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Abstract: The COVID-19 pandemic had an unprecedented impact on the civil aviation passenger
transport industry. This study analyzes the scale change and spatial distribution of the Chinese main
air transport network (CMATN) and its role in the early spread of the pandemic using a complex
network analysis method and econometric model. The result shows that CMATN is mainly located
in the economically developed and densely populated central and eastern regions of China. The
normalized degree, closeness, and betweenness centralities of CMATN node cities show an overall
increasing trend, indicating that the air transport network is constantly improving. There was a
significant positive relationship between the centrality of node cities, the duration of the COVID-19
pandemic, and the number of confirmed cases, indicating that air transport networks were crucial in
the pandemic’s early spread. Furthermore, social and economic variables such as GDP and population
had a significant positive impact on the duration of the pandemic, indicating that higher levels of
social and economic development increased the seriousness of the pandemic. Our findings are
expected to supplement existing research and serve as a point of reference for pandemic prevention
and control.
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1. Introduction

In December 2019, some hospitals in Wuhan successively found and reported several
cases of unexplained pneumonia in people who had a history of exposure to the seafood
market in South China. Viruses with a high infection rate spread rapidly in various regions
of China during January 2020 [1]. Wuhan, as the initial outbreak point of the pandemic,
implemented a lockdown policy on 23 January 2020, to alleviate and suppress the spread of
the pandemic. After that, various regions in China also began to implement travel bans [2],
and population mobility was greatly reduced [3,4]. The transportation sector, particularly
civil aviation, was struck hard [5–7]. The demands of domestic and international civil
aviation passenger were decreased sharply, and the civil aviation passenger transport
industry was also suspended [8,9]. It can be said that COVID-19 had an unprecedented
impact on the aviation transportation industry [10,11], and worldwide many airlines
struggled to survive [12,13].

Nowadays, the outlook on the global pandemic is still not optimistic. COVID-19 has
become one of the most destructive pandemics in modern world history, as can be seen by
the number of casualties and social and economic losses [14]. At the start of the outbreak,
China’s civil aviation passenger transport market was impacted first by COVID-19. Due
to the strict case tracking and flow restriction measures implemented by the Chinese
government, the COVID-19 pandemic began to be controlled in early March 2020, and the
Chinese civil aviation passenger transport market began to recover [15]. Before 2020, with
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the rapid development of China’s air transport network, many cities had developed into
international hub airports [16], and the number of routes with annual passenger volumes
of more than 300,000 was increasing. With the continuous strengthening of spatial links
between different regions, population mobility was improved, which had a significant
positive impact on the speed and scope of the spread of the pandemic [17]. Among these,
efficient civil aviation connectivity posed severe obstacles to pandemic prevention and
control, as well as promoted the spread of pandemics to some extent [18].

When it comes to the impact of civil aviation, high-speed rail, and buses on COVID-19
transmission, some scholars found that there was a significant positive correlation between
these factors and the number of people diagnosed. In addition, they found that the speed
of the pandemic spread had a significant relationship with the existence of airports and
high-speed rail stations in cities [19]. In recent years, studies have focused on the intersec-
tion of transport networks with disease transmission, prevention, and control. Transport
networks were used to predict the trend of pandemic transmission [20,21] and to formulate
corresponding measures to alleviate and suppress the spread of the pandemic [22,23].

In the post-pandemic era, China continues to face the risk of international travelers
increasing the number of COVID-19 cases [24]. We do not know how long this disaster
will last, and how large the probability and scope of the outbreak will be. Because civil
aviation is an important channel for the spread of pandemics, it is necessary to continue to
conduct in-depth research on the interaction between civil aviation and the pandemic [25],
to provide guidance for the disease’s prevention and control in the post-pandemic era.

This study adopts a complex network analysis method combined with an econo-
metric model to analyze the relationship between civil aviation networks and pandemic
transmission. At present, there are many relevant studies on the application of complex
network theory in the field of transportation, but most of them researched the structure of
high-speed passenger transport network systems such as high-speed rail and civil avia-
tion [26–29]. In the 1980s, China’s civil aviation network developed to a larger scale and
began to evolve into complex networks [30,31], which showed typical small-world network
characteristics [32,33]. With the continuous expansion of the scale of air transport networks,
scholars continued to use complex network analysis methods to study civil aviation, fo-
cusing mainly on the topological structure of air transport networks [34,35]. In addition,
scholars examined civil aviation networks from the perspective of multi-layer networks
based on complex network analysis methods [36]. However, to the best of our knowledge,
there is no research related to the use of complex network analysis methods to study the
relationship between air transport networks and the pandemic’s transmission. Therefore,
we address this gap. Civil aviation, as a transportation tool with efficient connectivity, can
effectively improve global accessibility, strengthen spatial links in different regions, and
promote population mobility. As the backbone of China’s air transport network, CMATN
plays an extremely important role. An empirical study that assesses the spatial distribution
of CMATN and the pandemic’s transmission, as well as the relationship between them,
will facilitate discovering the extent of the role civil aviation passenger transport plays in
the early stage of a pandemic’s transmission.

Therefore, this study examines the CMATN scale, node city centrality, and pandemic
data, and comprehensively uses a complex network analysis method and econometric
model. It analyzes the evolution of CMATN, the spatial distribution of the pandemic,
and the role of the air transport network in the early stage of a pandemic’s transmission.
This is of great significance for pandemic prevention and control in the post-pandemic
era. The important contributions of this study are as follows. First, we analyze the
changes in China’s aviation passenger transport market by using route data of CMATN,
the cumulative number of confirmed cases and duration of COVID-19 in various regions,
and socio-economic development data to gain insight into the latest development of the
aviation passenger transport industry. Studies have not previously used this type of data.
Second, before proving the role of CMATN in the early stages of pandemic spread, we
analyze the relationship between the number of confirmed cases and the change in civil
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aviation passenger throughput, to more intuitively illustrate the impact of the pandemic on
the civil aviation passenger industry. Finally, we examine the spread of the pandemic to
find the role of CMATN in the early spread of the pandemic from a statistical perspective.
Our research can enrich the literature and provide policy references for policymakers and
civil aviation operators.

2. Materials and Methods

The study area was the mainland of China. To analyze the change of CMATN passen-
ger volume under the COVID-19 pandemic, we viewed cities as the nodes and the inter-city
flight routes as the edges, selected the undirected network formed by the routes with an
annual passenger volume of more than 300,000, and built a database containing relevant
indicators such as civil aviation passenger volumes, local social and economic data, the
number of newly diagnosed people, and the duration. CMATN is the busiest passenger
transport network in China, which is formed by a route with more than 300,000 passengers
per year. The total amount of passenger transport accounts for more than 60% of the total
domestic passenger transport in China and has strong representativeness. The data sources
are as follows:

1. The data on China’s main air transport network routes were derived from Statisti-
cal Data on Civil Aviation of China, a publication compiled and published by the
Development Planning Division of the China Civil Aviation Administration. Due to
the rapid development of China’s civil aviation, the statistical standard of passenger
traffic in China’s main domestic routes has changed. Since 2014, only passenger
volumes that were over 300,000 would be recorded. To unify the standard, this study
selected flight routes with annual passenger volumes of more than 300,000.

2. The data on the cumulative number of confirmed cases and duration of COVID-19
are mainly from the websites of local governments and national health commissions.
Using municipalities, prefecture-level cities, and certain provincial municipalities as
statistical units, we integrated the pandemic data of COVID-19. Among them, the
cumulative number of confirmed cases of COVID-19 refers to the cumulative number
of confirmed cases in 2020. The duration of the pandemic is the cumulative number
of days with newly diagnosed cases in various regions.

3. The socio-economic data was obtained from the China Urban Statistical Yearbook
published by the China Bureau of Statistics and the Statistical Bulletin of National
Economic and Social Development published by various regions. Socio-economic
data include the 2019 GDP and total population of 67 node cities in CMATN.

The descriptive statistics are shown on Table 1.

Table 1. Statistical description of relevant data.

Variables Obs Mean Std. Dev. Min Max

Flight Frequency 1 (2019) 426 6.185 4.861 0.909 39.175
Passengers 2 (2019) 426 86.847 86.102 30.005 824.615

People 3 (2019) 67 703.145 655.799 55.89 3390
GDP 4 (2019) 67 7041.682 8041.824 385.503 38,053.67

COVID-19 cases 5 (2020) 67 863.582 6137.694 0 50,333
COVID-19 days 6 (2020) 67 46.478 26.346 0 121

1 Number of aircraft take-offs and landings in thousands, 2 number of passengers in units of ten thousand, 3 total
population in units of ten thousand, 4 per billion yuan, 5 cumulative number of confirmed cases, 6 duration of the
pandemic in days.

2.1. Complex Network Analysis

The complex network is the topological basis of complex system research and origi-
nated from graph theory. In recent years, applying complex network theory to the transport
field has become popular in research. Complex systems are composed of many interact-
ing components. The relationship between components can be abstracted as points and
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edges of complex networks forming complex networks with point-edge structures. The
structure-determining function is the basic principle of complex network analyses; in other
words, the main purpose of a network analysis is to explain the structural relationship
of complex networks. Among them, the composition of social structure is the regularity
of the relationship model between tangible entities [37]. Entities can be natural persons,
small groups, organizations, or countries. Therefore, CMATN can be regarded as network
G = (V, E) with nodes |V| = n, edges |E| = m, node set V = {vi : i = 1, 2, 3, . . . , n}, and
edge set E = {ei : i = 1, 2, 3, . . . , m}. Adjacency matrix An×n = [aij]n×n. represents the
connectivity of the network and aij = 1. indicates node vi is directly connected to node vj;
otherwise, aij = 0.

To analyze the network structure, in this study we mainly selected network density,
average path length, and average clustering coefficients to analyze the evolutionary trend of
the network structure. In addition, we referred to some literature and found that the network
type does not affect the conclusions of this paper. Bagler studied the Indian airport network
as a weighted network, and found that whether the Indian airport network is weighted
or not, it presented the characteristics of a small-world network [38]. Kim and Yoon took
link distance and the link-wise air traffic volume as weights, analyzed the centrality of key
nodes of an unweighted and weighted Northeast Asia route network, and reached the same
conclusion [39]. Deng et al. found that there was no significant change in the weighted
and unweighted intermediate centrality ranking of node cities in the analysis of the Chinese
scheduled freighter network [40]. Thus, we used the undirected network formed by the
segments with an annual passenger volume of more than 300,000 for analysis.

Network density (D) measures the degree of interconnection between each node city,
reflecting the overall distribution and tightness of the entire network. The greater the network
density, the closer the relationship between the network node cities. The network density
calculation is shown in Equation (1), and the variable descriptions are shown in Table 2.

D =
2m

n(n− 1)
(1)

Table 2. Variable descriptions.

Variable Description

n Represents the number of node cities in CMATN.

m Represents the number of routes in CMATN.

d(vi, vj)
Represents the number of shortest path edges between any two nodes
in CMATN.

aij
Represents the connection of node cities.
aij = 1 if node vi is directly connected to node vj, otherwise aij = 0.

k(vi) Represents the number of edges connected by node vi in a network.

Ri Represents the actual number of edges between the adjacent nodes of node vi.

dij Represents the shortest distance from node city i to node city j.

gjk Represents the number of shortest paths between node city j and node city k.

gjk(vi)
Represents the number of shortest paths between node city j and node city k
through node city i.

The average path length (L) is defined as the average value of the shortest path
edge number between any two nodes in the network, which reflects the compactness and
accessibility of the network and is an important indicator to measure the performance of the
air transport network. The calculation of the average path length is shown in Equation (2).

L =
1

1
2 n(n− 1)

∑
i 6=j

d
(
vi, vj

)
(2)
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The clustering coefficient (C) measures the clustering degree of nodes in the network
and reflects the local cohesion of the network and the degree of interconnection between
a node and its adjacent nodes. The average clustering coefficient is the average of the
clustering coefficient of all nodes, which reflects the clustering degree of the entire network.
The clustering coefficient calculation is shown in Equation (3).

C =
1
n ∑

vi∈V
C(vi) =

1
n ∑

vi∈V

Ri
1
2 k(vi)(k(vi)− 1)

(3)

We further analyzed the centrality of node cities in air transport networks by selecting
degree, closeness, and betweenness centralities. Centrality is an indicator to determine
the importance of nodes in a network, and it is a quantification of node importance. The
measurement indicators for determining centrality are different in different situations,
but degree, closeness, and betweenness centralities are the most important measurement
indicators at present. Specifically, degree centrality is the most direct indicator to describe
the importance of a node in the network; closeness centrality reflects the degree of prox-
imity between a node and other nodes in the network; and betweenness centrality is a
control indicator, reflecting the degree to which a single node becomes the intermediary of
connections between other nodes. Therefore, the intensity of population flow between node
cities in the civil aviation network and the risk of pandemic spread can be well described by
these three centrality indicators. In addition, we used the normalized value to eliminate the
influence of network size on the centrality of node cities for the centrality analysis index.

Degree centrality is the most direct indicator of node centrality in network analyses.
Normalized degree centrality CD(vi) measures the degree of connection between a single
node city and all other node cities in the network, which reflects the correlation between
the node city and other node cities and the relative degree of being in the central position
of the entire air transport network. The normalized degree centrality calculation is shown
in Equation (4).

CD(vi) =

n
∑

j=1
aij(i 6= j)

n− 1
(4)

Normalized closeness centrality CC(vi) measures the proximity of a node city to
other node cities in the network, and normalized closeness centrality is the reciprocal of
the cumulative sum of the shortest distance from a node city to other node cities. If the
distance between a node and other points in the network is very short, the node has a high
normalized closeness centrality, which is the center of gravity of the entire network. The
normalized closeness centrality calculation is shown in Equation (5).

CC(vi) =
n− 1
∑

vj∈V,i 6=j
dij

(5)

Normalized betweenness centrality CB(vi) is a control index that reflects the degree to
which a single node city becomes the intermediary of passenger flow linkage between other
node cities. The normalized betweenness centrality calculation is shown in Equation (6).

CB(vi) =

∑
j<k

gjk(vi)

gjk

1
2 (n− 1)(n− 2)

(6)

2.2. Econometric Model

We found that the node cities with a higher centrality have a higher spatial coincidence
with the cities with higher pandemic durations, based on the data released by the Civil
Aviation Administration of China and the pandemic data released by regional health
committees. Therefore, we found that CMATN promotes the spread of the pandemic to
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some extent. In addition, there may be a lag relationship between civil aviation passenger
transport and pandemic spread, that is, the civil aviation passenger transport network still
transports passengers with its original structure before the pandemic, which may lead to the
early spread of the pandemic. To verify our finding and further analyze the transmission
relationship between CMATN and the pandemic, we selected relevant variables to construct
an econometric model, Equation (7).

COVID-19day,ij = α0 + α1Centralityij + α2Connectij + α3GDP_perij + α4Pop_densityij + εij (7)

We also considered that flight routes between cities with relatively high centrality
tend to have large annual passenger volumes and flights. Therefore, to further verify the
relationship between the air transport network and pandemic transmission, we selected
the relevant data of the route with annual passenger volumes of more than 300,000, and
constructed an econometric model based on the pandemic’s duration, GDP, and population
density as shown in Equation (8). In Equation (7), the centrality index is used to quantify
the importance of node cities in the civil aviation network, and then we can analyze the
risks of different node cities in the spread of the pandemic. Equation (8) selects the annual
passenger volume and flight frequency data of the flight segment between the node cities,
and analyzes the relationship between civil aviation and the spread of the pandemic from
the perspective of the total transportation volume.

COVID-19day,ij = α0 + α1Flightij + α2Connectij + α3GDP_perij + α4Pop_densityij + εij (8)

In Equations (7) and (8), i denotes the city where the departure station is located
and j denotes the city where the terminal station is located. The dependent variable
COVID-19day,ij is the average duration of the COVID-19 pandemic in regions i and j in
2020, representing the status of the COVID-19 pandemic in regions i and j. Centralityij is the
average value of normalized centrality for region i and region j, where Closeness_centralityij
is the average normalized closeness centrality of region i and region j. Between_centralityij
is the average relative betweenness centrality of region i and region j. Connectij is a dummy
variable. If regions i or j are in Wuhan, then Connectij is 1; otherwise, it is 0.

Generally, GDP and population (as economic factors) are considered the main factors
affecting transportation services and are widely used as explanatory variables in empirical
research [41,42]. CMATN is mainly located in the central and eastern parts of China where
the economy is relatively developed and the population is relatively dense. Therefore, GDP
and population are the main factors that affect air transport services and are included in
the analysis model. GDP_perij is the average per capita GDP of region i and region j and
Pop_density is the average population density of region i and region j. Flightij is data for i
and j, including flights and annual passenger volumes for i and j.

3. Results
3.1. Evolution Analysis of the Air Transport Network Structure
3.1.1. Network Scale

With the rapid development of China’s economy, China’s civil aviation passenger
transport industry has also been booming. The annual passenger volume of an increasing
number of flight routes has reached 300,000, which has gradually expanded CMATN.
However, in the pandemic era, how will changes in the scale and structure of CMATN
affect the spread of the pandemic? To answer this question, we attempted to analyze
the connection between the civil aviation network and the spread of the pandemic by
examining the development of CMANT.

The number of node cities and main routes in CMATN increased significantly. The
number of main routes with more than 300,000 passengers was 1.8 times more in 2019
than in 2010, and the number of node cities increased by 11 compared to 2010 (Figure 1).
In addition, the passenger volume of civil aviation was greatly improved, including the
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domestic civil aviation and CMATN passenger volumes. The domestic civil aviation and
CMATN passenger volumes were 2.36 times and 1.94 times more in 2019 than in 2010,
respectively (Figure 2). Overall, the scale of China’s air transport network is constantly
expanding, and the domestic air transport network system and aviation hub functional
system is gradually being built and improved, which can also be seen in the CMATN
topology diagram in 2010 and 2019 (Figure 3).
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The number of CMATN main routes and annual passenger volumes is very large and
mainly concentrated in the central and eastern region of China, which has a developed
economy and dense population. Specifically, CMATN is mainly distributed in the southeast
side of the Hu Line (the Hu Line is a comparative line for dividing China’s population
density, proposed by Huanyong Hu (1901–1998), a Chinese geographer, in 1935. It is a
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straight line from Heihe to Tengchong. More than 90% of China’s population and economic
activity is on the southeast side of the Hu Line) and the provincial capital cities that
play the role of regional transport hubs (Figure 3). This is because the population and
economic development levels are important factors that affect the development of civil
aviation networks. In addition, civil aviation transportation is an important way in which
pandemics can spread. The relatively perfect civil aviation passenger transport network
will also substantially increase the risk of infection in the central and eastern regions.

3.1.2. Network Density, Average Clustering Coefficient, and Path Length

Figure 4 shows the variation trend of the network density and average clustering
coefficient of CMATN. We found that in the past 10 years, the network density of CMATN
has shown an overall fluctuating increasing trend, which is mainly due to the rapid growth
in the number of routes (annual passenger traffic volume is more than 300,000). Especially
from 2015 to 2019, the number of flight routes increased by an average of 30 routes per
year, which again proves that the scale of the CMATN network is expanding. From 2010 to
2019, the average clustering coefficient of CMATN showed a decreasing trend. In addition,
the average path length of CMATN showed a slight increasing trend (Figure 5) because
certain cities in CMATN are connected to only one regional hub. Overall, there is room for
improvement in connectivity between the node cities in CMATN, and the average transfer
times in CMATN have not decreased. Combined with the change of CMATN, shown in
Figure 3, we found that CMATN appears to be developing in the direction of building a
more efficient local-hub-and-spoke network system, and the links between local hub cities
are continuously being strengthened.
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3.1.3. Centrality Analysis of Node Cities

To further explore the relationship between CMATN node cities and the pandemic
transmission, we analyzed the normalized degree, closeness, and betweenness centralities
of node cities. Table 3 lists the top 20 cities for 2010 and 2019.

Table 3. Top 20 cities in terms of centrality in 2010 and 2019.

Rank

2010 2019

CD(vi) CC(vi) CD(vi) CC(vi) CD(vi) CC(vi)

City Value City Value City Value City Value City Value City Value

1 Beijing 0.695 Beijing 0.766 Beijing 0.282 Beijing 0.571 Beijing 0.700 Kunming 0.149

2 Shanghai 0.610 Shanghai 0.720 Shanghai 0.224 Shanghai 0.571 Shanghai 0.700 Beijing 0.139

3 Guangzhou 0.542 Guangzhou 0.686 Guangzhou 0.120 Guangzhou 0.529 Guangzhou 0.680 Shanghai 0.137

4 Shenzhen 0.424 Chengdu 0.615 Chengdu 0.119 Xi’an 0.529 Xi’an 0.673 Urumqi 0.121

5 Chengdu 0.390 Shenzhen 0.608 Kunming 0.116 Kunming 0.500 Chengdu 0.642 Hohhot 0.088

6 Xi’an 0.339 Xi’an 0.596 Urumqi 0.101 Chongqing 0.486 Chongqing 0.636 Guangzhou 0.084

7 Changsha 0.322 Changsha 0.578 Xi’an 0.065 Chengdu 0.486 Kunming 0.619 Xi’an 0.082

8 Kunming 0.322 Kunming 0.578 Xiamen 0.037 Zhengzhou 0.429 Zhengzhou 0.614 Zhengzhou 0.059

9 Hangzhou 0.305 Chongqing 0.567 Shenzhen 0.036 Hangzhou 0.414 Wuhan 0.598 Chongqing 0.040

10 Chongqing 0.288 Hangzhou 0.557 Chongqing 0.024 Wuhan 0.371 Changsha 0.593 Wuhan 0.040

11 Nanjing 0.237 Wuhan 0.546 Changsha 0.015 Shenzhen 0.371 Hangzhou 0.583 Chengdu 0.037

12 Qingdao 0.237 Zhengzhou 0.546 Hangzhou 0.011 Nanjing 0.357 Nanjing 0.579 Guiyang 0.037

13 Xiamen 0.220 Nanjing 0.536 Nanjing 0.009 Changsha 0.343 Shenzhen 0.565 Lanzhou 0.033

14 Wuhan 0.220 Jinan 0.536 Qingdao 0.008 Xiamen 0.329 Xiamen 0.560 Xiamen 0.026

15 Jinan 0.203 Qingdao 0.532 Zhengzhou 0.007 Guiyang 0.329 Tianjin 0.560 Changsha 0.023

16 Zhengzhou 0.186 Urumqi 0.532 Wuhan 0.004 Haikou 0.314 Haikou 0.556 Hangzhou 0.019

17 Dalian 0.186 Xiamen 0.527 Dalian 0.004 Qingdao 0.300 Lanzhou 0.551 Nanjing 0.015

18 Urumqi 0.186 Guiyang 0.518 Jinan 0.003 Tianjin 0.286 Guiyang 0.547 Shenzhen 0.010

19 Sanya 0.153 Sanya 0.504 Shenyang 0.001 Urumqi 0.257 Qingdao 0.547 Tianjin 0.007

20 Guiyang 0.136 Qingdao 0.496 Harbin 0.001 Lanzhou 0.243 Urumqi 0.530 Haikou 0.007

In terms of normalized degree centrality, Beijing, Shanghai, and Guangzhou are ranked
the top three cities. However, there is a declining trend, which indicates that despite Beijing,
Shanghai, and Guangzhou’s relatively strong control over air transport networks, their
control is gradually declining. In contrast, by comparing the normalized degree centrality
of 17 cities in 2010 to 2019, we found that the overall trend is increasing, indicating that
the number of flight routes in CMATN is rapidly growing and the links between cities
are enhanced. The strengthening of inter-city links is bound to promote the spread of
pandemics, and the risk of infection in node cities in CMATN will also increase. This is
discussed in detail in the econometric model.

In terms of normalized closeness centrality, the fluctuations in the top 10 cities were
negligible with the exceptions of Zhengzhou and Chongqing, which increased significantly,
and Shenzhen, which decreased significantly. However, the ranking of the bottom 10 cities
fluctuated greatly. Overall, except for Beijing, Shanghai, and Shenzhen, the normalized
closeness centrality of other node cities has shown a clear increasing trend. Therefore, after
ten years of development of CMATN, the average shortest distance from many large cities
to other cities has declined, which indicates that the accessibility between these large cities
has improved.

In terms of normalized betweenness centrality, the changing trends of different cities
vary. The normalized betweenness centrality of cities such as Beijing, Shanghai, Guangzhou,
and Chengdu show a significant decreasing trend. However, overall, the normalized
betweenness centrality was significantly improved in 80% of CMATN node cities, such
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as Kunming, Urumqi, and Hohhot. The main reason for this phenomenon is that the
number of node cities and routes in CMATN is increasing, and the transit or connection
function in CMATN is no longer completely dependent on core node cities such as Beijing,
Shanghai, and Guangzhou. For example, Urumqi developed into a hub, with Korla, Hotan,
Kashgar, Aksu, and Yining as its spokes due to the rapid development of tourism, and
the normalized betweenness centrality of Urumqi has significantly improved. Overall,
an increasing number of cities in CMATN are expanding to become important nodes of
passenger links between other cities.

3.2. COVID-19 Spatial Distribution Analysis

The transportation network, as an important carrier of population mobility and social
and economic activities, directly affects spatial factors and may have an extremely important
impact on the spatial distribution of COVID-19. The development of the air transport network
promotes traffic accessibility, thereby strengthening the spatial correlation of different regions.
This causes the spatial distribution of pandemics to be closely related to the air transport
network. To observe the spatial distribution of the pandemic more intuitively, we created a
spatial distribution map of COVID-19 cumulative confirmed cases (Figure 6).
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The number of COVID-19 confirmed cases is concentrated in the central and eastern
regions of China, showing a certain spatial clustering characteristic (Figure 6). Specifically,
it mainly includes densely populated areas such as the urban agglomeration in the middle
reaches of the Yangtze River, the Beijing–Tianjin–Hebei urban agglomeration, the Pearl
River Delta urban agglomeration, and the Hong Kong–Zhuhai–Macao Greater Bay Area,
which have close social and economic ties and relatively developed air transport networks.
Among them, Wuhan City, Hubei Province, as the initial point of the outbreak, caused the
pandemic in Hubei Province to be the most serious. The cumulative confirmed cases of
COVID-19 in Wuhan account for more than 80% of the country’s cases, and diffusion from
Wuhan to the surrounding areas can be seen. In addition to Hubei Province, among the
20 cities in China with the highest number of confirmed cases, 75% of the cities are CMATN
node cities. For example, the number of COVID-19 confirmed cases in Urumqi, Beijing,
Chongqing, Wenzhou, Shenzhen, Guangzhou, and Shanghai is more than 300, which
confirms that the pandemic and air transport network are inextricably linked. In cities other
than Hubei Province, Urumqi ranked first with a cumulative number of 850 confirmed
cases. We believe that this is related to the significantly improving normalized betweenness
centrality which is caused by the rapid development of tourism in Urumqi.
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3.3. Analysis of the Relationship between CMATN and COVID-19
3.3.1. Scatter Plot Analysis of Urban Centrality and Status of the Pandemic

To further analyze the relationship between the pandemic and CMATN, we selected
data on the centrality indicators of CMATN node cities, number of confirmed cases, du-
ration of the pandemic, change in passenger transport, and number of aircraft take-offs
and landings. Centrality indicators include normalized degree, closeness, and betweenness
centralities. Normalized degree centrality is the most direct indicator to describe node
centrality in network analysis, and these three indicators are highly correlated. Therefore,
we consider normalized degree centrality as the representative for our analysis. In addition,
the cities selected in this study are CMATN node cities, which are representatives in China’s
civil aviation passenger transport network.

The greater the city’s normalized degree centrality, the closer the city’s traffic links
to other cities in the air transport network, which means that these cities’ populations are
more likely to incur infections during a pandemic. Overall, there is a relatively obvious
positive correlation between the normalized degree centrality of the city, the cumulative
number of confirmed cases and duration of COVID-19 (Figures 7 and 8). In addition, we
used the city’s normalized degree centrality value of 0.2 as the dividing point for our
specific analysis. In the cities with a normalized degree centrality between 0 and 0.2, the
proportion of cities with fewer than 100 COVID-19 confirmed cases reached 87.5%, and the
proportion of cities where the pandemic lasted for fewer than 40 days reached 70%. In cities
with a normalized degree centrality greater than 0.2, more than 100 people were infected in
51.85% of the cities, and the duration of the pandemic exceeded 40 days in 85.19% of the
cities. In other words, the risk of urban infection with a low normalized degree centrality is
relatively low, and the risk of urban infection with a high normalized degree centrality is
relatively high. There is a significant positive correlation between the two.
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The COVID-19 pandemic severely impacted China’s air transport market, and the
supply capacity of air transport across the country substantially declined. Figures 9 and 10
show that for CMATN node cities, normalized centrality has a significant positive cor-
relation with the decline in passenger transport and the decline in aircraft take-offs and
landings. This is because there is a positive correlation between the normalized centrality
and the severity of the pandemic, and the pandemic was the main factor causing the decline
in the supply capacity of air transport in China. Among these cities, Beijing and Shanghai
have the most obvious decline in passenger traffic and aircraft take-offs and landings.
Specifically, 57.6 million passengers and 224,286 aircraft traveled to and from Beijing, and
60.15 million passengers and 239,692 aircraft traveled to and from Shanghai. Because these
two cities are the core node cities in CMATN, their normalized degree, closeness, and
betweenness centralities are ranked in the top three among the cities.
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3.3.2. Analysis of Regression Results of the Econometric Model

To further analyze the communication relationship between the air transport network
and COVID-19, we constructed an econometric model and used the ordinary least squares
and robust standard deviation methods for our regression analysis. We used the centrality
index to describe the development of civil aviation in node cities, and the duration of the
pandemic represents the city’s pandemic status.

Table 4 shows the regression results of Equation (7) between the centrality of node
cities and the duration of the COVID-19 pandemic. In Equation (7), 426 observations were
used to regress the goodness-of-fit R2, which is the degree of fit of the model to the sample,
and the results are between 0.265 and 0.292. According to the regression results, it can be
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seen that the coefficients of normalized degree, closeness, and betweenness centralities are
all significantly positive whether the GDP, population, or dummy variables are added to
the control variables, which indicates that the centrality of the node city has a significant
impact on the continuation of the pandemic. In sum, the higher the centrality of the node
city, the more important its position in the civil aviation network, the closer the traffic
connection with other cities, and the greater the risk of being infected by the pandemic.
This is consistent with the conclusion drawn in Figures 7 and 8.

Table 4. Regression results of Equation (7).

COVID-19day 7–1 7–2 7–3 7–4 7–5 7–6

Degree Centrality 0.86 ***
(8.87)

0.60 ***
(6.32)

Closeness
Centrality

1.82 ***
(10.34)

1.35 ***
(7.75)

Between
Centrality

1.86
(6.19)

1.65 ***
(6.21)

Connect 14.24 ***
(5.19)

13.81 ***
(5.06)

15.15 ***
(5.59)

GDP_per 1.20 ***
(3.69)

1.10 ***
(3.45)

1.37 ***
(4.42)

Pop_density 0.37 ***
(3.47)

0.37 ***
(3.63)

0.51 ***
(5.04)

Constant 31.40 ***
(9.59)

−43.69 ***
(−4.35)

52.40 ***
(36.93)

20.76 ***
(5.21)

−35.45 ***
(−3.67)

30.41 ***
(9.03)

R-squared 0.152 0.188 0.089 0.265 0.292 0.270

Obs. 426 426 426 426 426 426
*** Significant at 1%.

The coefficient of the dummy variable Connect is also positive, indicating that if the
city is directly connected to Wuhan by flights, the pandemic will last longer. In addition,
the correlation analysis between dummy variables and the number of confirmed cases
shows that cities with direct flights to Wuhan have more confirmed cases. The reason is
that during the early outbreak, when preventative measures were not in place, it was easier
for these cities to receive infected people, and the risk of transmissions was higher. The
per capita GDP and population density of socio-economic factors also have a significantly
positive impact on the duration of the pandemic, that is, the pandemic mostly occurs in
cities with high socio-economic developments and dense populations, which is consistent
with the conclusion shown in Figure 6.

Table 5 shows the regression results of flight route data and the pandemic’s duration,
namely the regression results of Equation (8). These results show that the number of flights
and passenger traffic have a significant positive impact on the duration of the pandemic,
which reflects that a city’s air transport network being more developed results in a greater
number of flights and passenger volumes and consequently a more serious spread of
infections. The reason is that the development of an air transport network will improve
traffic accessibility, and the spatial correlation of different cities will be strengthened, thus
promoting the spread of the pandemic. For example, in the node cities corresponding to
the top ten routes of domestic passenger traffic in 2019, the number of confirmed cases
in Beijing, Shanghai, Guangzhou, Chongqing, and Shenzhen was more than 300, and the
number of confirmed cases in Chengdu and Xi’an was more than 100. Moreover, the
duration of the pandemic in these seven cities was more than 40 days, indicating that these
cities suffered serious effects from the pandemic in 2020.
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Table 5. Regression results of Equation (8).

COVID-19day 8–1 8–2 8–3 8–4

Flight 1.40 ***
(8.56)

0.98 ***
(5.47)

Passengers 0.85 ***
(9.98)

0.63 ***
(6.98)

Connect 15.75 ***
(5.88)

16.11 ***
(6.03)

GDP_per 1.35 ***
(3.96)

1.33 ***
(3.99)

Pop_density 0.33 ***
(2.94)

0.30 ***
(2.69)

Constant 51.35 ***
(38.78)

52.64 ***
(45.24)

33.42 ***
(9.84)

34.56 ***
(10.37)

R-squared 0.126 0.144 0.253 0.268

Obs. 426 426 426 426
*** Significant at 1%.

4. Discussion and Conclusions

Based on China’s data of COVID-19 in 2020, CMATN route data in 2010 to 2019,
and socio-economic data, this study analyzed the relationship between the air transport
network and COVID-19 through the complex network analysis method and econometric
model. The following conclusions are drawn:

1. CMATN developed rapidly from 2010 to 2019, and the network scale expanded.
The number of node cities and routes with annual passenger volumes of more than
300,000 increased significantly. In terms of spatial location, it is mainly located in
the economically developed and densely populated central and eastern regions of
China. The network density of CMATN shows an overall fluctuating increasing
trend, whereas the average clustering coefficient shows a gentle decreasing trend, and
the average path length shows a slight increasing trend, indicating that CMATN is
developing towards the construction of a more efficient local hub-and-spoke network
system, and the links between local hub cities are continuously strengthened. In
addition, the development of CMATN shows the characteristics of changing from
a small number of major node cities to multi-cities. The network structure is more
complex, and the local hub-and-spoke network is close to perfect.

2. The COVID-19 pandemic was mainly concentrated in the densely populated, devel-
oped cities of the air transport network that have close socio-economies ties in central
and eastern China, and in node cities of the local hub-and-spoke network. This shows
certain spatial clustering characteristics. The pandemic was the most serious in Wuhan
in the Hubei province, as the initial point of the outbreak, and a Wuhan-centered
spread to the surrounding areas was observed. Outside Hubei Province, there was a
multi-point to comprehensive diffusion, and most of the CMATN node cities had out-
breaks except for Dunhuang. In this regard, many node cities in CMATN should pay
more attention to the prevention and control of the pandemic in the post-pandemic
era. City managers should formulate appropriate pandemic prevention standards
and requirements for the status of cities in the air transport network to resist the risk
of pandemic transmission by air transport.

3. There is a significant positive correlation between the normalized degree centrality of
cities and the number of COVID-19 confirmed cases and the duration of the pandemic.
A higher normalized degree centrality of the node city results in a closer connection
between the node city and all other node cities in CMATN. Therefore, compared to
other cities, the risk of pandemic transmission is more serious. In addition, although



Mathematics 2022, 10, 2348 15 of 17

the normalized degree, closeness, and betweenness centralities are highly correlated,
their impacts on the pandemic vary, among which the normalized betweenness
centrality has the greatest impact on the pandemic.

4. A city’s normalized centrality has a significant positive correlation with a decline in
passenger transport and aircraft take-offs and landings. In 2020, the pandemic seri-
ously damaged the domestic air transport business. Strict personnel flow restriction
measures and aviation control policies greatly reduced the elastic demand for civil
aviation, and the rigid demand also significantly decreased. Accordingly, the greater
the normalized centrality is, the more obvious the decline in passenger transport
and aircraft take-offs and landings is due to the positive correlation between cities’
normalized centrality and the pandemic. In addition, cities with dense populations,
high socio-economic levels, and developed air transport networks are still the main
markets for the air transport industry, although the continuous spread and frequent
occurrence of pandemics in the region will lead to substantial declines in passenger
traffic. With the gradual recovery of the social economy and the relaxation of control
measures, airlines should seize the opportunity to formulate business strategies for
major passenger markets, and recover from the trauma caused by the COVID-19
pandemic as soon as possible by adjusting fares and flight frequency.

5. Economic factors such as GDP and population have a significantly positive impact
on the pandemic, that is, the pandemic occurs frequently in cities with high levels
of socio-economic development and dense populations. Economic factors such as
GDP and population are the main factors affecting the development of air transport
networks. With higher levels of economic development and denser populations, cities
have more developed civil aviation and their spatial connections with other cities are
closer; thus, the risk of pandemic transmission is greater.

Due to the unpublished flight route passenger volume data for 2020, we cannot further
analyze the impact of the pandemic on passenger volume changes. However, CMATN is the
busiest passenger transport network and is composed of routes with an annual passenger
volume of more than 300,000. It has a certain reference value and strong credibility for the
study of the relationship between traffic networks and pandemic transmission. In addition,
we propose some avenues for future research. In the post-pandemic era, the prevention
and control of pandemics should be paid more attention to in accuracy and timeliness,
and the prediction requirements for the risk of pandemic transmission in different cities
should be more accurate. The establishment of a pandemic transmission model based on
complex networks can better predict the pandemic transmission risk in a certain area, which
has a certain reference value for urban managers to allocate medical resources and make
emergency plans. At the same time, targeted pandemic prevention and control measures
can effectively avoid the excessive waste of medical resources, which is of great significance
in routine pandemic prevention and control.

Author Contributions: Conceptualization, M.S. and Y.J.; methodology, B.H.; software, Z.Z. and
Z.L.; validation, M.S., B.H. and Y.J.; data curation, M.S.; writing—original draft preparation, B.H.;
writing—review and editing, Y.J.; visualization, Z.Z. and Z.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2022, 10, 2348 16 of 17

References
1. Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from

Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [CrossRef] [PubMed]
2. Chinazzi, M.; Davis, J.T.; Ajelli, M.; Gioannini, C.; Litvinova, M.; Merler, S.; Pastore, Y.; Piontti, A.; Mu, K.; Rossi, L.; et al.

The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science 2020, 368, 395–400.
[CrossRef] [PubMed]

3. Liu, Y.; Wang, Z.; Rader, B.; Li, B.; Wu, C.; Whittington, J.D.; Zheng, P.; Stenseth, N.C.; Bjornstad, O.N.; Brownstein, J.S.; et al.
Associations between changes in population mobility in response to the COVID-19 pandemic and socioeconomic factors at the
city level in China and country level worldwide: A retrospective, observational study. Lancet Digit. Health 2021, 3, e349–e359.
[CrossRef]

4. Pan, Y.; He, S.Y. Analyzing COVID-19’s impact on the travel mobility of various social groups in China’s Greater Bay Area via
mobile phone big data. Transp. Res. Part A Policy Pract. 2022, 159, 263–281. [CrossRef]

5. Suau-Sanchez, P.; Voltes-Dorta, A.; Cugueró-Escofet, N. An early assessment of the impact of COVID-19 on air transport: Just
another crisis or the end of aviation as we know it? J. Transp. Geogr. 2020, 86, 102749. [CrossRef] [PubMed]

6. Bulchand-Gidumal, J.; Melián-González, S. Post-COVID-19 behavior change in purchase of air tickets. Ann. Tour. Res. 2021,
87, 103129. [CrossRef]

7. Serrano, F.; Kazda, A. The future of airports post COVID-19. J. Air. Transp. Manag. 2020, 89, 101900. [CrossRef]
8. Piccinelli, S.; Moro, S.; Rita, P. Air-travelers’ concerns emerging from online comments during the COVID-19 outbreak.

Tour. Manag. 2021, 85, 104313. [CrossRef]
9. Hotle, S.; Mumbower, S. The impact of COVID-19 on domestic U.S. air travel operations and commercial airport service.

Transp. Res. Interdiscip. Perspect. 2021, 9, 100277. [CrossRef]
10. Sotomayor-Castillo, C.; Radford, K.; Li, C.; Nahidi, S.; Shaban, R.Z. Air travel in a COVID-19 world: Commercial airline

passengers’ health concerns and attitudes towards infection prevention and disease control measures. Infect. Dis. Health 2021, 26,
110–117. [CrossRef]

11. Monmousseau, P.; Marzuoli, A.; Feron, E.; Delahaye, D. Impact of COVID-19 on passengers and airlines from passenger
measurements: Managing customer satisfaction while putting the US Air Transportation System to sleep. Transp. Res. Interdiscip.
Perspect. 2020, 7, 100179. [CrossRef] [PubMed]

12. Amankwah-Amoah, J.; Khan, Z.; Osabutey, E.L.C. COVID-19 and business renewal: Lessons and insights from the global airline
industry. Int. Bus Rev. 2021, 30, 101802. [CrossRef]

13. Amankwah-Amoah, J. Stepping up and stepping out of COVID-19: New challenges for environmental sustainability policies in
the global airline industry. J. Clean. Prod. 2020, 271, 123000. [CrossRef] [PubMed]

14. Sun, X.; Wandelt, S.; Zhang, A. On the degree of synchronization between air transport connectivity and COVID-19 cases at
worldwide level. Transp. Policy 2021, 105, 115–123. [CrossRef]

15. Hou, M.; Wang, K.; Yang, H. Hub airport slot Re-allocation and subsidy policy to speed up air traffic recovery amid COVID-19
pandemic—Case on the Chinese airline market. J. Air Transp. Manag. 2021, 93, 102047. [CrossRef]

16. Fu, X.; Lei, Z.; Wang, K.; Yan, J. Low cost carrier competition and route entry in an emerging but regulated aviation market–The
case of China. Transp. Res. Part A Policy Pract. 2015, 79, 3–16. [CrossRef]

17. Mu, X.; Yeh, A.; Zhang, X. The interplay of spatial spread of COVID-19 and human mobility in the urban system of China during
the Chinese New Year. Environ. Plan. B Urban Anal. City Sci. 2020, 48, 1955–1971. [CrossRef]

18. Sun, X.; Wandelt, S.; Zhang, A. How did COVID-19 impact air transportation? A first peek through the lens of complex networks.
J. Air Transp. Manag. 2020, 89, 101928. [CrossRef]

19. Zhang, Y.; Zhang, A.; Wang, J. Exploring the roles of high-speed train, air and coach services in the spread of COVID-19 in China.
Transp. Policy 2020, 94, 34–42. [CrossRef]

20. Christidis, P.; Christodoulou, A. ThePredictiveCapacityofAirTravelPatternsduringtheGlobalSpreadoftheCOVID-19Pandemic:
Risk, Uncertainty and Randomness. Int. J. Environ. Res. Public Health 2020, 17, 3356. [CrossRef]

21. Zhao, S.; Zhuang, Z.; Ran, J.; Lin, J.; Yang, G.; Yang, L.; He, D. The association between domestic train transportation and novel
coronavirus (2019-nCoV) outbreak in China from 2019 to 2020: A data-driven correlational report. Travel. Med. Infect. Dis. 2020,
33, 101568. [CrossRef] [PubMed]

22. Colizza, V.; Barrat, A.; Barthelemy, M.; Vespignani, A. The role of the air line transport at ion network in the prediction and
predictability of global epidemics. Proc. Natl. Acad. Sci. USA 2006, 103, 2015–2020. [CrossRef] [PubMed]

23. Kraemer, M.U.G.; Yang, C.; Gutierrez, B.; Wu, C.; Klein, B.; Pigott, D.M.; du Plessis, L.; Faria, N.R.; Li, R.; Hanage, W.P.; et al. The
effect of human mobility and control measures on the COVID-19 epidemic in China. Science 2020, 368, 493–497. [CrossRef]

24. Zhang, L.; Yang, H.; Wang, K.; Zhan, Y.; Bian, L. Measuring imported case risk of COVID-19 from inbound international flights—A
case study on China. J. Air Transp. Manag. 2020, 89, 101918. [CrossRef]

25. Lamb, T.L.; Ruskin, K.J.; Rice, S.; Khorassani, L.; Winter, S.R.; Truong, D. A qualitative analysis of social and emotional perspectives
of airline passengers during the COVID-19 pandemic. J. Air Transp. Manag. 2021, 94, 102079. [CrossRef]

26. Fang, D.C.; Sun, M.Y.; Business, S.O. The Reconstruction of the Spatial Structure of the Yangtze River Delta City Group in the
High-speed Rail Era—Based on the Social Network Analysis. Econ. Geogr. 2015, 35, 50–56.

27. Jiao, J.; Wang, J.; Jin, F. Impacts of high-speed rail lines on the city network in China. J. Transp. Geogr. 2017, 60, 257–266. [CrossRef]

http://doi.org/10.1056/NEJMoa2001017
http://www.ncbi.nlm.nih.gov/pubmed/31978945
http://doi.org/10.1126/science.aba9757
http://www.ncbi.nlm.nih.gov/pubmed/32144116
http://doi.org/10.1016/S2589-7500(21)00059-5
http://doi.org/10.1016/j.tra.2022.03.015
http://doi.org/10.1016/j.jtrangeo.2020.102749
http://www.ncbi.nlm.nih.gov/pubmed/32834670
http://doi.org/10.1016/j.annals.2020.103129
http://doi.org/10.1016/j.jairtraman.2020.101900
http://doi.org/10.1016/j.tourman.2021.104313
http://doi.org/10.1016/j.trip.2020.100277
http://doi.org/10.1016/j.idh.2020.11.002
http://doi.org/10.1016/j.trip.2020.100179
http://www.ncbi.nlm.nih.gov/pubmed/34173460
http://doi.org/10.1016/j.ibusrev.2021.101802
http://doi.org/10.1016/j.jclepro.2020.123000
http://www.ncbi.nlm.nih.gov/pubmed/32834564
http://doi.org/10.1016/j.tranpol.2021.03.005
http://doi.org/10.1016/j.jairtraman.2021.102047
http://doi.org/10.1016/j.tra.2015.03.020
http://doi.org/10.1177/2399808320954211
http://doi.org/10.1016/j.jairtraman.2020.101928
http://doi.org/10.1016/j.tranpol.2020.05.012
http://doi.org/10.3390/ijerph17103356
http://doi.org/10.1016/j.tmaid.2020.101568
http://www.ncbi.nlm.nih.gov/pubmed/32006656
http://doi.org/10.1073/pnas.0510525103
http://www.ncbi.nlm.nih.gov/pubmed/16461461
http://doi.org/10.1126/science.abb4218
http://doi.org/10.1016/j.jairtraman.2020.101918
http://doi.org/10.1016/j.jairtraman.2021.102079
http://doi.org/10.1016/j.jtrangeo.2017.03.010


Mathematics 2022, 10, 2348 17 of 17

28. Jiang, X.; Wen, X.; Wu, M.; Song, M.; Tu, C. A complex network analysis approach for identifying air traffic congestion based on
independent component analysis. Phys. A Stat. Mech. Its Appl. 2019, 523, 364–381. [CrossRef]

29. Wang, H.; Wen, R.; Zhao, Y. Analysis of topological characteristics in air traffic situation networks. Proc. Inst. Mech. Eng. Part G J.
Aerosp. Eng. 2015, 229, 419–425.

30. Lin, J. Network analysis of China’s aviation system, statistical and spatial structure. J. Transp. Geogr. 2012, 22, 109–117. [CrossRef]
31. Lei, Z.; O Connell, J.F. The evolving landscape of Chinese aviation policies and impact of a deregulating environment on Chinese

carriers. J. Transp. Geogr. 2011, 19, 829–839. [CrossRef]
32. Du, W.; Liang, B.; Hong, C.; Lordan, O. Analysis of the Chinese provincial air transportation network. Phys. A Stat. Mech. Its Appl.

2017, 465, 579–586. [CrossRef]
33. Zhang, J.; Cao, X.; Du, W.; Cai, K. Evolution of Chinese airport network. Phys. A Stat. Mech. Its Appl. 2010, 389, 3922–3931.

[CrossRef] [PubMed]
34. ZENG, X.; TANG, X.; JIANG, K. Empirical Study of Chinese Airline Network Structure Based on Complex Network Theory.

J. Transp. Syst. Eng. Inf. Technol. 2011, 11, 175–181. [CrossRef]
35. Bombelli, A.; Santos, B.F.; Tavasszy, L. Analysis of the air cargo transport network using a complex network theory perspective.

Transp. Res. Part E Logist. Transp. Rev. 2020, 138, 101959. [CrossRef]
36. Du, W.; Zhou, X.; Lordan, O.; Wang, Z.; Zhao, C.; Zhu, Y. Analysis of the Chinese Airline Network as multi-layer networks.

Transp. Res. Part E Logist. Transp. Rev. 2016, 89, 108–116. [CrossRef]
37. Boorman, S.A.; White, H.C. Social Structure from Multiple Networks. II. Role Structures. Am. J. Sociol. 1976, 81, 1384–1446.

[CrossRef]
38. Bagler, G. Analysis of the airport network of India as a complex weighted network. Phys. A Stat. Mech. Its Appl. 2008, 387,

2972–2980. [CrossRef]
39. Kim, S.; Yoon, Y. On node criticality of the Northeast Asian air route network. J. Air Transp. Manag. 2019, 80, 101693. [CrossRef]
40. Deng, Y.; Zhang, Y.; Wang, K. An analysis of the Chinese scheduled freighter network during the first year of the COVID-19

pandemic. J. Transp. Geogr. 2022, 99, 103298. [CrossRef]
41. Bhadra, D.; Kee, J. Structure and dynamics of the core US air travel markets: A basic empirical analysis of domestic passenger

demand. J. Air Transp. Manag. 2008, 14, 27–39. [CrossRef] [PubMed]
42. Zhang, Q.; Yang, H.; Wang, Q. Impact of high-speed rail on China’s Big Three airlines. Transp. Res. Part A Policy Pract. 2017, 98,

77–85. [CrossRef]
43. Su, M.; Luan, W.; Li, Z.; Wan, S.; Zhang, Z. Evolution and Determinants of an Air Transport Network: A Case Study of the

Chinese Main Air Transport Network. Sustainability 2019, 11, 3933. [CrossRef]

http://doi.org/10.1016/j.physa.2019.01.129
http://doi.org/10.1016/j.jtrangeo.2011.12.002
http://doi.org/10.1016/j.jtrangeo.2010.10.010
http://doi.org/10.1016/j.physa.2016.08.067
http://doi.org/10.1016/j.physa.2010.05.042
http://www.ncbi.nlm.nih.gov/pubmed/32288080
http://doi.org/10.1016/S1570-6672(10)60157-2
http://doi.org/10.1016/j.tre.2020.101959
http://doi.org/10.1016/j.tre.2016.03.009
http://doi.org/10.1086/226228
http://doi.org/10.1016/j.physa.2008.01.077
http://doi.org/10.1016/j.jairtraman.2019.101693
http://doi.org/10.1016/j.jtrangeo.2022.103298
http://doi.org/10.1016/j.jairtraman.2007.11.001
http://www.ncbi.nlm.nih.gov/pubmed/32572314
http://doi.org/10.1016/j.tra.2017.02.005
http://doi.org/10.3390/su11143933

	Introduction 
	Materials and Methods 
	Complex Network Analysis 
	Econometric Model 

	Results 
	Evolution Analysis of the Air Transport Network Structure 
	Network Scale 
	Network Density, Average Clustering Coefficient, and Path Length 
	Centrality Analysis of Node Cities 

	COVID-19 Spatial Distribution Analysis 
	Analysis of the Relationship between CMATN and COVID-19 
	Scatter Plot Analysis of Urban Centrality and Status of the Pandemic 
	Analysis of Regression Results of the Econometric Model 


	Discussion and Conclusions 
	References

