserving the accuracy at state-of-
the-art levels. The solution works by predicting the semantic instance labels and then
propagating them by using the motion maps computed by employing dense optical flow.

We evaluate our solution on two datasets: the Cityscapes dataset [2] and our dataset,
highlighting the real-time capability and the accuracy obtained.

2. Related Work

Our approach combines two computer vision tasks: semantic instance segmentation
and optical flow. Therefore, this section is structured into two main parts. The first one
depicts and compares various solutions for semantic instance segmentation focusing on
the accuracy reported and on the inference time. In the second part, we present different
methods for dense optical flow, highlighting their real-time operation capability.

2.1. Semantic Instance Segmentation

There is a clear difference between semantic segmentation and semantic instance
segmentation. In semantic segmentation, every pixel of an image receives a class label
(e.g., person, car, bicycle). In this case, there is no distinction between objects belonging to
the same class. On the other hand, in semantic instance segmentation, objects of the same
class are considered individual instances. So, semantic instance segmentation detects and
localizes, at the pixel-level, objects instances in images. Even if impressive results have been
reported for other segmentation techniques, semantic instance segmentation still represents
one of the biggest challenges imposed by computer vision. There is a high interest in
solving this task, as instance labelling provides additional information in comparison with
semantic segmentation. Autonomous driving, medicine, assistive devices and surveillance
are only a few applications in which semantic instance segmentation would represent a
highly required input.

Instance segmentation solutions can be classified into one-stage and two-stage instance
segmentation. Generally, the two-stage methods perform object detection, which is then
followed by segmentation. Mask RCNN [3] extends [4] by adding a parallel branch to
predict an object mask for the corresponding bounding box. Therefore, the loss function
of Mask RCNN [3] combines the losses for bounding box, class recognition and mask
segmentation. In addition, to improve the accuracy of the segmentation, Rol Pooling is
replaced by Rol Align. MaskLab [5] is also built on top of the Faster RCNN [4] object
detector. It combines semantic and direction prediction to achieve foreground/background
segmentation. Semantic segmentation assists the model in distinguishing between objects
of different semantic classes including background. On the other hand, direction predic-
tion, which estimates each pixel’s direction toward its corresponding center, allows the
separation of instances of the same semantic class. Hypercolumn features are exploited for
mask refinement, and deformable crop and resize are used to improve the object detection
branch. Huang et al. [6] proposed a framework that scores the instance segmentation mask.
The score of the instance mask is penalized if it has a high classification score and the
mask is not good enough. PANet [7] enhances the information flow in proposal-based
solutions for semantic instance segmentation. A bottom—up path augmentation is added
to enhance the extraction of the lower layers’ features. All feature levels are linked by
adaptive feature pooling.

Even if the solution discussed above achieves state-of-the-art performance in terms of
accuracy, the time needed for inference is rather high, which makes them unsuitable for
integration in real-time systems.
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One-stage methods usually perform detection and segmentation simultaneously.
The authors of [8] use a fully convolutional network with two branches: one for esti-
mating the segment instances and the other for scoring the instances. Each output pixel is a
classifier of relative positions of instances which are further assembled using an instance
assembling module. The first attempt for real-time instance segmentation was proposed
in [9]. The instance segmentation is broken into two tasks: generating a set of prototype
masks and predicting per-instance mask coefficients. The instance masks are produced
by combining the prototype with the mask coefficients. Furthermore, in [10], deformable
convolutions are added to the backbone, and the prediction head is optimized by using
multi-scale anchors with different aspect ratios for each FPN level. The same idea as in
Mask Scoring RCNN [6] is used to assign scores to the predicted masks.

Transformer-based networks were successfully applied in various computer vision
tasks and held impressive results. Mask DINO [11] extends DINO [12] by adding a new
branch to perform mask prediction for panoptic, instance and semantic segmentation.
Content query embeddings from DINO [12] are used to perform mask classification for
all segmentation tasks. Querylnst [13] proposes a query-based end-to-end instance seg-
mentation with parallel supervision on six dynamic mask heads. Querylnst exploits the
intrinsic one-to-one correspondence in queries across different stages. ISTR [14] matches
low-dimensional mask embeddings with ground truth to compute the loss. In addition, it
uses a recurrent refinement strategy to simultaneously perform detection and segmentation.

Image semantic and semantic instance segmentation, object detection and tracking,
video object detection and segmentation, and video semantic segmentation have been well
studied over time in comparison with video instance segmentation. This task implies the
detection, segmentation and tracking of objects in a video sequence. Yang et al. [15] were
the first to tackle the topic of video instance segmentation. Their works use the state-of-the-
art method [3] for image instance segmentation. A new branch is added to Mask RCNN
for tracking instances across video frames. The instances are stored in external memory
and matched with objects in later frames. A similar solution to [15] is proposed in [16];
it predicts a basis mask and a set of coefficients to improve the segmentation quality. It
achieves a better execution time than [15], as it is built on [17]. Another online method
for video instance segmentation is proposed by Li et al. [18]. Inter-frame correlations are
encoded by using a bottom-up framework equipped with a temporal context fusion module.
An instance-level correspondence across adjacent frames, instance flow, is used for efficient
and robust tracking among instances. A few works treat the video instance segmentation
in offline mode [19-21]. These methods typically model the temporal information.

2.2. Dense Optical Flow

Optical flow represents the motion of objects between consecutive frames (Figure 1)
and expresses the relative movement between objects and the camera.

11(x,y,t) 12 = 11(x+dx, y+dy, t+dt)
displacement =(dx,dy) [==== [ 4
@ ®
0o y) (>x+dx, y+dy)
time=t time = t +dt

Figure 1. Optical Flow.

There are two types of optical flow: sparse optical flow and dense optical flow. Sparse
optical flow describes the flow vector only for some objects’ features (e.g., edges, corners),
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while dense optical flow computes the flow vectors of all pixels from the image, as pictured
in Figure 2.

(a) Sparse Optical Flow — Lukas Kanade (b) Dense Optical Flow - Gunnar Farneback

Figure 2. Sparse Optical Flow vs. Dense Optical Flow. (a) Sparse Optical Flow-Lukas Kanade;
(b) Dense Optical Flow-Gunnar Farneback.

The information provided by optical flow proves to be useful in a wide range of
computer vision systems as well as in other applicative domains (e.g., action recognition,
video compression, robots and vehicle navigation, video surveillance, fluid flow, etc.).

Horn and Schunck [22] and Lucas and Kanade [23] were the first authors to tackle the
subject of optical flow more than three decades ago. Their patch-based approach uses a
Taylor series expansion of the displaced image function to obtain sub-pixel estimates [23].
Horn and Schunck [22] proposed a regularization-based framework to simultaneously
minimize the intensity between the corresponding pixels (over all flow vectors). The authors
of [24] combine the ideas of [22,23] into a single framework that uses a locally aggregated
Hessian as the brightness constancy term. Various techniques that use a combination of
global and local motion were proposed [25-28].

Generally, the solutions published over time focused on improving the accuracy of
the optical flow method rather than achieving real-time operation capability [29-34]. Some
of the authors use powerful hardware resources to obtain an acceptable runtime [35,36],
while others try to make a compromise between accuracy and time [37]. An efficient
patch-based correspondence is proposed by Kroeger et al. in [38], which leads to a low
computational time.

The fast evolution of deep neural networks led to their use in multiple computer vision
problems, such as optical flow. DeepFlow [39] uses dense sampling to retrieve quasi-dense
correspondences, which are further optimized using an energy variational framework.
In [40] a classical spatial pyramid is combined with deep learning to estimate large motions.
PWC-Net [41] computes a feature pyramid from each frame, warps the CNN features to
the second image, and then builds a cost volume based on these two.

3. Method Description

The majority of the solutions proposed for semantic instance segmentation operate on
single images. Deploying such methods in real-life applications is impractical as, generally,
they require high execution time or dedicated hardware resources to operate in real-time.
Video semantic instance segmentation represents a relatively new challenge in the computer
vision field. Solving this task will open up the path to exploit semantic instance solutions
in many applicative domains.

As stated above, using the Mask RCNN [3] to output the predictions for every frame
from a video is unfeasible, as it will require a longer time to run. We propose a novel
solution that combines the state-of-the-art solution for semantic instance segmentation,
Mask RCNN [3], with a lightweight and powerful dense optical flow algorithm, DIS [38].
The solution is an adaptation of the framework proposed in [1] for speeding up the semantic
segmentation task. The pipeline of our method is illustrated in Figure 3. Firstly, Mask
RCNN [3] is used to output the instance labels for every fifth frame. Meanwhile, using the
dense optical flow solution, we compute the motion map for every pixel from the current



Mathematics 2022, 10, 2365

50f19

frame. Afterwards, the semantic labels obtained by employing the Mask RCNN solution
are propagated into the next four frames by using the map calculated by dense optical flow,
DIS [38].

For every pixel, (x, y), in the image, dense optical flow computes the flow for the two
dimensions Flow’, > i“,l—“low;*”le between two consecutive frames I;, I;; 1. Therefore,
the mapping from I; to ;1 is:

Maps(x,y) = Lis1(x,y) — Flowi" ™Y Mapy (x,y) = I (x,) — Flowl ™. (1)

Using Equation (1), pixels from frame I; will be remapped to frame I; as follows:

Liy1(x,y) = Li(Mapx(x,y), Mapy(x,y)) 2

By using this strategy of combining two state-of-the-art methods, we succeeded in
achieving real-time operation capability while maintaining the accuracy at state-of-the-art
levels. In the following, we will describe the methods used, highlighting their advantages.

Frame I1 | | Frame |2 I | Frame I3 I | Frame |4 | | Frame I5 H Frame |16 ‘
| |

1 — r — — g —
: flow flow flow flow : flow
' - i i i - -
: - + + + ' L 4
¥ W W W W -+ W
Mask A A A A Mask A
RONN | AR AR| AR AR RCNN AR
H {:\"“Jt' P | P @’g?c' P @’a‘\’.:r' P H @'e.‘\’{':' P
SIS o 1 i 1 R4 — T 1 s
+ ! + ! + ! + - ¥ ¢

Frame O1 | | Frame OZI | Frame 03I | Frame O4| | Frame 05 ‘ [ Frame OE‘

Figure 3. Semantic instance segmentation pipeline, where Framel,—input frame i, FrameO;,—
semantic instance segmentation output for frame i, OF—Optical Flow method, WARP—image
warping, and MaskRCNN—semantic instance segmentation neural network [3].

3.1. Mask RCNN

Mask RCNN [3] is an extension of the Faster RCNN network [4]. Faster RCNN is
widely used for object detection tasks. For a given image as input, the outputs are the
bounding box and the class label for each detected object in the image; Figure 4—red
area. The Mask RCNN framework is developed on top of the Faster RCNN framework;
Figure 4—green area. Therefore, for an image, besides the bounding box and the class label,
the framework also returns the object mask for each detected object in the image.

*[RPN [

Rol
Align

feature map
R bk >

CNN

warped
feature
vectors

conv

Faster R-CNN

Instance|Segmentation

Figure 4. Mask RCNN framework for instance segmentation [3]; Mask RCNN is built on top of
Faster RCNN [4] adding another branch for mask prediction. Rol Pool is replaced with Rol Align.
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Cityscapes (2048x1024)

Own dataset (1280x720)

Faster RCNN [4] is a two-stage object detector. First, a Region Proposal Network
(RPN) is employed to generate candidate object bounding boxes. For these candidates,
in the second stage, features are extracted using RolPool. In the last step of the second
stage, it performs classification and bounding-box regression. Mask RCNN inherits an
identical (RPN) first stage from Faster RCNN. In the second stage, Rol Pooling is replaced
by Rol Align, which leads to an improvement in the segmentation accuracy.

The network has another branch, the mask branch in parallel with the existing branch
for classification and bounding-box regression, which outputs the segmentation mask
for each region that contains an object and has an IoU above 0.5. The intersection over
union (loU) is an evaluation metric used to evaluate the accuracy of an object detector on a
particular dataset and is computed as:

ol — Area_of_over'lap.
Area_of_union

®)

The authors of [3] mention that the framework proposed is not optimized for speed,
claiming that their framework runs at around 200 ms (5 fps) per frame on an Nvidia Tesla
M40 GPU.

Some examples of predictions using Mask RCNN are presented in Figure 5.

Original Image MRCNN 1st MRCNN 2nd

Figure 5. Mask RCNN output prediction examples on Cityscapes and our own images, MRCNN
1st—mask_rcnn_X_101_32x8d_FPN_3x, MRCNN 2nd—mask_rcnn_R_50_FPN_3x [42].

Two pretrained models of the Mask RCNN neural network were used in the experi-
ments: mask_renn_X_101_32x8d_FPN_3x and ask_rcnn_R_50_FPN_3x.
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OF - DIS (medium)

3.2. Dense Optical Flow

Dense optical flow computes the flow vectors of all pixels from the image. We have
integrated two different solutions of dense optical flow into our framework.

3.2.1. Farneback Method

The Gunnar—Farneback algorithm was developed to produce dense optical flow tech-
nique results (that is, on a dense grid of points). The first step is to approximate each
neighbourhood of both frames by quadratic polynomials. Afterwards, considering these
quadratic polynomials, a new signal is constructed by a global displacement. Finally, this
global displacement is calculated by equating the coefficients in the quadratic polynomials’
yields [43].

3.2.2. Dense Inverse Search

The computation of optical flow by using the Dense Inverse Search solution proposed
in [38] consists of three main parts: the inverse search for patch correspondences, creating a
dense displacement through path aggregation for multiple scales and variational refinement.
The DIS [38] optical flow method has three configurable parameters that have a significant
impact on the performance of the solution: finest scale, gradient descend iterations and patch
size. DIS proposes three predefined values for each parameter. Therefore, there are three
predefined versions of DIS: medium, fast and ultrafast; the values of the parameters are
presented in Table 1.

Table 1. Dense Inverse Search predefined parameters values.

Parameter DIS_MEDIUM DIS_FAST DIS_ULTRAFAST

finest scale 1 2 2
gradient descend interations 25 16 12

patch size 8 8 8

As we can observe from Figure 6, the optical flow computation using the Farneback
method has multiple regions with missing information.

OF - Farneback

OF - DIS (fast) OF — DIS (ultrafast)

Figure 6. Optical Flow Examples.
4. Results
4.1. Datasets

Currently, there is no dataset that provides semantic instance labels for a full video
sequence. The manual annotation task requires a lot of effort and attention to detail. These
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operations are generally executed by a person or a group of people. Such a dataset is hard
to obtain through manual labelling.

4.1.1. Cityscapes Dataset

The Cityscapes dataset [2] contains stereo sequences recorded in street scenes from
around 50 cities from Germany. The dataset contains high-resolution images (2048x1024).
The dataset provides pixel-wise annotations for tasks such as semantic segmentation,
semantic instance segmentation, and panoptic segmentation. A selection of frames from
the frankfurt drive are already annotated for semantic instance segmentation and included
in the val split of the Cityscapes dataset. Therefore, after running our algorithm, we
have selected the results that correspond to the ground truth available in the val split.
The accuracy is reported only on the selected results.

4.1.2. Own Dataset

The majority of the available datasets (Cityscapes [2], KITTI [44]) consist of images
that are acquired from a car perspective. Unlike these datasets, the images available in
our own dataset represent the perspective of a person, more exactly a visually impaired
one. So, the environments are structurally dissimilar, as a person and a car have different
routes to move in the cities. In addition, people can also move in indoor environments. We
do not restrict the use of our algorithm to autonomous driving; therefore, we enlarge our
evaluation and perform it also on our dataset. For this purpose, we use video sequences
acquired in outdoor environments as we use the Cityscapes evaluation benchmark (which
consists only of outdoor classes). Some examples of images from our dataset along with
their annotations are displayed in Figure 5—last two rows. All the images are annotated
using the best Mask RCNN pretrained model available. The dataset was acquired during
the SoV Lite project [45].

4.2. Evaluation Metrics and Benchmarks
4.2.1. Benchmark

To evaluate the performance of our solution in terms of accuracy, we have used the
benchmark provided by Cityscapes [2]. Therefore, we had to convert the results obtained by
running the inference using Mask RCNN pretrained models to comply with the Cityscapes
format. Considering that the pretrained models are trained on the COCO dataset [46],
the evaluation was performed only on the common object classes from the two datasets:
person, car, truck, bus, train, motorcycle, and bicycle.

4.2.2. Metrics

AP, AP50

To measure the performance of the instance-level segmentation, the Cityscapes [2]
benchmark computes the average precision on the region level (AP) for each class. Af-
terwards, it averages it across a range of overlap thresholds (10 different overlaps from
0.5 to 0.95 with a step of 0.05 [47]) to avoid a bias toward a specific value. The overlap
is calculated for every instance, making it equivalent to the intersection over union (Iol).
Multiple predictions are penalized and marked as false positive (FP). The mean average
precision (AP) reported is computed by averaging over the class label set and computed as
follows:

1 n
AP=-Y AP, 4)
]

where AP,—represents the average precision of class k, which is computed at 10 different
overlaps as:

1
AP = — ) AP, 5)
ce{0.5,0.55,...,0.95}

and n represents the number of classes.
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AP50 represents the average precision computed for an overlap of 0.5 as follows:
1 n
AP50 = — ) AP50, 6
- k; k ©)

where AP50,—represents the average precision of class k computed for an overlap of 0.5
and n represents the number of classes.
Time

Another metric used to evaluate our solution is the execution time, as the proposed
method is intended to be used in real-life applications. Thus, we measure the amount of
time needed for every component of our pipeline. The evaluation is performed on two
platforms with different configurations.

4.3. Results and Discussions

We used two pretrained Mask RCNN models [42]: mask_renn_X_101_32x8d_FPN_3x
—best spretrained model (MRCNN 1st), mask_rcnn_R_50_FPN_3x—second best pretrained
model (MRCNN 2nd), with the training configurations displayed in Table 2.

Table 2. Models training configurations [42].

Base Learning
Model Pretrained Weights Optimizer Learning Rate
Rate Scheduler
MRCNN 1st  ImageNet (X-101-32x8d.pkl) [48] SGD 0.02 3x
MRCNN 2nd ImageNet (R-50.pkl) [48] SGD 0.02 3x

We also measure the performance of our solution by considering the depth information.
Therefore, we evaluate our solution within 100, 50 and 25 m depth.

The evaluation is performed on two different platforms with the following configura-
tions:

1. Intel(R) Xeon(R) CPU @ 2.20 GHz, Tesla T4 GPU, 16 GB GPU memory; we will
refer to this platform as Colab [49],

2. Intel(R) Core(TM) i7-9700K CPU @ 3.60 GHz, Titan RTX GPU, 24 GB GPU memory;
this platform will be referred to as RTX.

We highlight the real-time capability of our solution while maintaining the accuracy
at state-of-the-art levels. In the next section, we will describe the experiments performed
and discuss the results obtained. In the end, we compare our solution with other similar
methods from the literature.

4.3.1. Accuracy

In the following, we evaluated the accuracy of our solution by using all three versions
of DIS optical flow and also Farneback. In addition, we report the results for the two
pretrained Mask RCNN models. The evaluation was performed using the val split of the
Cityscapes dataset.

As illustrated in Figure 7, the pipeline using Mask RCNN combined with Farneback
optical flow obtains the worst precision in terms of accuracy. The best combination is the
Mask RCNN with DIS_ultrafast optical flow, which is followed immediately by DIS_fast.
Comparing the Mask RCNN solution with our best result (Mask RCNN + DIS_ultrafast),
the drop in accuracy is only 3-4%, which means that the accuracy is still preserved at
state-of-the-art levels.
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Figure 7. Average Precision, Cityscapes dataset [2].

eMask RCMN 1st

oMRCNN 1st+Farneback
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®MRCNN 1st+DIS_fast
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Mask RCMNMN 2nd
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The same observations are available also for AP50. The only difference is that accuracy
decreases only by 1-2%, as shown in Figure 8.

100 +

90 +

80 +

70 +

APE0%
T
(=)

42,02

e 23G02 3743 37.88 37.95
.

Average Precision 50 (%)

40.40

3403 236,12 36.62 36.68

Figure 8. Average Precision (50%), Cityscapes dataset [2].

Depth Information

eMask RCMNN 1st

oMRCNN 1st+Farneback
MRCNN 1st+D1S_medium

oMRCNM 1st+DIS_fast

o MRCNM 1st+DIS_ultrafast
Mask RCNM 2nd

eMRCNM 2nd+Farneback

eMRCMNM 2nd+DIS_medium

o MRCNM 2nd+DIS_fast

o MRCNM 2nd+DIS_ultrafast

The farther the objects are located in the image, the less accurate the information
extracted about them. Therefore, we restricted the range of the details to 100 m, 50 m
and 25 m depth. Analyzing the results obtained for AP and AP50 from Tables 3 and 4,
we can conclude that the accuracy increases as the depth limit decreases. This trend is
available for both the Mask RCNN and our proposed solution. In the case of our solution,
the AP reaches a value of 37-38% and the AP50 reaches a value of 56% when limiting the
information to 25 m depth. These results are beyond state-of-the-art solutions for semantic

instance segmentation.

Table 3. Depth influence on AP, Cityscapes dataset [2].

Model Infinity 100 m 50 m 25m
MRCNN 1st 26.28% 31.38% 39.98% 47.91%
MRCNN 1st + Farneback 21.01% 25.4% 31.7% 37.83%
MRCNN 2nd 24.41% 30.25% 38.41% 45.96%
MRCNN 2nd + Farneback 19.91% 24.41% 32.88% 37.26%
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Table 4. Depth influence on AP50, Cityscapes dataset [2].
Model Infinity 100 m 50 m 25m
MRCNN 1st 42.01% 48.73% 58.67% 66.63%
MRCNN 1st + Farneback 36.01% 42.25% 48.8% 56.48%
MRCNN 2nd 40.5% 46.88% 57.76% 66.2%
MRCNN 2nd + Farneback 34.03% 40.33% 50.55% 56.3%

4.3.2. Time

The real-time requirement is critical in the context of intelligent mobile systems; there-
fore, we evaluated our proposed solution on all platforms mentioned before, highlighting
their real-time operation capability.

Cityscapes Dataset

The Cityscapes dataset [2] contains high-resolution images 2048 x 1024 pixels. The Mask
RCNN [3] solution is built on top of Faster RCNN [4], which means that the image resolu-
tion has an impact on the inference time.

In Figure 9, we have illustrated the necessary time for all components of our pipeline.
As we can observe, the inference time for the 2nd best model of Mask RCNN is two
times smaller than the inference time of the 1st best model. It is also worth mention-
ing that the Farneback optical flow method requires about 370 ms to compute the mo-
tion map. The fastest method is represented by the combination of Mask RCNN with
DIS_ULTRAFAST.

mTime MRCHNN = Time OF Time warp

Time (ms)
py (%] s - (&)
] (=] ] =] ]
(=] (=] (=] (=] (=] (=]
” -_\
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Figure 9. Mask RCNN, Optical Flow and Warp time, Cityscapes dataset [2], Colab platform.

The total time necessary for our pipeline is presented for both platforms in Figure 10.
Our best performing method (MRCNN 2nd + DIS_ULTRAFAST) is around three times
faster than the corresponding Mask RCNN solution. The same trend is observed on both
platforms. In addition, the RTX performs three times better than Colab. There are four
situations in which the Mask RCNN solution outperforms the proposed pipeline: on
Colab—MRCNN 2nd + Farneback and MRCNN 2nd + DIS_MEDIUM; on RTX—MRCNN
2nd + Farneback and MRCNN 1st + Farneback.
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Figure 10. Time—Cityscapes dataset [2], RTX and Colab platforms.

Our best solution formed with MRCNN 2nd + DIS_ULTRAFAST achieves about
8 fps on Colab and 28 fps on RTX; the pipeline is applied on high-resolution images
(2048 x 1024 pixels).
Own dataset

For our dataset, we have performed a similar evaluation. In this case, the image
resolution is smaller, 1280 x 720 pixels, than the resolution of Cityscapes images. Therefore,
the inference time for MRCNN 1st decreases by 50 ms, and for MRCNNnd, it decreases by
30 ms, as shown in Figure 11. The time needed for the optical flow methods as well as for
warping the images is smaller compared with the time needed for the Cityscapes dataset.
Farneback and DIS_MEDIUM optical flow solutions are three times faster when using our
dataset. The other two optical flow methods (DIS_FAST and DIS_ULTRAFAST) are two
times faster, and the time needed for warp is halved.
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Figure 11. Mask RCNN, Optical Flow and Warp time, own dataset.

A similar trend as for the Cityscapes dataset [2] is observed for our dataset. The same
four methods outperform our solution. Our best solution achieves 20 fps on Colab and
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around 50 fps on RTX for images with a 1280 x 720 pixels resolution, as shown in Figure 12.
When comparing the two platforms, it is obvious that on RTX, our solution runs faster
(about two times faster). It is also worth mentioning that for this particular resolution,
MRCNN 1st + DIS_ULTRAFAST reaches real-time processing (almost 30 fps).

Concluding, the image resolution has a great impact on all components of our pipeline:
MRCNN, OF and WARP. The lower the resolution, the faster the pipeline.
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Figure 12. Time—Own dataset, RTX and Colab platforms.

4.3.3. Frame Interval

As presented in Figure 3, our framework performs instance segmentation prediction
on every 5th frame; afterwards, the output is propagated on the next four frames using
the motion map. The selection of the frame interval was based on time evaluation. Table 5
illustrates the time of our solution obtained by varying the frame interval. The evaluation
was performed on both datasets using the RTX platform.

Table 5. Frame interval influence on time, RTX platform.

Model Dataset Frame Interval FPS

MRCNN 1st Cityscapes 1 5.53
MRCNN 2nd Cityscapes 1 10.2
MRCNN 1st + DIS_ultrafast Cityscapes 3 13.59
MRCNN 2nd + DIS_ultrafast Cityscapes 3 21.88
MRCNN 1st + DIS_ultrafast Cityscapes 5 19.17
MRCNN 2nd + DIS_ultrafast Cityscapes 5 28.38
MRCNN 1st own dataset 1 7.35
MRCNN 2nd own dataset 1 14.7
MRCNN 1st + DIS_ultrafast own dataset 3 19.55
MRCNN 2nd + DIS_ultrafast own dataset 3 35.57
MRCNN 1st + DIS_ultrafast own dataset 5 29.27
MRCNN 2nd + DIS_ultrafast own dataset 5 49.66

From the results displayed in Table 5, we can observe that for high-resolution images
(e.g., 2048 x 1024 pixels), the real-time requirement is fulfilled by making predictions on
every 5th frame and by using the MRCNN 2nd model for inference. For our dataset
(1280 x 720 pixels), a frame interval of three frames is enough for real-time execution when
using the MRCNN 2nd model. However, considering that the drop in accuracy is not high
(only 3—4%), a frame interval of five frames can be used to achieve even a better time. In
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addition, it is worth mentioning the time improvement of our framework in contrast to the
Mask RCNN solution.

4.3.4. Comparison with Other Solutions

We compared our solution with similar semantic instance segmentation solutions that
report evaluation metrics on the Cityscapes dataset. The values for AP and AP50 are taken
from the official Cityscapes (Cityscapes —https://www.cityscapes-dataset.com/, accessed
on 1 July 2022) website or from their papers.

As we can observe, the Mask RCNN [3] pretrained model and the solutions proposed
in [50,51] outperform our proposed solution. Even so, the other frameworks [52-56]
perform worse than ours, some of them [52,53] two times worse, as shown in Figure 13.
The same conclusions apply also on AP50%; see Figure 14.
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Figure 13. Comparison between our framework and other solutions (AP%), Cityscapes dataset [2].

Unfortunately, execution time is not available for all methods; therefore, we cannot
perform a fair comparison between our solution and the other frameworks.

70
596534
80 . . elJPShet
®snake
50 Spatial Sampling Met
42;0140-43? 95,5 55 eUhrig et al.
3 40 353343 * e, sBrabandere et al.
] L ] 5
& 27.9 e Bai et al.
2 30
21 9 . elnstanceCut
20 1628 #IRCNN st
oMRCMNM 2nd
10 eMRCMNN 15t + DIS_ULTRAFAST
oMRECNM 2nd + DIS_ULTRAFAST
0
Solution

Figure 14. Comparison between our framework and other solutions (AP50%), Cityscapes dataset [2].
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4.3.5. Discussions

To conclude, the best combination for our pipeline is formed with MRCNN 1st or
2nd and DIS_ULTRAFAST. There is only a 1% difference in AP between these solutions
(MRCNN 1st + DIS_ULTRAFAST — 22.28% and MRCNN 2nd + DIS_ULTRAFAST —
21.15%), and the same is available also for AP50. Even if the precision is almost similar for
both solutions, the total time needed is different. For example, when using the Cityscapes
dataset [2], MRCNN 1st + DIS_ULTRAFAST runs at 19 fps on RTX and 3 fps on Colab;
meanwhile, MRCNN 2nd + DIS_ULTRAFAST reaches 28 fps on RTX and 8 fps on Colab.
If our dataset is used, MRCNN 1st + DIS_ULTRAFAST achieves 29 fps RTX and 11 fps on
Colab, while MRCNN 2nd + DIS_ULTRAFAST runs at 50 fps on RTX and 21 fps on Colab.

Therefore, the 1% drop in accuracy is insignificant if the solution is intended to be used
in real-time applications, as the MRCNN 2nd + DIS_ULTRAFAST method is faster than
the MRCNN 1st + DIS_ULTRAFAST. The results of the proposed solution are illustrated
in Figures Al and A2. Mask RCNN 1st and DIS optical flow with ultrafast parameter
were used.

The performance of our solution is strongly dependent on the quality of the prediction.
Thus, if the Mask RCNN solution output wrong predictions, these predictions will be
propagated on another four frames. An example illustrating this situation is presented
in Figure 15. As we can observe, there are multiple predictions for the same object (e.g.,
the bus), and those predictions are also propagated into the next frames.

Framel Frame I+1

Figure 15. Wrong predictions propagation on the next frame: Mask RCNN prediction for Frame I,
label and mask propagation using DIS for Frame I+1.

5. Conclusions

In real-life applications, to output the semantic instance segmentation, we have to run
the inference on every frame of the acquired video stream. Generally, semantic instance
segmentation solutions available in the literature do not meet the real-time requirement, as
they mainly focus on improving the accuracy of instance masks. The other solutions trade
the accuracy to achieve real-time operation capability. Therefore, the two requirements—
high accuracy and real-time processing—are often conflicting.

In this paper, we proposed and evaluated a novel solution for semantic instance
segmentation. The solution is derived from [1]. The framework combines two state-of-the-
art methods from semantic instance segmentation and optical flow fields. To reduce the
time needed for performing inference on every frame, our framework runs the inference
on every 5th frame and for the other four uses the computed motion map and warps the
output of the semantic instance segmentation network. In this way, the time is strongly
reduced, achieving in some cases even 50 fps on images with 1280 x 720 pixels resolution.
Therefore, we can conclude that our framework is capable of outputting semantic instances
in real-time. In addition, the accuracy of the solution increases if the information is limited
to a specific range by using depth maps.
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Abbreviations

The following abbreviations are used in this manuscript:

MRCNN  Mask R-CNN

OF Optical Flow

DOF Dense Optical Flow

DIS Dense Inverse Search

SIS Semantic Instance Segmentation

Appendix A. Results of the Proposed Solution on Our Dataset
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~DIS_12-13 L~ Dis_13-14 L DIS_1a-15

4 WARP ’ 2 WARP |, A WARP

Figure Al. Framework results—our dataset (1): I,—input image x, DIS_I, — I,—optical flow
(DIS_ultrafast) between I and Iy, Ox—output image (1).
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Figure A2. Framework results—our dataset (1): I,—input image x, DIS_I, — I,—optical flow
(DIS_ultrafast) between I and Iy, Ox—output image.
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