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Abstract: A neural network model to predict the dynamic hysteresis loops and the energy-loss curves
(i.e., the energy versus the amplitude of the magnetic induction) of soft ferromagnetic materials at
different operating frequencies is proposed herein. Firstly, an innovative Fe-Si magnetic alloy, grade
35H270, is experimentally characterized via an Epstein frame in a wide range of frequencies, from
1 Hz up to 600 Hz. Parts of the dynamic hysteresis loops obtained through the experiments are
involved in the training of a feedforward neural network, while the remaining ones are considered to
validate the model. The training procedure is accurately designed to, firstly, identify the optimum
network architecture (i.e., the number of hidden layers and the number of neurons per layer), and then,
to effectively train the network. The model turns out to be capable of reproducing the magnetization
processes and predicting the dynamic energy losses of the examined material in the whole range of
inductions and frequencies considered. In addition, its computational and memory efficiency make
the model a useful tool in the design stage of electrical machines and magnetic components.

Keywords: dynamic hysteresis; magnetic alloys; energy losses; neural network modeling;
machine learning

MSC: 68T07

1. Introduction

The macro-scale simulation of the dynamic magnetization processes in soft ferromag-
netic materials is still an interesting and promising field of research. Indeed, the optimum
design of electrical machines and magnetic components, regardless of the particular area
of application, requires an accurate description of the materials used [1,2]. More specifi-
cally, the response of the material to the external excitations, together with the geometry
of the device, highly influences the final merit factors [2–5]. Device simulation is typi-
cally performed via commercial Computer-Aided Design (CAD) programs based on the
Finite-Element Method (FEM), which is not able to account for the material characteristics
thoroughly. For instance, hysteresis models embedded into FEM schemes are not yet avail-
able in commercial software, and the material is usually represented with a constant value
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of the magnetic permeability or, in the best cases, with a suitable non-linear anhysteretic
function identified from the data provided by the manufacturer. It has to be specified that
the FEM analysis carried out using a non-linear anhysteretic material model can only take
the material saturation into account, but cannot provide important information related to
the coercivity, the remanence, or the phase lag between the magnetic field H(t) and the
magnetic induction B(t). In addition, since the curve on the B-H plane does not show any
area, it is definitely impossible to predict the loss of energy.

Despite the coupling between FEM and the hysteresis models having been extensively
studied, this technique is still limited to specific applications [6–9], and it is not assessed in
a general way. The hysteresis models are well-established and fully applicable only in the
case of scalar excitations, whilst for vector problems, many issues are not yet resolved [10].
To further stress this problem, the validation of the available models is demanded in light
of the new emerging materials and technologies, such as sintering and 3D printing.

Apart from implementing suitable hysteresis models in FEM programs, the availability
of an efficient model able to simulate regime-state hysteresis loops at arbitrary levels of
magnetic induction and frequency values could be a valuable tool in the design stage of
electrical machines and magnetic components. Indeed, from classic FEM analysis in which
the material is modeled by means of non-linear anhysteretic functions, only the amplitudes
of both the magnetic field and the magnetic induction can be obtained for any frequency.
On the other hand, a dynamic model of hysteresis can be used to simulate hysteresis loops
at arbitrary frequency values, giving additional information. First of all, the shape of the
frequency-dependent hysteresis loops can be determined for any level of induction, as can
the differential permeability. In addition, the dynamic energy loss per unit of volume can
be obtained as the area enclosed by the loop in the HB plane.

It turns out that, in conducting ferromagnetic materials, the total dynamic energy loss
at the regime state can be expressed as the sum of hysteresis, classic, and excess compo-
nents [11,12]. The first component is only associated with rate-independent hysteresis, the
second one arises from the circulation of macro-eddy currents, and the third one reproduces
the micro-eddy current losses caused by the motion of the domain walls.

A suitably identified dynamic model of hysteresis addresses all the three loss components,
whilst traditional electromagnetic analysis, like the FEM-based models, does not take into
account the excess term, which has to be computed separately [13]. Amongst the approaches
available in the literature, the Dynamic Jiles–Atherton model (DJAM) [14–17] and the Dynamic
Preisach Model (DPM) [18–21] are perhaps the two most popular rate-dependent models
of hysteresis.

The DJAM, derived conceptually from the classic static JAM, is developed with the
aim of incorporating the effects of both the macro- and micro-eddy currents. However,
despite the small computational cost and memory allocation, and despite the interesting
features of the computed hysteresis loops—such as their shape and their dependence on
frequency—some critical aspects need to be carefully addressed, as discussed in detail
in [16]. Nonphysical features, such as the negative values of susceptibility, may occur and
require ad hoc corrections. In addition, to improve the model accuracy, several parameters
must be varied with respect to the amplitude of the excitation [17], giving rise to a lot of
extensions and modifications to the original approach.

Two main rate-dependent generalizations of the classic (static) Preisach model have
been proposed in the literature. The first one, developed by Bertotti [18], is based on
Preisach operators with a finite rate of change in their output with respect to the applied
magnetic field. The rate-dependence only involves the input–output relationship of the op-
erators and does not influence the distribution function. Conversely, Mayergoyz proposed
the use of traditional Preisach operators and the application of a suitable rate-dependent
distribution function [19]. Most of the subsequent research articles available in the lit-
erature dealing with the rate-dependent Preisach model and its applications are based
either on the Bertotti [20] or on the Mayergoyz [21,22] extensions. However, despite the
abundant studies in the literature concerning the classic Preisach model formulations and
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applications, very few articles are available about rate-dependent hysteresis. The model
validation often involves a narrow interval of frequencies and magnetic inductions, and
the comparison is based on other numerical models [21]. From the available studies, it can
be concluded that the DPM is, in general, more robust than the DJAM, since it does not
suffer any nonphysical features; however, it is also more complex and very cumbersome
from the viewpoint of the computational time and the memory requirement.

The principal scope of this research is to give a contribution to the development of
the dynamic models of hysteresis for innovative soft ferromagnetic materials, exploiting
artificial neural networks (ANNs). Until now, ANNs have been successfully applied in
the development of both scalar [23–25] and vector models of static hysteresis [26–28], but
fewer studies also take the rate dependence into account [29–32]. The main advantages
of neural network-based models are related to their cheap memory allocation and high
computational speed, especially when implemented at a low level of abstraction. However,
they do not have the intrinsic memory-storage mechanism typical of hysteretic systems.
For this reason, neural networks are seldom used as standalone methods, but they are
generally coupled with other hysteretic models, which provide the past history dependence.
This is also a common approach for rate-dependent models based on artificial neural
networks. For instance, in [31], the authors developed a dynamic model of a piezoelectric
actuator exploiting an artificial neural network coupled with a Nonlinear Autoregressive
Moving Average Model with Exogeneous Inputs (NARMAX). In [29], the authors proposed
modeling of the frequency-dependent hysteresis loops via an array of feedforward neural
networks, each one working on a specific interval of the H field axis, whilst in [30], the fully
connected cascade architecture was explored. Both the approaches are, in general, more
complex than the ones exploiting a standalone feedforward neural network. Furthermore,
the models were tested only on a few hysteresis loops and in a narrow interval of frequencies
below 100 Hz. More recently, in [32], another neural-network-based model of dynamic
hysteresis was proposed and tested in a wider range of B and f. It was formulated to obtain
the magnetic field H as a function of the actual B, with its peak value in the cycle Bpk and
the frequency f. The evaluation of the model output disregards the status of the system,
which is represented by the values of both the magnetic field and the magnetic induction.

Recently, some authors have proposed a standalone neural-network-based hysteresis
model with an intrinsic dependence on past history [25]. The model computes the magnetic
permeability as a function of the previous actual and k values of both H and B, thus
mimicking the memory storage properties of the hysteretic systems.

In this work, we adopted a similar formulation, applying the excitation frequency
as an additional input to the model, with the aim of reproducing the dynamic hysteresis
loops under periodic excitation waveforms for an innovative soft ferromagnetic alloy.
Furthermore, the neural network was trained directly on the experimental data without
exploiting intermediate models and/or data augmentation techniques to generate the
training set. However, since the measured data are generally noisier than numerical
simulations, it was found that the use of magnetic induction instead of permeability as a
model output is more convenient and straightforward.

The ferromagnetic material examined in this work is a Non-Grain-Oriented (NGO)
laminated Fe-Si steel, grade 35H270, suitable for the manufacturing of performing electrical
machines and magnetic components. Thanks to its small thickness (0.35 mm), the material
is particularly suitable for medium- and high-frequency applications, such as those in
electric mobility and the avionic environment. For this reason, the alloy has been experi-
mentally characterized up to 600 Hz, covering the typical supply frequencies of aircraft
equipment. The experimental measurements were carried out in our laboratory using
Epstein apparatus, in agreement with the international standard IEC60404-2, and consist
of a family of hysteresis loops with sinusoidal magnetic induction at different amplitudes
for each applied frequency. Further details about the experimental analysis are discussed
in Section 2.1. The families of hysteresis loops, measured at different frequencies, were
divided into a training set, used to identify the dynamic neural-network-based model
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(DNNM), and a test set, used to assess it. The neural network architecture, the algorithm
that implements the model, and the training procedure are described in Section 2.2. To
conclude, in Section 3, the training results and the comparison of the predicted frequency-
dependent hysteresis loops with the measured ones are shown. The reproduction of the
energy losses as a function of both the amplitude of B and the frequency is also investigated,
and the results are compared with both the values obtained by the experiments and those
provided by the manufacturer. Final technical comments concerning the computational
cost of the model are given.

2. Materials and Methods

The material that was experimentally characterized is a commercial Fe-Si laminated
alloy with non-oriented grains, grade 35H270, suitable for the manufacturing of magnetic
cores for electrical machines and magnetic components. According to the manufacturer’s
data sheet, provided by the manufacturer, the main physical and geometrical parameters
of the alloy are listed in the table below.

The material turns out to be particularly well suited for a performing electric motor,
since the random grain orientation makes the in-plane properties almost independent
of the direction. In addition, due to the small thickness, similar to one of the grain-
oriented laminations, the behavior of the core loss against the operative frequency allows
its application in several fields of power electronics. For instance, filtering inductors for
static-energy-conversion systems are usually realized by exploiting these types of magnetic
materials [33].

2.1. Experimental Investigation

To experimentally investigate the dynamic magnetization processes for the 35H270
steel, a 30 cm × 30 cm Epstein testing frame was adopted. The strips of ferromagnetic
material, with a length 300 ± 0.2 mm and a width of 30 ± 0.2 mm, were prepared via a
suitable mechanical cutting process and arranged, eight per side, in the Epstein machine.

The device, realized in agreement with the international standard IEC 60404-2, has
two windings, with N = 840 turns each—one for the excitation (the primary) and the
other one for the measurement of the induced electromotive force eI I(t). From the current
circulating on the primary coil II(t) it is possible to obtain the magnetic field at the surface of
the laminations, according to Ampere’s law of circulation. On the other hand, it is possible
to calculate the mean magnetic induction inside the laminations from the electromotive
force at the secondary coil. The equations used are listed in the following:

H(t) =
NII(t)

lm
, B(t) =

1
NS

∫ t

t0

eI I(t)dt (1)

where lm = 1.08 m is the mean magnetic path length (equal to the mean geometrical
path length of the Epstein circuit), while S is the total cross-sectional area of the magnetic
circuit formed.

The primary winding is fed by a linear, 4-quadrant, programmable power amplifier
(PA 100-52—Brockhaus Messtechnik GmbH & Co. KG, Lüdenscheid, Germany) with a
maximum output power of 5.0 kW, optimized for resistive–inductive loads. The power
amplifier is driven by a data generation/acquisition module (NI® USB 6363-BNC Type)
via an analog output port, programmed via PC using the session-based interface available
in Matlab® (version 2021b—The MathWorks, Inc., Natick, CA, USA). The current on
the primary coil is detected through a DC—100 MHz active current probe (RT-ZC02—
Rohde & Schwarz GmbH & Co. KG). Finally, the electromotive force at the secondary coil
is measured using a DC—100 MHz active voltage probe (DP 10013—Shenzhen Micsig
Technology Co., Ltd., Shenzhen, China) to increase the signal-to-noise ratio. The current
and the voltage probes are connected to opportunely configured analog inputs of the data
acquisition/generation module. A scheme of the experimental setup used to measure the
dynamic hysteresis loops is shown in Figure 1.
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magnetic-induction waveforms.

The measurement process is supervised by Matlab® custom software. The user can
specify the settings of the acquisition, such as the sample rate, the channel configuration, the
range of the quantizer, and the settings of the analog output ports for the signal generation.
The program’s core is a powerful feedback algorithm that allows the control of the magnetic
induction waveform.

In this work, according to the specifications reported in the international standard,
the measurements were performed using sinusoidal flux densities. The algorithm at each
iteration I evaluates the instantaneous difference ∆B(t) = Bre f (t)− Bi

meas(t) between the
reference waveform (sinusoidal) and the one measured at iteration i, and the instanta-

neous difference between their time derivatives
.

∆B(t) =
.

Bre f (t) −
.

Bi
meas(t). Then, the

voltage waveform to be applied at the next iteration vi+1(t) is computed as a function
of the voltage waveform applied at iteration i and a suitable linear combination of the
two instantaneous differences:

vi+1(t) = vi(t) +
max

t

{
vi(t)

}
B0

[
α·∆B(t) + (1− α)·

.
∆B(t)

]
(2)

The parameter α by default is equal to 1, but with the capability to be chosen in the
range [0, 1] by the user, to optimize and speed up the acquisition process. By reducing α, the
new voltage waveform is more susceptible to the derivative of the measured signal, and this
may lead to a convergence in a small number of iterations at the expense of a weakening of
the feedback stability. Indeed, too-small values of α may cause uncontrollable oscillations.

However, to prevent any damage to the equipment, the amplitude of the current is
constantly monitored during the measurement process. The supply of the Epstein frame is
disconnected as soon as the current on the primary exceeds 16 A. The feedback algorithm
exits if at least one of the following conditions are met:

• The displacement between the form factor computed from the measured flux density
and the theoretical one of the sinusoidal waves (1.111) is less than the quantity dispFF,
specified by the user (1% by default).

• The maximum relative error max{∆B(t)/B0} is less than the quantity EM, specified
by the user (0.015 by default).

• The maximum number of iterations (30 by default) is reached.

As a result, to obtain sinusoidal magnetic inductions, the resulting waveforms of the
applied magnetic field are somewhat distorted, as one can see in Figure 2.

A family of eight magnetization loops with amplitude B0 = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4,
and 1.5 T was measured at each one of the frequencies f = 1, 2, 5, 10, 20, 50, 100, 200, 300,
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400, 500, and 600 Hz. A sample rate equal to 250/f was chosen, such that all the hysteresis
loops were sampled with the same number of samples per period. In the figure below, the
magnetic-field waveforms obtained to acquire the sinusoidal inductions at any amplitude
between 0.2 and 1.5 T are shown for f = 1, 50 and 600 Hz.
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Figure 2. Families of eight magnetic-field waveforms, measured at f = 1 Hz (left panel), f = 50 Hz
(center panel), and f = 600 Hz (right panel), obtained after the feedback convergence to acquire purely
sinusoidal magnetic inductions between 0.2 T and 1.5 T.

The loss of energy per unit of volume dissipated in one period is calculated as the area
enclosed by the dynamic hysteresis loop on the H-B plane, and it consists of the combined
effects of hysteresis, and classic and excess loss components. The obtained values for B = 1.0
and B = 1.5 T at the frequency of 50 Hz are, respectively, 17.6 mJ/kg and 43.0 mJ/kg, in
substantial agreement with the ones listed in Table 1. The maximum deviation of 6.5%
from the manufacturer’s data is acceptable, since the declared values refer to “typical
performances” and are not related to a specific lot fabricated.

Table 1. Declared physical and geometrical properties of the 35H270 NGO steel.

Thickness Mass Density Magnetic Induction @
800 A/m Core Loss @ 1.0 T and 50 Hz Core Loss @ 1.5 T and 50 Hz

d [mm] γ [kg/m3] B800 [T] W1.0 [mJ/kg] W1.5 [mJ/kg]

0.35 7650 1.62 19.8 46.0

2.2. Dynamic Neural Network Model

In the research presented, the reproduction of regime-state dynamic hysteresis loops
by means of artificial neural networks is investigated in a wide range of magnetic induc-
tions and frequencies. In particular, thanks to the abundant availability of effective training
algorithms and their computational efficiency, the feedforward architecture is considered.
The dynamic model, after the individuation of an appropriate formulation and an effective
training procedure, both discussed in the following, is then used to simulate the magne-
tization loops of the investigated material from quasi-DC excitations up to 600 Hz, and
to predict the total loss of energy. In addition, being identified directly on the measured
dynamic loops, the model accounts for all the energy terms: hysteresis loss, classic eddy
current loss, and excess loss.

The inputs and the output of the model are determined to take the status of the
magnetic system into account and to guarantee the uniqueness of the solution. Then, the
inputs are the current (actual) value of both the magnetic field H(k) and the magnetic
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induction B(k), plus the frequency of the periodic magnetic field waveform. This set of
variables is necessary and sufficient to compute the value of the magnetic induction in the
successive (future) step B(k + 1). The calculation of the output, which is performed sample-
by-sample, only requires the values of the magnetic field waveform and its fundamental
frequency. In contrast, the magnetic induction at each sample step is given by the value
previously calculated by the model. For this reason, the model simulation starts from a
known initial point on the H-B plane (H(0), B(0)) and is performed in a closed loop.

The model consists of a feedforward neural network with three input neurons and one
output neuron, and it is fully characterized by the number of neurons on each hidden layer,
described by the vector NPL = [Nh1, . . . , NhJ], where J is the number of hidden layers. The
authors decided to choose a feedforward neural network because, in our case, there are no
important memory effects involved. This kind of neural architecture is sufficient to face
the problem under analysis; moreover, it does not need high training and execution times.
The activation function of the hidden neurons is the hyperbolic-tangent sigmoid, while the
output neuron has a pure linear activation. Indeed, the hyperbolic-tangent sigmoid (called
tansig in MATLAB), allows more numerical flexibility for the hidden neurons because its
output range is the interval [−1, 1] (unlike the classical sigmoid function that is [0, 1]).

The vector NPL is determined via an optimized training procedure developed by the
authors. First of all, the training set is determined from the entire experimental dataset
selecting only some hysteresis loops and some frequencies. The amplitudes of the magnetic
induction selected for the training are those with B0 = B0train = 0.2, 0.6, 1.0, 1.2, and 1.5 T;
then, the amplitudes available for the test are B0test = 0.4, 0.8, and 1.4 T.

The families of 5 dynamic hysteresis loops applied in training are those at the frequen-
cies f train = 1, 2, 5, 10, 50, 100, 200, 300, 500, and 600 Hz, while the values f test = 20 and
400 Hz are considered for the test and the model assessment. Actually, two different types
of tests can be performed, as will be shown in Section 3:

• TEST 1: simulation of unknown loops with B0 = B0test at the known frequencies f train.
• TEST 2: simulation of unknown loops at the unknown frequencies f test.

Only the ascending branches of the hysteresis loops are used to train the feedforward
neural network because the descending branches can be easily obtained via symmetry.
Indeed, let Hasd(k) be the samples of the magnetic field sequence along the ascending
branch, and let Basd(k + 1) = NET(Hasd(k), Basd(k), f ) be the computed values of the magnetic
induction; then, the descending branch can be evaluated as: Bdes(k + 1) = −NET(–Hasd(k),
Bdes(k), f ). The size of the training set is then equal to 10 × 5 × 125 = 6250 samples and
corresponds to 52% of the whole experimental dataset. On the other hand, the total size of
the test set is (2 × 8 + 10 × 3) × 125 = 5750 samples, equal to 48% of the total. The sizes of
the training and the test sets are rather balanced.

The first step of the developed training procedure aims at the individuation of a suit-
able NPL vector, and then to define the best network architecture. The main computer
program, appositely developed by the authors, iterates both the number of hidden layers
and the number of neurons per layer. In particular, for each hidden layer j between 1 and
MAX_LENGTH_NPL = 5, the procedure iterates the number i of hidden neurons between
1 and MAX_NEURONS = 25, and for any value of i, a feedforward neural network is
configured and trained via a training algorithm, which is the core of the computer program.

The algorithm is implemented as a Matlab® function that accepts the training method
(Levenberg–Marquardt, in our case) and the number of epochs Nep (6000 by default) as
arguments; it returns the trained net object and a struct, named TR, containing some output
features, such as the best epoch and the open-loop mean-squared error (MSE_OL). After
that, the same training set is simulated in a closed loop by using the function “simul”;
it returns the values computed by the network and the closed-loop mean-squared error
(MSE_CL), which is our figure of merit for the evaluation of the model performances.

After that, i reaches MAX_NEURONS, and the best value of the number of hidden
neurons in layer j is determined as the one with the smallest MSE_CL. However, before
adding the optimal number of hidden neurons to the NPL vector at position j, the minimum



Mathematics 2022, 10, 2346 8 of 14

MSE_CL is compared with the one found in the previous iteration j − 1. If the current
minimum MSE_CL is smaller, the length of NPL is increased, and the number of hidden
neurons is appended to NPL in the new position j; otherwise, the procedure stops and
returns the NPL vector found at the previous iteration j − 1. The Matlab® script that
implements the training algorithm described above is listed in the following (Algorithm 1).

Algorithm 1. NN training

%% MAIN_SCRIPT_TRAINING.m %%
method = ‘trainlm’; % training method
Nep = 6000;
NPL = []; % initialization of NPL vector
MAX_LENGTH_NPL = 5;
MAX_NEURONS = 25;
opt_net_found = true; % optimum net found for the current j
j = 1;
PERF = []; % minimum training error as a function of length(NPL)

while (j <= MAX_LENGTH_NPL && opt_net_found);
MSE_CL = []
for i = 1:1:MAX_NEURONS;

[net,TR] = training_algorithm([NPL, i],method,Nep);
[Y,mse] = simul(net,X);
MSE_CL = [MSE_CL, mse];

end
[min_err, pos_min] = min(MSE_CL); % find minimum MSE and i

if min_err >= min(PERF);
opt_net_found = false; % stop the algorithm

else
NPL = [NPL, pos_min]; % update NPL
PERF = [PERF, min_err]; % update PERF vector

end
j = j + 1;
end

After that, the optimal architecture of the feedforward net is determined, and six inde-
pendent runs of the training algorithm are launched using the same optimal NPL vector.

This final step avoids possible local minima of the MSE_CL function in the parameters
space, and the best net is finally saved.

3. Results and Discussion

The training procedure illustrated in Section 2.2 returned a feedforward neural net-
work with three hidden layers and a number of neurons per layer specified by the vec-
tor NPL = [10, 5, 5]. The effectiveness of the training procedure is confirmed by the
low value of the open-loop mean-squared error returned by the algorithm, which was
MSE_OL = 1.85 × 10−6. On the other hand, the robustness of the identified feedforward
net and the stability of the closed-loop calculation are determined by the value of the
MSE_CL = 7.02 × 10−4. The assessment of the neural network requires the analysis of
the capability of generalization, i.e., the capability of the dynamic model to predict un-
known magnetization loops by generalizing the ones known from the training. The dataset
obtained through the experimental investigation allows us to reserve a lot of dynamic
magnetization loops for the validation of the model (the ones for TEST 1 and TEST 2,
already mentioned in Section 2.2). The hysteresis processes of both TEST 1 and TEST 2
are performed by the trained neural network, applying the measured sequences of the
magnetic field directly to the input of the model. The calculation of the magnetic induction
is performed sample-by-sample and in a closed loop. Furthermore, both branches of each
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hysteresis loop are calculated. The reversal is performed by means of a flag variable that
switches the signs of the inputs H(k) and B(k), and the sign of the output B(k + 1), as well,
in the function of the sign of dH(k) = H(k) − H(k − 1) and the value of H(k) itself.

Let us initially present the simulation results relative to the dynamic hysteresis loops
of TEST 1. The frequency values (1, 2, 5, 10, 50, 100, 200, 300, 500, and 600 Hz) were already
used to train the neural network, but the magnetic-field waveforms corresponding to the
loops with B = 0.4, 0.8, and 1.4 T are entirely “new”. The magnetic induction sequences
predicted by the model turned out to reliably reproduce the experimental ones in the entire
frequency range. The calculation of the closed-loop mean-squared error on the whole
dataset (7500 points) gave a value of 1.45 × 10−3, which is about double the one previously
obtained by the simulation of the training set. Apparently, the error propagates very slowly,
and it is, in any case, sufficiently small to assume that the first test passed successfully. The
comparison between the experimental loops (always drawn in a continuous black line) and
the simulated ones (drawn in cross-shaped colored markers) is illustrated in Figure 3 for
f = 5 and 600 Hz, highlighting the capability of the model to reproduce both the quasi-DC
hysteretic curves and the ones obtained at the highest frequency value.
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mental ones (black continuous lines) with amplitudes of 0.4, 0.8, and 1.4 T, at frequencies of 5 Hz
(left panel) and 600 Hz (right panel).

A simulation of the dynamic hysteresis processes of TEST 2 was also performed.
Now, both the magnetic field sequences—again, corresponding to the loops at 0.4, 0.8, and
1.4 T, and the frequency values, 20 and 400 Hz—are completely unknown; this further
challenges the generalization capability of the dynamic neural network model. Now, the
error is slightly increased, reaching a value of 6.29 × 10−3 on the 1500 samples processed.
Nevertheless, the accuracy, reliability, and stability of the model are not compromised, as
one can verify from the comparative analysis against the experimental loops, shown in
Figure 4.

In the left panel, where the dynamic hysteresis loops at 20 Hz are reported, the
displacement found for the minor loop (0.4 T) appears non-negligible, and it is a significant
contribution to the total MSE. When H decreases after the peak value, the differential
permeability decreases with less respect to the measured one, as reflected in a wider loop
area. As the magnetic induction increases, and the agreement improves sensibly. In the right
panel, a comparison between the simulated and measured loops is shown for f = 400 Hz.
In this case, a higher accuracy is found for any value of B.
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In the final step of our investigation, the prediction of the dynamic energy losses is
discussed. It can be demonstrated that the area on the H-B plane enclosed by a hysteresis
loop, having a given amplitude B and frequency f, represents the total energy dissipated
in the process per unit of volume. It accounts for the hysteresis, and the classic and
excess loss components, according to the separation principle. Here, the energy losses are
calculated numerically for each measured and simulated loop, exploiting the trapezoidal
approximation of the function B(H), and are plotted against the frequency for fixed values
of the magnetic induction. Since the curves relative to the training set are easily reproduced
by the neural network model, the prediction of the energy losses and the comparison with
the experimental values are most interesting if performed on the test set. For this reason,
Figure 5 shows the behavior of the experimental losses in the frequency interval of interest,
together with the ones predicted by the model for B = 0.4 T, B = 0.8 T, and B = 1.4 T. To allow
the visualization of the curves in the entire frequency range, the y axis is at a logarithmic
scale. In Table 2, the results of Figure 5 are shown in numerical form.
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Table 2. Energy losses [J/kg] in function of frequency, obtained from simulations on amplitudes of B
not involved in the training.

1 Hz 2 Hz 5 Hz 10 Hz 20 Hz 50 Hz 100 Hz 200 Hz 300 Hz 400 Hz 500 Hz 600 Hz

1.4 T 0.0127 0.0130 0.0132 0.0132 0.0141 0.0171 0.0211 0.0287 0.0368 0.0436 0.0518 0.0602

0.8 T 0.0040 0.0041 0.0040 0.0039 0.0049 0.0058 0.0072 0.0100 0.0119 0.0142 0.0157 0.0174

0.4 T 0.0013 0.0013 0.0013 0.0014 0.0019 0.0016 0.0017 0.0024 0.0031 0.0034 0.0040 0.0045

From the comparison, the effectiveness of the model in simulating the dynamic hys-
teresis for the magnetic material examined can, again, be highlighted. The largest deviation,
as expected, is found for B = 0.4 T and f = 20 Hz (minor loop shown in the left panel of
Figure 4). In this case, the neural network model tends to overestimate the energy loss by
an amount of 6.35 J/m3.

The curve traced with B = 0.4 T, after the overestimation of the energy loss for f = 20 Hz,
shows a slight underestimation for f in the range of [50–300 Hz], but the absolute displace-
ment is smaller than 3 J/kg. For any other value of B and f, the difference between
the predicted values and the experimental ones is not appreciable and can be neglected.
Figures 6 and 7 show the percentage error and mean-squared error, respectively, related to
the energy loss (Figure 5) on the test set.

To conveniently exploit the high computational and memory efficiency of the neural
network, the model was implemented at a low level of abstraction in Matlab®. The solution
of a single value of the output, requires the calculation of three matrix operations of
“multiply and add”, in the form [wl][xl] + [bl], where: [wl] is the weight matrix of the
neurons in the layer l; [bl] is their biases; and [xl] is the inputs to the layer l, plus three calls
to the activation function f act, since [xl+1] = f act([wl][xl] + [bl]). In the Matlab® environment,
the typical calculation speed [25] for feedforward neural networks with tens of neurons is
some kSample/s on a conventional computer. In this work, the simulations were performed
on the same PC, equipped with a CPU Intel® Core™ i7 @ 2.20 GHz, with 8 GB of RAM
memory and a 64-bit operating system, and we reached 5.0 kSample/s. The memory
intrinsically occupied by the model is very small: 110 weights and 21 biases stored as
floating-point variables.
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4. Conclusions and Future Research

We proposed a performing model of dynamic hysteresis based on a standalone feed-
forward neural network for the simulation of regime-state hysteresis loops under periodic
magnetic-field waveforms. To simulate the dynamic magnetization processes of a given
material—35H270, in the present work—the model needs to be identified on a large set of
measurements; then, a thorough experimental investigation has to be preliminarily carried
out in a wide range of magnetic inductions and frequencies. The measured data can then
be subdivided into training and test sets.

A dedicated procedure allows the individuation of the optimal network architecture
before effective training. The model assessment via simulation of the dynamic hysteresis
loops of the test set indicated that both curves on the H-B plane and the energy losses
could be reproduced with good accuracy up to saturation, and in a wide frequency interval.
In particular, both quasi-DC hysteresis loops (f ≤ 5 Hz) and dynamic ones up to 600 Hz
were correctly replicated by the neural network, covering the range of supply frequencies
of the magnetic components for the avionic environment. The high computational speed,
coupled with the low memory requirements, makes the proposed approach a powerful
tool for the simulation of dynamic hysteresis processes in soft ferromagnetic materials;
we are confident that it could help in the optimum design of electrical machines and
magnetic components.

The model described herein reproduces, with high accuracy, regime-state magneti-
zation processes under periodic magnetic field sequences; the development of a neural
network model in the time domain for transient simulations is one of the main research
activities on which the group is currently focused.
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