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Abstract: The application of transformations of the state equations of continuous linear and bilinear
systems to the canonical form of controllability allows one to simplify the computation of Gramians
of these systems. In this paper, we develop the method and obtain algorithms for computation of
the controllability and observability Gramians of continuous linear and bilinear stationary systems
with many inputs and one output, based on the method of spectral expansion of the Gramians and
the iterative method for computing the bilinear systems Gramians. An important feature of the
concept is the idea of separability of the Gramians expansion: separate computation of the scalar and
matrix parts of the spectral Gramian expansion reduces the sub-Gramian matrices computation to
calculation of numerical sequences of their elements. For the continuous linear systems with one
output the method and the algorithm of the spectral decomposition of the controllability Gramian
are developed in the form of Xiao matrices. Analytical expressions for the diagonal elements of the
Gramian matrices are obtained, and by making use of which the rest of the elements can be calculated.
For continuous linear systems with many outputs the spectral decompositions of the Gramians in the
form of generalized Xiao matrices are obtained, which allows us to significantly reduce the number
of calculations. The obtained results are generalized for continuous bilinear systems with one output.
Iterative spectral algorithms for computation of elements of Gramians of these systems are proposed.
Examples are given that illustrate theoretical results.

Keywords: spectral decompositions; linear and bilinear systems; Gramians; generalized Lyapunov equations;
Xiao matrices; controllability; observability
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1. Introduction

The matrix continuous differential and algebraic Lyapunov and Sylvester equations play an
important role in a modern control theory [1–7]. The first spectral Gramian expansions for linear
continuous systems with a simple spectrum were derived from the spectral expansions of the
Lyapunov integral representation of the solution of Lyapunov or Sylvester equations [1,2]. In [3],
analytical solutions of discrete and continuous Lyapunov equations based on the transformation
of the dynamics matrix to Jordan form were obtained. Modern electric power generation and
distribution systems are changing rapidly due to the need for the reduction of greenhouse
gas emissions, the proliferation of renewable energy sources, the emergence of new storage
systems, and the active entry of the consumers into the energy market [8]. New mathematical
modelling techniques, such as generation and load forecasting, optimal control of energy storage
systems, and new methods for energy systems control will play a key role in 21st century power
engineering and in realizing the Internet of Energy concept [9]. The development of new
innovative technologies requires the involvement of a modern mathematical control theory, in
which the study of the structural properties and computational methods of energy systems
Gramians is an important task [10,11].

The Gramian theory of linear dynamical systems is closely related to the problem of
calculating the norms of transfer functions and developing the models of systems with
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reduced dimensionality, which makes it possible to significantly reduce the dimensionality
of the approximating model. Among these methods we would like to mention the balanced
cutoff, singular decomposition, Krylov subspace method, methods of synthesis of simpli-
fied model optimal by criterion H2-norm of Gramian, and also hybrid methods [1,4,12].
Important promising results have been obtained in the field of computation of Gramians
for systems whose models were represented in canonical controllability and observability
forms. In [13], the methods for computing Gramians of linear systems given by equations
in controllability and observability forms, based on the use of periodic structure matrices,
were first proposed. It is shown that using canonical forms of controllability and observabil-
ity in linear systems allows one to identify and study the periodic structure of the Gramian
matrices not only for their computation but also for stability analysis of the systems them-
selves based on algebraic Routh criteria. Note that for linear systems the transformation of
the equations of state into canonical forms of controllability and observability allowed us
to develop new methods for computing Gramians in the form of Xiao matrices [6] based on
the use of Routh tables [13,14]. In [5,14], the new approach was developed in the direction
of using the properties of the impulse transient function and the zero-plaid structure of the
controllability Gramian. Bilinear systems, due to their linearity in state and control, are the
closest class with respect to linear systems, so their studies paved the way for the study
of complex nonlinear systems, primarily systems with smooth nonlinearities. Studies of
these systems provide the key to solving many unsolved problems of linear dynamical
systems, such as systems with variable parameters [15]. Significant scientific advances
in model approximation, monitoring and control of bilinear systems make it possible to
extend methods of linear control theory to areas where this is possible. Research in the
field of bilinear control systems are closely related to the problem of lowering the order
of the model by constructing an approximating model of lower dimension. Solutions
of generalized Lyapunov equations using Kronecker products and vectorization method
are obtained; however, this method leads to a sharp increase in dimensionality at each
iteration step. “The curse of dimensionality” requires the use of matrix elements aggrega-
tion methods in the computation process [12,16–21]. The structural properties of bilinear
systems provide the key to solving of their control problems [20–23]. Bilinear systems in
mathematical control theory can be considered within linear spaces, called Lie algebras,
on which bilinear operations are defined in addition to the usual operations [19]. General
controllability conditions can be defined for such systems. In [24], it is shown that these
conditions can be obtained using the metrics given by the controllability Gramians. An
alternative approach for the Gramian spectral decomposition is to apply the apparatus of
linear matrix inequalities and semi-definite programming [25].

Main Contribution

The formulation in the framework of a united concept of the problem in Section 2
considers several topics of computation of controllability and observability Gramians. Its
important feature is the idea of the separability of Gramian decompositions: separate
computation of scalar and matrix parts of a spectral decomposition which allows the
reduction of the computation of matrices of sub-Gramians to the computation of numerical
sequences of their elements. The use of canonical forms of controllability allow to propose a
pioneering approach to computation of Gramians based on the use of Routh tables and Xiao
matrices. This paper proposes to improve this approach by using spectral decompositions
of the Gramians and the representation of the resolvent of the dynamics matrix by extending
the scope to multivariable linear and bilinear control systems [11,26–29].

In Section 3, we propose to use the representation of the dynamics matrix resolvent
of continuous linear stationary systems with many inputs and one output (MISO LTI)
in the form of a Faddeev–Levereux series segment for Gramian decomposition [27,30].
Conversion of the state equations to the canonical form of controllability allowed us to
exclude the right part of the Lyapunov equations and the Fadeev matrix from the spectral
expansions of the Gramians. This allowed us to further simplify the scalar part of the
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spectral expansions and to link the localization of the Gramian elements with the residues
of the scalar transfer function of the linear system. As a result, we obtained new Gramian
expansion, where the matrix part of the expansion is the product of unit vectors.

Section 4 presents the main theoretical results of the paper. For continuous MISO
LTI systems, the method and algorithm for spectral decomposition of the controllability
Gramian in the form of Xiao matrices have been developed. It allowed us to reduce, by
almost four times, the number of calculations of the elements of the Gramian matrices
and to get rid of the calculations of the Faddeev matrices, which are sensitive to rounding
errors. The identities for real stable polynomials of finite order are proved, which allowed
us to generalize the application of separable spectral decompositions for Gramians of linear
plants with many inputs and many outputs in the form of a generalized Xiao matrix. The
analytical expressions for the diagonal elements of the Gramian matrices, which can be used
to compute the remaining elements, were obtained. For the continuous linear stationary
systems with many inputs and many outputs (MIMO LTI) systems, the spectral expansions
of the Gramians in the form of the generalized Xiao matrices were obtained. They can
significantly reduce the number of calculations. The obtained results are generalized for
the continuous bilinear stationary systems with many inputs and one output (MISO BTI).
Iterative spectral algorithms for computing the Gramian elements of these systems are
proposed. Sufficient conditions for convergence of iterative algorithms are established.
Illustrative examples are given at the end of Section 4.

2. Problem Statement

Consider a linear MISO LTI continuous stationary dynamical system of the form

.
x(t) = Ax(t) + Bu(t),
y(t) = Cx(t)

(1)

where x ∈ Rn, y ∈ R1, u ∈ Rm, x—state vector, y—output vector, u—control vector; A, B, C
are real matrices of appropriate dimensions. We will consider real matrices of appropriate
dimensions A, B, C. Assume that system (1) is stable, fully controllable, and observable, and
that all eigen numbers of matrix A are distinct. Consider continuous algebraic Lyapunov
equations, related to Equation (1), of the following form:

APc + Pc AT = −BBT ,

Consider a bilinear MISO LTI continuous stationary dynamical system of the form

.
x(t) = Ax(t) + ∑m

γ=1 Nγx(t)uγ(t) + Bu(t),
y(t) = Cx(t),

(2)

where x ∈ Rn, y ∈ R1, u ∈ Rm, A, B, C, Nγ are real matrices of appropriate dimensions.
The linear system (1) is the linear part of the bilinear system (2) If we use a nondegenerate
transformation of the variables with matrix RF

c . We can consider the MISO LTI system
defined by the equation in canonical form of controllability. The matrix B for the MISO
system can be represented as

B =
[
b1 . . . bγ . . . bm

]
For dynamical systems of the form (1) and (2) consider ordinary and generalized

Lyapunov equations (GLE) of the form

AF
c PFln

c + PFln
c

(
AF

c

)T
= −bF

γ

(
bF

γ

)T
, (3)

AF
c PFbln

cγ + PFbln
cγ

(
AF

c

)T
+ ∑m

γ=1 NγPFbln
cγ NT

γ = −bF
γ

(
bF

γ

)T
, (4)
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Let us further consider the channel “γ” MISO LTI of the linear system in the canonical
form of controllability

x = RF
c xc.

.
xc(t) = AF

c xc(t) + bFc
γ uγ(t),

yF
c (t) = cFc

γ xc(t), k = 0, 1, 2 . . .
(5)

AF
c =


0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 0 1
−a0 −a1 −a2 . . . −an−1

, bFc
γ =

[
0 0 .. 0 1

]T ,

a =
[
−a0 −a1 .. −an−2 −an−1

]
, cFc

γ =
[
ξ0 ξ1 .. ξn−2 ξn−1

]
.

.
xc(t) = AF

c xc(t) + ∑m
γ=1 Nγxc(t)uγ(t) + bFc

γ u(t), xc(0) = 0,
yF

c (t) = cFc
γ xc(t),k = 0, 1, 2 . . .

(6)

The following relations are valid [2].

RF
cγ =

[
bγ AF

c bγ .. . . .
(

AF
c
)n−1bγ

]


a1 a2 an−1 1
a2 a3 an−1 1

an−1 0
an−1 1 0 0

1 0 0 0 0


(

RF
cγ

)−1
ARF

cγ= AF,
(

RF
cγ

)−1
b = bFc

γ , cRF
cγ = cF

γ, NF
cγ =

(
RF

c
)−1Nγ

For Gramians we have
PFln

c = ∑m
γ=1 PFln

cγ ,

Pbln
cγ = RF

cγPFbln
cγ

(
RF

cγ

)T
,

where the matrix PF
cγ is a solution of the generalized Lyapunov Equation (4).

Consider the Lyapunov equations of the MIMO LTI system

APc + Pc AT = −BBT ,

and MISO LTI subsystems formed by splitting the right hand side matrix into products of vectors

bγbT
γ

BBT = ∑m
γ=1 bγbT

γ , APc
γ + Pc

γ AT = −bγbT
γ ,

Hence the equality follows
Pc = ∑m

γ=1 Pc
γ

The use of canonical forms of controllability and observability to solve the Lyapunov
and Sylvester equations has been proposed in [5,13,14]. This approach is based on reducing
the Lyapunov equation to a solution of a linear algebraic equation in the form of Kronecker
products and then applying a vectorization method to solve this equation. However, by
applying the equations of state in canonical forms of controllability, the matrix BBT of
the right-hand side of the Lyapunov equation turns into a near-zero matrix with a single
nonzero element, which allowed us to radically change the method itself for solving the
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linear algebraic equation. As a result, the controllability Gramian takes the form of the Xiao
matrix (for matrices of even size) [13]

PcF =



x1 0 −x2 0 x3 0
0 x2 0 −x3 0
−x2 0 x3 xn−2

0 −x3 −xn−2 0
x3 xn−2 0 −xn−1

0 −xn−2 0 xn−1 0
0 xn−2 0 −xn−1 0 xn


(7)

The Gramian structure has also been called the zero-plaid structure [16]. The main
advantage of the new approach is the radical reduction of calculations in the transition to the
canonical form of controllability. Instead of calculating n2 elements of the Gramian matrix,
it is enough to calculate only n elements. The price for this advantage is the complexity
of calculating the elements themselves, which are computed through the elements of the
Routh table.  xn = 1

2Rn1
,

xn−k =
−∑m−1

i=1 (−1)i Rn−k,i+1xn−k+i ,
Rn−k,1

k = 1, n− 1, (8)

where Rij —is an element of Routh table for the system, standing at the intersection of row
“i” and column “j” (details can be found at https://openaccess.city.ac.uk/id/eprint/19115/
(accessed on 1 June 2022)).

The aim of the paper is to develop an alternative approach to computation of the
controllability and observability Gramians for linear and bilinear systems based on spectral
properties of the Faddeev series expansion of the dynamics matrix and study properties of
these expansions.

3. Spectral Decompositions of the Controllability and Observability Gramians of the
Linear System Represented by the State Equations in Canonical Forms of Controllability
and Observability

Consider the spectral decomposition of the resolvent of the dynamics matrix AF
j in the form

(
Is− AF

)−1
= ∑n−1

j=0

AF
j sj

N(s)
, (9)

where N(z)-characteristic polynomial, AF
j —Faddeev matrices, j = 1, 2, . . . n [26,27,29].

Lemma 1. Consider a linear continuous MISO system of the form (3) represented by equations
in the canonical controllability form of the form (5). Consider the expansion of the resolvent of the
dynamics matrix AF in the Fadeev series.

For elements of the last column of matrix AF
j the following statements are true

{
aF

n−k,n−kn

}T
= eT

n−k, k = 1, 2 . . . n− 1. (10)

Proof. Consider the resolvent decomposition of matrix AF as a segment of Fadeev series [26,29].
Assume N(s) = sn + an−1sn−1 + . . . a1s + a0, Rj = AF

j−1, j = 1, 2, . . . n; Consider
Fadeev–Levereux algorithm for system (1)

(Is− A)−1 =
∑n−1

j=0 Rjsj

N(s)

an = 1, Rn = I,

https://openaccess.city.ac.uk/id/eprint/19115/
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an−k = −
1
k

tr(ARn−k+1), k = 1, 2 . . . n.

Let us apply the method of mathematical induction for the system (5). The iterative
algorithm for calculating the Fadeev matrices and the coefficients of the characteristic
equation is as follows

Step one: an−1 = 1, Rn = AF
cn−1 = I,

Step “k”: Consider forming of the last column of matrices AF
n−k.

First step: AF
cn−(k−1) = AF

cn−1 = I.
{

aF
n−1,n

}
=
[
0 0 . . . . 0 1

]T

Second step:

AF
cn−2=


0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 0 1
−a0 −a1 . . . −an−2 0

,
{

aF
cn−2,2n

}
=
[
0 . . . 0 1 0

]T

Propose that for «k−1» step the last column of the matrix AF
n−k has the form

{
aF

cn−(k−1),k−1n

}
=

[
0︸︷︷︸
1

. . . 0︸︷︷︸
n−(k−2)

1..︸︷︷︸
n−(k−1)

0︸︷︷︸
n

]T

Let us introduce the notation. AF
c AF

cn−(k−1) = S, S =
[
{s1} {s2} . . . {sn}

]
.

The last column of the matrix has the form

{sn} =
[

0︸︷︷︸
1

. . . 1︸︷︷︸
n−k

0.︸︷︷︸
n−(k−1)

−aF
cn−(k−1)︸ ︷︷ ︸

n

]T

.

According to the Fadeev–Levereux algorithm, we have

{
aF

cn−k,n−kn

}
=

[
0︸︷︷︸
1

. . . 1︸︷︷︸
n−k

0︸︷︷︸
n−(k−1)

0︸︷︷︸
n

]T

.

�

Note. Note, first, that the resolvent expansion in the form of a Fadeev series does
not require calculating the eigenvalues of the dynamics matrix AF

c . Secondly, the transfer
function of channel “γ” of the linear part is defined by formula

{
aF

cn−k,n−kn

}
=

[
0︸︷︷︸
1

. . . 1︸︷︷︸
n−k

0︸︷︷︸
n−(k−1)

0︸︷︷︸
n

]T

where it follows that it is determined only by elements of the last column of the matrix AF
n−k.

Corollary 1. The general formulas of spectral decompositions for the controllability Gramians of
the canonically transformed controllability of the linear system, taking into account the lemma, take
a simpler form [7]

PcF = ∑n
k=1 ∑n

ρ=1 PcF
k,ρ, PcF

k,ρ = ∑n−1
η=0 ∑n−1

j=0
sj

ksη
ρ

.
N(sk)

.
N(sρ)

−1
sρ+sk

AF
j bF

γ

(
bF

γ

)T(
AF

j

)T

PcF
k,ρ = ∑n−1

η=0 ∑n−1
j=0

sj
ksη

ρ
.

N(sk)
.

N(sρ)
−1

sρ+sk
1j+1η+1,

(11)
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where the notation ej+1eT
j+1 = 1j+1j+1 is used. A similar approach can be applied to derive the

formula for spectral decompositions for observability Gramians of the canonically transformed
observability of the MISO system. In this case, the formulas [13] are valid

x = RF
0 xo,

.
xo(t) = AF

c xo(t) + bFo
γ u(t),

yo(t) = cFo
γ x(t),k = 0, 1, 2 . . .

AF
o =


0 0 0 0 −a0
1 0 0 0 −a1

0 1 0 0
...

0 0 1 0 −an−2
0 0 0 . . . 1 −an−1

, cFo
γ =

[
0 0 .. 0 1

]T ,

NF
oγ =

(
RF

o
)−1Nγ.

bFo
γ =

[
η0 η1 .. ηn−2 ηn−1

]
.

RF
0 =




a1 a2 an−1 1
a2 a3 an−1 1

an−1 0
an−1 1 0 0

1 0 0 0 0




c
cA
...

cAn−1




−1

.

(12)

We use Formula (7) and consider the formation of expressions AFT
oj ·cFTcF AF

oj. According to
the duality principle, we obtain expressions

PoF = ∑n
k=1 ∑n

ρ=1 PoF
k,ρ, PcF

k,ρ = ∑n−1
η=0 ∑n−1

j=0

sj
ksη

ρ
.

N(sk)
.

N
(
sρ

) −1
sρ + sk

1j+1η+1, (13)

As a result, we obtain the following algorithm for the separable computation of the “jη“
elements of the matrix

poF
jη = ∑n

k=1 ∑n
ρ=1

−1
sρ + sk

sj
ksη

ρ
.

N(sk)
.

N
(
sρ

)
By substituting the identity

∑n−1
η=0 ∑n−1

j=0

sj
ksη

ρ
.

N(sk)
.

N
(
sρ

) −1
sρ + sk

≡∑n−1
j=0 ∑n−1

η=0

sj
k(−sk)

η

.
N(sk)N(−sk)

into Formulae (11) and (13), we obtain new formulas for the expansion of the controllability and
observability Gramians

PcF
k,ρ = ∑n

k=1 ∑n−1
η=0 ∑n−1

j=0

sj
k(−sk)

η

.
N(sk)N(−sk)

1j+1η+1, (14)

PoF
jη = ∑n

k=1 ∑n−1
η=0 ∑n−1

j=0

sj
k(−sk)

η

.
N(sk)N(−sk)

1j+1η+1 (15)

The Gramians of the original system are related to the Gramians of the systems transformed to
canonical forms of controllability and observability by equations of the form [28]

RF
c PcFRFT

c = Pc,
(

RFT
o

)−1
PoF
(

RF
o

)−1
= Po (16)
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4. Separable Spectral Expansion of the Controllability Gramian of the Linear System
in Controllability Canonical Form

Let us write down the Lyapunov equation for system (5)

AF
c P + P

(
AF

c

)T
=


0 0 . . . 0
0 0 . . .
...
0

...
. . .

0
0

0
1

 (17)


0 0 . . . 0
0 0 . . .
...
0

...
. . .

0
0

0
1

 =

[
0(n−1)×(n−1) 0(n−1)×(1)

0(1)×(n−1) 1(1)×(1)

]
(18)

For the matrix on the left-hand side, let us introduce the notation

AF
c P + P

(
AF

c
)T .

= P&,

P& =

[
P&

(n−1)×(n−1) p&
(n−1)×(1)

p&
(1)×(n−1) p&

nn

]
.

(19)

Let us call an upper (lower) diagonal of a square matrix any diagonal leading from the
upper-left corner to the lower-right corner and located above (below) the main diagonal.
We form the following sets of matrix elements.

The “1st” upper odd diagonal. The set U(1)odd. Elements

p12 p23 . . . pnn, if n = 2k
p12 p23 . . . pnn−1, if n = 2k− 1

The “2nd” upper odd diagonal. The set U(2)odd. Elements

p14 p25 . . . pn−1n, if n = 2k
p14 p25 . . . pn−2n, if n = 2k− 1

The “k-th” upper odd diagonal. The set U(k)odd. Elements

p2k if n = 2k
p2k−22k−1 if n = 2k− 1

«1st» lower odd diagonal. The set V(1)odd. Elements

p21 p32 . . . pnn, if n = 2k
p21 p32 . . . pnn−1, if n = 2k− 1

«2nd» lower odd diagonal. The set V(2)odd. Elements

p41 p52 . . . pn−3n, if n = 2k
p41 p52 . . . pn−1n, if n = 2k− 1

«k-th» lower odd diagonal. The set V(k)odd. Elements

pn1 if n = 2k
pn2 if n = 2k− 1.
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Similarly form sets of even diagonals, considering the main diagonal as even zero.
Form the sets Ω0 and Ω∅ of elements of the Gramian P as

Ω0 = U(1)odd ∪ U(2)odd ∪ . . . ∪ U(k)odd ∪ V(1)odd ∪ V(2)odd ∪ . . . ∪ V(k)odd (20)

Ω∅ = U(0)even ∪ U(1)even ∪ U(2)even . . . U(k)even ∪ V(1)even ∪ V(2)even . . . V(k)even (21)

From the above, there are two indications that the elements of a Gramian P belong to
the sets Ω0 and Ω∅

pjη ∈ Ω0 if ∀j, η : j + η = 2k, k = 1, 2, . . . n. (22)

pjη ∈ Ω∅ if ∀j, η : j + η = 2k− 1, k = 1, 2, . . . n. (23)

The structure of the matrix (19) and symmetry of the Gramian makes it possible to
reduce the solution of Equation (17) to the solution of four simple linear algebraic equations.
Let us write down the first system of the matrix equality (19) as

p&
ij =

{
2pi+1,j = 0, i f i = j, i = 2, n; j = 1, n− 1

pi,j+1 + pi+2,j−1 ,∀ i 6= j, i = 2, n; j = 1, n− 1
(24)

From the symmetry of the Gramian it follows that

p&
ij = p&

ji = pj,i+1 + pj+2,i−1 ,∀ i 6= j, i = 2, n;j = 1, n− 1 (25)

p&
1n = p2n + (a·p1) = 0, p&

2n = p3n + (a·p2) = 0, . . . p&
nn = (a·pn) = 0, (26)

p&
n1 = p2n + (a·p1) = 0, p&

n2 = p3n + (a·p2) = 0, . . . p&
nn = (a·pn) = 0, (27)

p&
nn = 2(a·pn) = −1 (28)

Thus, the system of linear algebraic Equations (24)–(28) implements an alternative
method to determine elements of the Gramian control matrices in a simpler way than
solving the linear algebraic equation in the form of Kronecker products and applying
vectorization method (8) [16]. In addition, Formulas (10) and (11) give analytical solution
of Lyapunov equation based on Gramian method. If a linear system is stable and the eigen
numbers of its dynamics matrix are different, the solution of the Lyapunov equation is
singular. Hence, the two solutions considered are the same.

Let us discuss properties of the matrix and solution elements on the basis of analysis
of solutions to the system of Equations (24)–(28) and Formulas (10) and (11).

Assertions.

(1) All elements of upper and lower even diagonals of the Gramian matrix

Ω0 are zero. Indeed. From (12) and Gramian symmetry, this is true for the elements of
the sets U(1)odd, V(1)odd odd of the first upper and lower diagonals of the matrix. For the
elements of other diagonals of the matrix (both zero and nonzero), the following identities
follow from Formulas (10) and (11)

pjη = (−1)η pj+1η−1 = (−1)η+2 pj+2η−2 = (−1)η−2 pj−2η+2 = · · · . (29)

(2) If the element pjη = 0, it follows from (27) that

pj+1η−1 = pj+2η−2 = pj−2η+2 = · · · = 0 (30)

If pjη 6= 0, first calculate all diagonal elements of the Gramian by Formulas (10) and (11)

p11 = ∑n
k=1

1
.

N(sk)N(−sk)
, (31)
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p22 = ∑n
k=1

−(sk)
2

.
N(sk)N(−sk)

, (32)

pnn = ∑n
k=1

(−1)n−1(sk)
2(n−1)

.
N(sk)N(−sk)

. (33)

If j 6= η

pjη = (−1)
j−η

2 pll , j + η = 2l (34)

We have proved the theorem.

Theorem 1 [13]. Consider a continuous MISO LTI system (3). Suppose the system is stable and
all roots of its characteristic equation are different. Then the elements of its controllability Gramian
are solutions of the system of Equations (24)–(28).

For even n, the solution matrix looks like

PcF=



p11 0 −p22 0 p33 0
0 p22 0 −p33
−p22 0 p33 pn−2n−2

0 −p33 −pn−2n−2 0
p33 pn−2n−2 0 −pn−1n−1

0 −pn−2n−2 0 pn−1n−1 0
0 pn−2n−2 0 −pn−1n−1 0 pnn


For odd n we have the formula

PcF=



p11 0 −p22 0 p33 p n+1
2

n+1
2

0 p22 0 −p33 −p n+1
2

n+1
2

−p22 0 p33 pn−2n−2
0 −p33 −pn−2n−2 0

p33 −p n+1
2

n+1
2

pn−2n−2 0 −pn−1n−1

−pn−2n−2 0 pn−1n−1 0
p n+1

2
n+1

2
pn−2n−2 0 −pn−1n−1 0 pnn


The analytical expressions for calculating the leading elements of the Gramian matrices are defined as

p11 = ∑n
k=1

1.
N(sk)N(−sk)

,

p22 = ∑n
k=1

(−1)1(sk)
2

.
N(sk)N(−sk)

,

pnn = ∑n
k=1

(−1)n−1(sk)
2(n−1)

.
N(sk)N(−sk)

.

(35)

The analytical expressions for calculating the slave elements of the Gramian matrices through
the leading elements are defined as

pjη = (−1)
j−η

2 pll , j + η = 2l (36)

The rest elements of the Gramian matrices elements are zero.

Corollary 2. For a continuous stationary stable linear dynamical system MISO LTI with a simple
spectrum the following identities are true

∑n
k=1 ∑n

ρ=1

sj
ksη

ρ
.

N(sk)
.

N
(
sρ

) −1
sρ + sk

≡ 0, j = 0, 1, . . . n− 1; η = 0, 1, . . . n− 1, (37)
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∑n
k=1

sj
k(−sk)

η

.
N(sk)N(−sk)

≡ 0, j = 0, 1, . . . n− 1; η = 0, 1, . . . n− 1, (38)

if the conditions are satisfied

(a) For even matrices of size n = 2k, the sum of indices j + η belongs to the one of the set Ω0

∀j, η : j + η ∈


[2, 3, . . . . . . .2n− 1],
or[3, 4, . . . 2n− 3]

. . . . . . . . . . . . ..
or[2k + 1]

(39)

(b) For matrices of odd size n = 2k−1, the sum of indices j + η belongs to one of the sets Ω0

∀j, η : j + η ∈


[2, 3, . . . . . . .2n− 1],
or[3, 4, . . . 2n− 3]

. . . . . . . . . . . . ..
or[2k− 1, 2k + 1]

(40)

The consequence follows from Formulae (35) and (36) of the theorem. It expresses one of the
important properties of Xiao matrices: all the elements of odd diagonals are zero. The conditions (22)
and (23) formally indicate that the elements of odd diagonals belong to the set Ω0.

At the same time, identities (37) and (38) are valid for stable real polynomials of order “n”,
all roots of which are different and situated in the left half-plane of the complex plane. Clearly, the
identities are invariant with respect to any nondegenerate transformation of the coordinates of the
dynamical system.

Corollary 3. Consider a stable continuous stationary linear MIMO LTI dynamical system with
simple spectrum with many inputs and many outputs

.
x(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
(41)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rm.
The controllability sub-Gramian Pc

j,η of a continuous stationary stable linear MIMO LTI
system of the form (1) with a simple spectrum is a matrix of the form [7]

Pc = ∑n−1
j=0 ∑n−1

η=0 Pc
j,η , Pc

j,η = ∑n−1
η=0 ∑n−1

j=0 ω
(
sk, sρ, j, η

)
AjBBT(Aη

)T (42)

ω
(
sk, sρ, j, η

)
=


0, i f index jη belongs to odd diagonals o f the subGramian

∑n
л=1 ∑n

ρ=1
−1

sρ+sk

sj
ksη

ρ
.

N(sk)
.

N(sρ)
i f index jη belongs to the rest o f diagonals o f the sub− Gramian

Proof. As we know, the spectral decomposition of controllability Gramian in consequence
of conditions has the form [7]

Pc = ∑n−1
j=0 ∑n−1

η=0 ∑n
k=1 ∑n

ρ=1
−1

sρ + sk

sj
ksη

ρ
.

N(sk)
.

N
(
sρ

)AjBBT(Aη

)T (43)

Note that identities (37) and (38) are invariant for any nondegenerate coordinate I
inser numbettransformation. Substitute the newly introduced scalar function ω

(
sk, sρ, j, η

)
into this formula and obtain Formula (42). �
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Let’s define the bilinear system controllability Gramian by means of the Volterra matrix
series of the form [10], namely

P1(t1) = eAt1 B,
Pi(t1, ..ti) = eAti [N1Pi−1N2Pi−1 . . . NmPi−1], i = 2, 3, 4, . . . ,
P = ∑∞

i=1
∫ ∞

0 . . .
∫ ∞

0 Pi(t1, ..ti)PT
i (t1, ..ti)dt1 . . . ti.

(44)

For system (1) it is possible to define GLE as

AP + PAT + ∑m
j=1 NjPNT

j = −BBT , (45)

The Volterra series (44) is a solution to equation (45), in the case where this solution
exists. The solution matrix in this case can be called the Gramian controllability of the
bilinear system [11–13].

Theorem 2 [11]. If the dynamics matrix of the linear part A is stable and the controllability
Gramian of the bilinear system is the only solution of the generalized Lyapunov equation, then the
solution is the matrix determined by the following iterative procedure.

AP1 + P1 AT = −BBT ,
APi + Pi AT + ∑m

j=1 NjPi−1NT
j = 0, i = 2, 3, 4 . . . ..,

P = P1 + ∑∞
i=2 Pi .

(46)

If the controllability Gramian of a bilinear system exists, then it is the limit solution resulting
from realization of the iterative procedure (46) [16,30].

Let us introduce the notations NAF
j

.
= Nj, NAF

η
.
= Nη , Njγ

.
=
[
nγ

jνµ

]
, Nηγ

.
=
[
nγ

ηνµ

]
.

Let us consider the formation of the right-hand side of the Lyapunov equation at step
“k” Let us write the element « jη » of the matrix of the right-hand side in the form

eT
j Njγ1jη pFbln(k−1)jηN T

ηγeη = ∑n
ν=1 ∑n

µ=1−
(
sν + sµ

)−1 nγ
jνµnγ

ηνµ pFbln(k−1)jη . (47)

Theorem 3 [16]. Consider a MISO continuous bilinear stationary system (multiple-input one
output) represented in the canonical controllability of the form (1). Let the linear part of the bilinear
system be fully controllable. Let the matrix AF be Hurwitzian and have a simple spectrum. Let the
inequalities be true.

(n2 −∑(n+1)/2
k=1 2k) max︸ ︷︷ ︸

νµ

∣∣∣(sν + sµ

)−1
∣∣∣max︸ ︷︷ ︸

νµijγ

∣∣∣nγ
jνµnγ

ηνµ

∣∣∣ max︸ ︷︷ ︸
k,ρ,j,η

< 1 , (48)

Then the Gramian of controllability exists and is unique. The elements of the Gramian matrix
can be defined using an iterative procedure of the form [30,31]

PF = PFln(1) + PFbln, (49)

PFln(1) = ∑n
k=1 ∑n

ρ=1 ∑n−1
η=0 ∑n−1

j=0
sj

ksη
ρ

.
N(sk)

.
N(sρ)

−1
sρ+sk

1j+1η+1,

PFbln(k)jηγ = ∑ν,µ r(k)jηγ pFbln(k−1)ijγ
νµ 1νµ, r(k)ijγ =

= −
[(

sν + sµ

)−1nγ
jνµnγ

ηνµω
(
sk, sρ, j, η

)]
,

k = 2, 3, ..∞. ∀ν, µ, i, j = 1, 2, . . . n; γ = 1, 2, . . . H,

(50)

The initial Gramian of controllability Pblnof the bilinear system is related to the matrixPcFbln

by the Equation (16).
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Proof of Theorem 2. According to the theorem, the formation of the solution matrix is
reduced to the construction of the sequence of elements «jη» and subsequent aggregation of
elements into a single matrix. All partial sequences in the general case are complex-valued.
To prove the convergence of the sequence of partial sums, let us apply the comparison
feature and construct a major sequence from the modules of the sequence members. For
each step “k” and each matrix Nγ the iterative relations (46) take place. Let us construct a
comparison series for the elements of the subGramian “ijγ” for step “k”. It follows from
formulae (46) that each element of the sequence is a weighted sum of all leading elements
in the previous step.

Step 1. Consider the formation of the right part of the generalized Lyapunov equation
at the first step for the case γ = 1. A separable spectral decomposition of this solution by a
pairwise spectrum of the matrix, was obtained above (10) [32].

k-th step. Consider the formation of the right-hand side of the Lyapunov equation at
step “k”. Let us write the “jη” element of the right-hand side matrix as

eT
j Njγ1jη pFbln(k−1)jηN T

ηγeη = ∑n
ν=1 ∑n

µ=1−
(
sν + sµ

)−1 nγ
jνµnγ

ηνµ pFbln(k−1)jη . (51)

Given the summation of sub-Gramians by the index “γ”, we obtain the formula for
calculating the kernel matrix of the Gramian of order “k” at step “k”.

PFbln(k)jηγ = ∑ν,µ r(k)jηγ pFbln(k−1)ijγ
νµ 1νµ,

r(k)ijγ = −
[(

sν + sµ

)−1nγ
jνµnγ

ηνµω
(
sk, sρ, j, η

)]
,

k = 2, 3, ..∞. ∀ν, µ, i, j = 1, 2, . . . n; γ = 1, 2, . . . m,

(52)

Formula (52) expresses an algorithm for elemental computation of the Gramian matrix
of a bilinear system. At each step, the algorithm makes it possible to compute the kernel
matrix of the Gramian of order “k”.

The global major of all sequences converges if the condition

(n2 −∑(n+1)/2
k=1 2k) max︸ ︷︷ ︸

νµ

∣∣∣(sν + sµ

)−1
∣∣∣max︸ ︷︷ ︸

νµijγ

∣∣∣nγ
jνµnγ

ηνµ

∣∣∣|max ω(sk, sρ, j, η)|︸ ︷︷ ︸
k,ρ,j,η

< 1 ,

Since the linear part is stable, there exists an exact upper bound for the inverse of the
moduli of the sum of any eigen numbers of its matrix, equal to

max︸︷︷︸
νµ

∣∣∣(sν + sµ

)−1
∣∣∣

For any elements of matrices nγ
jνµnγ

ηνµ there exists an exact upper bound of the products
of the moduli of its elements. Hence, if the conditions of the theorem are satisfied, inequality (48)
and the signs of convergence of series with positive terms are satisfied. Hence, complex-valued
sequences (52) converge uniformly and absolutely. The uniform convergence of all sequences is
equivalent to the uniform convergence of matrices in (46) [16]. �
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Example 1. Validation of spectral algorithms for computing controllability Gramians of linear
continuous stationary systems given by equations of state in the canonical form of controllability.

.
x= AFx + bFu,

y= cFx,
n = 3, N(x) = x3 + a2x2 + a1x + a0. a2 = 4, 5, a1 = 6, 5, a0 = 3,

s1 = −1, s2 = −2, s3 = −1.5.

AF =

 0 1 0
0 0 1
−3 −6.5 −4.5

, bF=
[
0 0 1

]T ,

cF
γ =

[
ξ0 ξ1 ξ2

]
.

(53)

Formula for calculating a Gramian elements

pjη = ∑n
k=1

sj−1
k (−sk)

η−1

.
N(sk)N(−sk)

,

.
N(s1)N(−s1) = 7.5;

.
N(s2)N(−s2) = 21;

.
N(s3)N(−s3) = −6.5625.

The formula calculation gives the following results

pjη = ∑n
k=1

sj−1
k (−sk)

η−1

.
N(sk)N(−sk)

,

.
N(s1)N(−s1) = 7.5;

.
N(s2)N(−s2) = 21;

.
N(s3)N(−s3) = −6.5625.

p21 = p12 =
(−1)1

7.5
+

(−2)1
21

+
(−1.5)1
−6.5625

= 0, p32 = p23 =
(1)1
7.5

+
(2)22

21
+
(1.5)21.5
−6.5625

= 0,

p11 =
1

7.5
+

1
21

+
1

−6.5625
= 0.02855, p22 =

(−1)
7.5

+
(−4)1

21
+
(−2.25)1
−6.5625

= 0.01906,

p33 =
1

7.5
+

16
21

+
5.0625
−6.5625

= 0.1238, p31 =
1

7.5
+

4
21

+
2.25
−6.5625

= 0.01906 = −p22,

p13 =
1

7.5
+

4
21

+
2.25
−6.5625

= 0.01906 = −p22.

The controllability Gramian has the form

PF =

0.02855 0 0. 01906
0 −0. 01906 0

0. 01906 0 0.1238


Substituting the resulting matrix into the Lyapunov equation, we obtain 0 0.01906 0

−0, 01906 0 0.1238
0.00003 −0.1238 −0.4999

+

 0 −0.01906 0.00003
0, 01906 0 −0.1238

0 0.1238 −0.4999


=

 0 0 −0.00003
0 0 0

−0.00003 0 −0.99998

 ∼=
0 0 0

0 0 0
0 0 −1



Example 2. Consider further the generalized Lyapunov equation of the second order in the canonical
form of controllability of the form

AFPFbln+PFbln
(

AF
)T

+ NFPFbln(NF)
T
= −bF

(
bF
)T

, (54)
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and the Lyapunov equation for its linear part

AFPFln+PFln
(

AF
)T

= −bF
(

bF
)T

, (55)

Let us also give the corresponding initial Lyapunov equations in eigenvalue decomposition
(EVD) canonical form

APbln+Pbln(A)T + NPblnNT = −bbT ,

APln+Pln(A)T = bbT ,

In the numerical example, let us take

A =

[
−1 0
0 −2

]
, b =

[√
3√
3

]
, N =

[ √
3 1.5

√
3

0.5
√

3
√

3

]

AFbln =

[
0 1
−2 −3

]
, bF =

[
0
1

]
, NF =

[
0.5 0.5
0 0.5

]
To determine the Gramian of controllability of the linear part we apply the formula

PFln =
2
∑

k=1

2
∑

ρ=1

1
∑

η=0

1
∑

j=0

sj
ksη

ρ
.

N(sk)
.

N(sρ)
−1

sρ+sk
1j+1η+1,

PFln =

[
pFln

11 pFln
12

pFln
21 pFln

22

]
,

(56)

pFln
11 =

6 + 3− 4− 4
12

=
1

12
, (57)

pFln
12 =

−6 + 8 + 4− 6
12

= 0, (58)

pFln
11 =

−6 + 8 + 4− 6
12

= 0, (59)

pFln
11 =

6− 8− 8 + 12
12

=
2

12
, (60)

The controllability Gramian of the linear part is a Xiao matrix and simultaneously a diagonal
matrix with positive diagonal elements. As we will see later, these properties are not inherited by the
matrices of the kernels of the spectral expansion of the bilinear Gramian. Note that if we do not look
for spectral expansions of solutions of the Lyapunov equations of the form (57)–(60), but look for the
solutions themselves, then because of the simple structure of the Frobenius matrices, these solutions
in our case can be obtained by solving simple systems of linear algebraic equations (SLAE). Let us
introduce the notation

PFln =

[
xln

1 xln
4

xln
3 xln

2

]
, PFbln =

[
xbln

1 xbln
4

xbln
3 xbln

2

]
.

Given the notations, the Lyapunov equation of the linear part takes the form of element-by-
element equality. [

xln
3 + xln

4 xln
2 − 2xln

1 − 3xln
4

xln
2 − 2xln

1 − 3xln
3 2xln

4 − 2xln
3 − 6xln

2

]
=

[
0 0
0 −1

]
, (61)

These equations can be written as a SLAE system

xln
3 + xln

4 = 0,
xln

3 = xln
4 ,

xln
2 − 2xln

1 − 3xln
4 = 0,

2xln
4 − 2xln

3 − 6xln
2 = −1.

(62)
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Substituting solutions (62) into system (61), we can see that they are solutions of the Lyapunov
equation of the linear part. The same method can be applied to solve the generalized Lyapunov
equation, but it is far from obvious. Let us write the corresponding SLAE of the bilinear system as

−NFPFln(NF)
T
=

[
−q(2)1 −q(2)4

−q(2)3 −q(2)2

]
xbln

3 + xbln
4 + 0, 01 ∑4

i=1 xbln
i = 0, xln

3 = xln
4 ,

2xbln
4 − 2xbln

3 − 6xbln
2 + 0, 01xbln

2 = −1,
xbln

2 − 2xbln
1 − 3xbln

3 + 0, 01 ∑3
i=2 xbln

i = 0

(63)

Its solution has the form

xbln
1 = −11

12
q1 −

1
12

q2 −
1
2

q3, xbln
3 = xbln

4 =
1
2

q1, (64)

xbln
2 = −1

6
(q2 + 2q1) (65)

Let us move on to calculating the bilinear part matrices.
Second step
Let us calculate a matrix for the right part of the Lyapunov equation at the second step

− NFPFln(NF)
T
=

[
−q(2)1 −q(2)4

−q(2)3 −q(2)2

]
=

[
−0.002499 −0.001666
−0.001666 −0.001666

]
Let us use formulas (64) and (65) to calculate the elements of the solution matrix of this equation

xbln(2)
1 = −11

12
q(2)1 −

1
12

q(2)2 −
1
2

q(2)3 = 0.003677,

xbln(2)
2 = −1

6

(
q(2)2 + 2q(2)1

)
= 0.001110,

xbln(2)
3 = xbln(2)

4 =
1
2

q(2)1 = 0.001249.

Third step
Calculate the matrix for the right-hand side of the Lyapunov equation in step three

− NFPFbln(2)(NF)
T
=

[
−q(3)1 −q(3)4

−q(3)3 −q(3)2

]
=

[
0.0004926 0.00002359
0.0002359 0.0001110

]
Let us use Formulas (64) and (65) to calculate the elements of the solution matrix of this equation

xbln(3)
1 = −11

12
q(3)1 −

1
12

q(3)2 −
1
2

q(3)3 = 0.0007035,

xbln(3)
2 = −1

6

(
q(3)2 + 2q(3)1

)
= 0.0002463,

xbln(3)
3 = xbln(3)

4 =
1
2

q(3)1 = 0.0001825.

Fourth step
Calculate the matrix for the right-hand side of the Lyapunov equation in step three

− NFPFbln(3)(NF)
T
=

[
−q(4)1 −q(4)4

−q(4)3 −q(4)2

]
=

[
0.00001899 0.000004288

0.000004288 0.00001825

]
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Let us use Formulas (64) and (65) to calculate the elements of the solution matrix of this equation

xbln(4)
1 = −11

12
q(4)1 −

1
12

q(4)2 −
1
2

q(4)3 = 0.00001956,

xbln(4)
2 = −1

6

(
q(4)2 + 2q(4)1

)
= 0.0000931,

xbln(4)
3 = xbln(4)

4 =
1
2

q(4)1 = 0.00000949.

Calculate the sum of the bilinear system matrices after four iterations

PFbln = PFln + PFbln(2) + PFbln(3) + PFbln(4) =

[
0.08774 0.001504

0.001504 0.1679

]
Let us check the obtained solution by substituting it into the generalized Lyapunov equation[

0.001504 0.1679
−0.1799 −0.5006

]
+

[
0.001504 −0.1799

0.1679 −0.5006

]
+

[
0.002586 0.001694
0.001694 0.001679

]
=[

0.005666 0.010306
0.010306 −0.9995

]
∼=
[

0 0
0 −1

]
Obviously, the matrix PFbln > 0.

5. Conclusions

The following results are obtained in the paper:

• A new method and new algorithms for computing the Xiao matrices.
• Identities for the spectral expansions of the stable polynomials of finite order.
• Computation formulas for the Gramians of continuous stable systems with many inputs,

given by the equations of state in the canonical forms of controllability and observability.
• Methods and algorithms for computing sequences of elements of Volterra matrices for

Gramians of continuous bilinear systems.

These methods allow one to significantly reduce the computational complexity of
solving the above problems. A new separable iterative spectral method to compute the
elements of controllability Gramians for stable linear and bilinear stationary continuous
systems with many inputs and one output given by equations in the canonical form of
controllability has been developed. For the linear part of the novel method includes
analytical formulas to compute all the elements of the Gramian based on the eigenvalues
of the dynamics matrix resolvent and its residues. To compute the Gramian of a bilinear
system, a new iterative spectral algorithm is proposed which preserves the structure of
the generalized Xiao matrix at each step, which allows the computations to be reduced
significantly and the analysis of convergence of iterative algorithms to be simplified [13].
The role of the diagonal elements of the Gramians is very important. They not only
determine the remaining nonzero elements of the Gramian matrices of the linear part but
also form the scalar multiplier of the spectral decomposition of the bilinear part. The novel
method also has the advantage to novel algorithm for calculating the Gramian based on the
known method of calculating the Gramian matrix using the Xiao matrix and Routh tables.
However, the last method is highly sensitive to rounding errors, so it is not recommended
for high dimensional systems.

The emerging areas for future research are the analysis of the stability of energy-saving
control systems, development a reduced-order observer in the modal control systems and
the findings using geometric theory and Lie groups.
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