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Abstract: A new class of high-performance preconditioned iterative solution methods for large-scale
finite element method (FEM) elliptic systems is proposed and analyzed. The non-overlapping domain
decomposition (DD) naturally introduces coupling operator at the interface γ. In general, γ is a
manifold of lower dimensions. At the operator level, a key property is that the energy norm associated
with the Steklov-Poincaré operator is spectrally equivalent to the Sobolev norm of index 1/2. We
define the new multiplicative non-overlapping DD preconditioner by approximating the Schur
complement using the best uniform rational approximation (BURA) of L1/2

γ . Here, L1/2
γ denotes

the discrete Laplacian over the interface γ. The goal of the paper is to develop a unified framework
for analysis of the new class of preconditioned iterative methods. As a final result, we prove that
the BURA-based non-overlapping DD preconditioner has optimal computational complexity O(n),
where n is the number of unknowns (degrees of freedom) of the FEM linear system. All theoretical
estimates are robust, with respect to the geometry of the interface γ. Results of systematic numerical
experiments are given at the end to illustrate the convergence properties of the new method, as well
as the choice of the involved parameters.

Keywords: preconditioning; non-overlapping domain decomposition; fractional Laplacian; BURA
method; computational complexity

MSC: 65F08; 65N30; 65N22

1. Introduction

This paper is aimed at constructing an analysis of methods for efficiently solving the
systems of linear algebraic equations resulting from FEM discretization of second-order
elliptic boundary value problems on general bounded domains Ω ⊂ Rd. Although the
approach is applicable to a wider class of multidimensional problems, we restricted our
presentation to the case Ω ⊂ R2 with a polygonal boundary Γ = ∂Ω. As a model equation,
we considered the Dirichlet problem

−
2

∑
i,j=1

∂

∂xi

(
aij

∂u
∂xj

)
= f in Ω, u = 0 on Γ, (1)

with {aij}2
i,j=1 uniformly positive definite, bounded, and piecewise smooth on Ω. The weak

formulation of (1) is: Find u ∈ H1
0(Ω) such that

A(u, v) = ( f , v) (2)

for all v ∈ H1
0(Ω) := {v ∈ H1(Ω), v|Γ = 0}, where

A(u, v) =
2

∑
i,j=1

∫
Ω

aij
∂u
∂xi

∂v
∂xj

dx, ( f , v) =
∫

Ω
f vdx.
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Then the FEM approximation of (2) is: Find uh ∈ S1
h,0(Ω) such that

A(uh, vh) = ( f , vh) (3)

for all vh ∈ S1
h,0(Ω). Here, S1

h,0(Ω) ⊂ H1
0(Ω) is a finite element subspace with dimension n.

Thus, the numerical solution of the elliptic problem (1) is reduced to the discrete problem (3),
which in turn is equivalent to the linear system.

Au = f. (4)

The stiffeners matrix A ∈ Rn×n is sparse, symmetric, and positive definite. With-
out losing the generality, we assumed that S1

h,0(Ω) is the subspace of piecewise linear
functions (linear triangle finite elements) defined on the triangulation Th ⊂ Ω.

It is assumed that the system (4) is large-scale, that is n >> 1. For such sparse linear
systems, the advantages of preconditioned conjugate gradient (PCG) solution methods
increase with increasing the size n. In particular, we focused on the case of non-overlapping
DD preconditioning.

A key question in DD methods is how to couple the solutions in subdomains. The inter-
face equation involves a pseudodifferential operator, commonly called the Steklov-Poincaré
operator. Many of the currently used DD methods are implicit. As a general approach, they
approximate the non-local interface problem by solving a suitably constructed sequence of
local (at the level of subdomains) problems. To this group belongs the original Schwarz
methods, as well as: Dirichlet-Neumann, Neumann-Neumann, additive and multiplicative
Schwarz, Bramble-Pasciak-Schatz (BPS), finite element tearing, and interconnect (FETI)
methods. For this class of problems, independence of the convergence rate (the number of
PCG iterations) of discretization and decomposition parameters does not generally hold
and further consideration of the problem is needed [1]. In the spirit of implicit methods,
a remarkable set of earlier results has been published in a series of papers on BPS methods,
starting with [2].

An alternative second approach is to address the interface problem directly. In this
case, several specific issues need to be noted: (i) the Steklov-Poincaré operator is known
for a very limited set of model problems with constant coefficients in simple domains; (ii)
the interface problem is non-local, and the matrix obtained after its discretization is dense,
which should significantly increase the computational complexity of the DD method. Some
earlier results on this approach have been published in [3–6]; see also [7] and references
therein. They treat simplified cases where the interface is either one line or several non-
intersecting lines. Fast Fourier transform (FFT) is used there to efficiently solve the arising
systems with the square root of the matrix tridiag(−1, 2,−1), which approximates the
corresponding Schur complement.

In this paper, we propose and analyze a new non-overlapping DD method which uses
the second (direct) approach mentioned above. Our results are applicable to a very general
domain partitioning, including the case of interface with cross-points. The construction is
based on the spectral equivalence of the energy norm associated with the related Steklov-
Poincaré operator and the norm of the Sobolev space of index 1/2. More details on the
discrete representation of these norms, when FEM is applied to a numerical solution of the
boundary value problem, can be found in [1]. Our approach is purely algebraic and can be
successfully applied to preconditioning systems with graph Laplacians. In this context, we
refer to the new discrete trace theorems recently published in [8]. The first step in the con-
sidered construction is to replace (to approximate) the Schur complement Sγ corresponding
to the interface γ with L1/2

γ , while Lγ is the discrete Laplace-Beltrami operator assembled
on γ or, in short, the discrete Laplacian over γ. According to the trace theory, the obtained
preconditioner provides optimal convergence rate, regardless of the mesh parameter h of
the FEM discretization. This is confirmed, for example, by the numerical tests in [1], where
the spectral decomposition of Lγ has been used to solve the fractional Laplacian problems
at the interface. Obviously, such a method is computationally expensive.
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This brings us to the more general problem of efficient preconditioning methods
for fractional Sobolev spaces. In this context, the multigrid method developed in [9]
can be considered, where the abstract additive multilevel framework has been adapted.
Although the fractional diffusion on the manifold γ is nonlocal, the preconditioner has a
controlled sparsity, providing optimal convergence rate if the number of coarsening steps
is fixed. Another natural approach, briefly discussed in [1], is based on a truncated spectral
decomposition, where a small number of vectors are used in a modified Lanczos algorithm.
The presented initial results of numerical experiments feed certain expectations for further
theoretical analysis of this problem-specific model basis reduction algorithm.

We propose a new non-overlapping DD preconditioner where the BURA is applied to
the block L1/2

γ . The BURA method was originally introduced in [10]; see also the survey
paper [11]. Here, we built on the results from [12], integrating the interface preconditioning
technique into the DD framework. In the present paper, we use the improved version of
BURA from [13].

In general, it is clear that there are different methods for spectral fractional diffusion
problems which can be applied to the block A1/2

γ . Recently, a unified view to these methods
was presented in [14], showing that all of them can be interpreted as generated by some
rational approximation. Thus, BURA methods are asymptotically the best. It should also
be noted that the simplified structure of the proposed algorithm is favorable for parallel
implementation. In this context, it is an advantage that the rational approximation is
computed offline. Among the main contributions of this paper, we noted the following:
BURA preconditioners are purely algebraic, so that no regularity assumptions are made
in the theoretical analysis; under standard assumptions, the proposed DD method has
optimal computational complexity; the presented numerical results prove the concept of
BURA based DD preconditioning.

The structure of the paper is as follows. The spectral equivalence of the non-overlapping
DD preconditioners under consideration is discussed in the next section. Section 3 is de-
voted to the construction and basic properties of the BURA method. Then, condition num-
ber estimates of the BURA based DD preconditioners are derived in Section 4. The optimal
value of the introduced weight parameter is obtained. Algorithmic issues are discussed in
Section 5, proving at the end optimal computational complexity estimates. The numerical
experiments presented in Section 6 have a double motivation. On the one hand, they
confirm the accuracy of the derived theoretical estimates. On the other hand, they provide
an additional practical insight for the efficient usage of rational approximations of a smaller
degree. Finally, we give some conclusions in Section 7.

2. Non-Overlapping DD

Let the computational domain Ω be partitioned into N non-overlapping subdomains Ωi,

Ω =
N⋃

i=1

Ωi, Ωi
⋂

Ωj = ∅ ∀i 6= j,

and let the interface γ ⊂ R be alighted with the FEM triangulation Th ⊂ Ω,

γ =
N⋃

i=1

γi, γi := ∂Ωi \ ∂Ω.

We write the linear system (4) in the 2× 2 block form

Au =

(
AI AIγ

AγI Aγ

)(
uI
uγ

)
=

(
fI
fγ

)
= f (5)

where: n = nI + nγ; AI ∈ RnI×nI , uI ∈ RnI , and fI ∈ RnI correspond to the interior mesh
nodes of the subdomains; Aγ ∈ Rnγ×nγ , uγ ∈ Rnγ , and fγ ∈ Rnγ correspond to the mesh
nodes over the interface γ. The blocks AγI = (AIγ)

T represent the interaction between the
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nodal basis functions corresponding to the interior mesh nodes of the subdomains and the
interface nodes. As typical for non-overlapping DD, the block AI has a block-diagonal
form as follows:

AI =



AI,1
. . .

AI,i
. . .

AI,N

.

Here, a subdomain-by-subdomain numbering of the mesh nodes (unknowns) is used.
The factorization

A =

(
AI
AγI Sγ

)(
II A−1

I AIγ

Iγ

)
(6)

holds true where Sγ = Aγ −AγIAI
−1AIγ is the Schur complement. Now we are ready to

introduce the DD preconditioner CDD in the form

CDD =

(
AI
AγI σ1L1/2

γ

)(
II A−1

I AIγ

Iγ

)
, (7)

σ1 > 0 is a scaling parameter that will be further specified. Here, Lγ denotes the dis-
crete Laplace-Beltrami operator assembled on γ, which is the weighted discrete Laplacian
with weight equal to the trace of the coefficient matrix {aij}2

i,j=1 on γ.

Lemma 1. There exists positive constants 0 < c1 < c2 that are independent of the mesh parameter
h such that

c1vT
γL1/2

γ vγ ≤ vT
γSγvγ ≤ c2vT

γL1/2
γ vγ ∀vγ ∈ Rnγ . (8)

Proof. The spectral equivalence estimates (8) follow, for example, from the analysis in [1],
where a more general diffusion reaction problem is considered.

Lemma 2. The following condition number estimate holds for the non-overlapping DD precondi-
tioner (7)

κ
(
C−1

DDA
)
≤

max{1,
c2

σ1
}

min{1,
c1

σ1
}

. (9)

Proof. We rewrite (7) and (8) in the form

A = UTDU and CDD = UTDσ1U,

where

D =

(
AI

SI

)
, Dσ1 =

(
AI

σ1L1/2
γ

)
, and U =

(
II A−1

I AIγ

Iγ

)
.

Then the minimal eigenvalue of the preconditioned matrix C−1
DDA is estimated as follows:

λmin

(
C−1

DDA
)

= min
v 6=0

(Av, v)
(CDDv, v)

= min
v 6=0

(UTDUv, v)
(UTDσ1Uv, v)

= min
v 6=0

(DUv,Uv)
(Dσ1Uv,Uv)

= min
w 6=0

(Dw, w)

(Dσ1 w, w)

≥ min{1,
c1

σ1
}.
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In the same way, we derive the estimate

λmax

(
C−1

DDA
)
≤ max{1,

c2

σ1
}

with which the proof is completed.

The results from Lemma 2 are summarized in Table 1.

Table 1. Dependence of the estimate of κ
(
C−1

DDA
)

on the scaling parameter σ1.

Interval Condition Number Estimate

σ1 < c1 < c2 κ
(
C−1

DDA
)
≤ c2

σ1
>

c2
c1

c1 ≤ σ1 ≤ c2 κ
(
C−1

DDA
)
≤ c2

c1

c1 < c2 < σ1 κ
(
C−1

DDA
)
≤ σ1

c1
>

c2
c1

Corollary 1. The recommended interval for the scaling parameter σ1 of the non-overlapping DD
preconditioner CDD is

c1 ≤ σ1 ≤ c2. (10)

In this case,
κ
(
C−1

DDA
)
≤ c2

c1
. (11)

The implementation of the DD preconditioner CDD involves solving linear systems
with the block σ1L1/2

γ . Until recently, this was a challenge when the interface γ contained
intersecting lines. The rest of the paper is devoted to developing an effective solution to
this problem using the BURA method.

3. Best Uniform Rational Approximation Preconditioning

The concept of our DD preconditioner is to replace the σ1L1/2
γ block with an appropri-

ately chosen approximation, explicitly defined by a computationally efficient approxima-
tion of its inverse. Thus, the proposed approach directly relies on the numerical methods
for spectral space-fractional problems. The survey paper [11] tracks some of the recent
achievements in the numerical solution of the equation Bαu = f , 0 < α < 1, and is pub-
lished in [11], where B is a symmetric positive definite (SPD) operator corresponding to
second order elliptic boundary value problem in a bounded domain Ω ⊂ Rd. The meth-
ods discussed there can be classified into the following three groups: (i) based on the
Dunford-Taylor integral formula or its equivalent Balakrishnan formula; (ii) based on
equivalent representation of the solution using extension to: a second order elliptic problem
in Ω× (0, ∞) ⊂ Rd+1 with a local operator; a pseudo-parabolic equation in the cylinder
(x, t) ∈ Ω× (0, 1); (iii) based on spectral representation of the solution and the BURA of zα

on [0, 1]. Although different in origin, all these methods can be interpreted as some rational
approximation of B−α. Thus, the unified approach presented and analysed in [14] provides
a solid basis for comparison and evaluation. In this sense, from a mathematical point of
view, the BURA methods should be the best, which is supported by various numerical tests.
An example of such a comparative study is available in [11].

The BURA method was originally introduced in [10]. After that, the method was
consecutively improved in several papers (for more details, see the survey in [11]). Here,
we will apply the variant proposed and analyzed in [13].

Let rα,k(z) be the BURA of zα in [0, 1] in the class of rational functions of degree
k belonging to the Walsh table. This means that rk(z) = Pk(z)/Qk(z), Pk and Qk are
polynomials of equal degree k. By definition, rα,k(z) is the minimizer rα,k(z) for which
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Eα,k := min
rk(z)∈R(k,k)

max
z∈[0,1]

|zα − rk(z)|.

The following asymptotically sharp exponential error estimate with respect to the
degree k holds true [15]:

Eα,k ≤ 4α+1 sin(απ) e−2π
√

αk. (12)

Following the notation entered, the BURA approximation of B−α is defined as

B−α ≈ λ−α
1,h,Brα,k(λ1,h,BB−1), (13)

where λ1,h,B is the smallest eigenvalue of the SPD matrix B.

Remark 1. The presented construction of BURA is purely algebraic, and thus the method is
applicable to arbitrary SPD matrices.

Following [12], we consider the preconditioner CBURA
α,k (B) of Bα defined by its inverse

via (14) in the form (
CBURA

α,k (B)
)−1

= λ−α
1,h,Brα,k(λ1,h,BB−1). (14)

Let κ(B) denote the condition number of B. The following lemma is then proved
in [12].

Lemma 3. Assume that the degree k is large enough so that Eα,k κα(B) < 1. Then, the following
condition number estimate for the BURA preconditioner CBURA

α,k (B), α ∈ (0, 1), holds true:

κ

((
CBURA

α,k (B)
)−1

Bα

)
≤

1 + Eα,k κα(B)
1− Eα,k κα(B) . (15)

Let λi,h be the eigenvalues of B and let ζi,h = λi,h/λ1,h ∈ [1, κ(B)], for all i = 1, 2, . . . , N.
In addition to (15), following the proof of Lemma 3, as presented in [12], we obtain the
following estimates of the maximal and minimal eigenvalues of (CBURA

α,k )−1Bα:

λmax

((
CBURA

α,k (B)
)−1

Bα

)
≤ 1 + Eα,k ζα

i,h(B) ≤ 1 + Eα,k κα(B), (16)

λmin

((
CBURA

α,k (B)
)−1

Bα

)
≥ 1− Eα,k ζα

i,h(B) ≥ 1− Eα,k κα(B). (17)

4. Condition Number Estimates of the BURA Based DD Preconditioner

The BURA based DD preconditioner CBURA
DD,k is defined as follows:

CBURA
DD,k =

(
AI
AγI σ1σ2CBURA

0.5,k (Lγ)

)(
II A−1

I AIγ

Iγ

)
(18)

where σ1 > 0 is the scaling parameter introduced in Section 2 and σ2 > 0 will be specified
later here.

Lemma 4. Let the assumption from Lemma 3 be valid. Then there exists positive constants c1 and
c̄2, which are independent of the mesh parameter h,

c1 < c1 < c2 < c̄2, (19)

such that

c1vT
γCBURA

0.5,k (Lγ)vγ ≤ vT
γSγvγ ≤ c̄2vT

γCBURA
0.5,k (Lγ)vγ ∀vγ ∈ Rnγ . (20)
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Proof. Let

c1 := c1

(
1− E0.5,k κ0.5(Lγ)

)
and c̄2 := c2

(
1 + E0.5,k κ0.5(Lγ)

)
. (21)

Thus (19) is satisfied, where the left-had inequality follows from the assumption from
Lemma 3. Combining (8) and (16), for every vγ ∈ Rnγ , we obtain

vT
γSγvγ ≤ c2vT

γL1/2
γ vγ ≤ c2

(
1 + E0.5,k κ0.5(Lγ)

)
vT

γCBURA
0.5,k (Lγ)vγ

:= c̄2vT
γCBURA

0.5,k (Lγ)vγ

and

vT
γSγvγ ≥ c1vT

γL1/2
γ vγ ≥ c1

(
1− E0.5,k κ0.5(Lγ)

)
vT

γCBURA
0.5,k (Lγ)vγ

:= c1vT
γCBURA

0.5,k (Lγ)vγ

which completes the proof.

Lemma 5. The following condition number estimate holds for the BURA based non-overlapping
DD preconditioner (18)

κ

((
CBURA

DD,k

)−1
A
)
≤

max{1,
c̄2

σ1σ2
}

min{1,
c1

σ1σ2
}

. (22)

Proof. The proof follows from (20), applying analogous arguments as in the proof of
Lemma 2.

The relative condition number of the BURA based DD preconditioner is controlled
by the product of the positive scaling parameters σ1 and σ2. It is also important that the
positive constants c1 and c̄2 are explicitly defined in (19). Lemma 5 provides an analysis of

how the estimate of κ

((
CBURA

DD,k

)−1
A
)

depends on the scaling parameters. The results are

summarized in Table 2.

Table 2. Dependence of the estimate of κ

((
CBURA

DD,k

)−1
A
)

on the product of scaling parameters σ1σ2.

Interval Condition Number Estimate

σ1σ2 < c1 < c̄2 κ

((
CBURA

DD,k

)−1
A
)
≤ c̄2

σ1σ2
>

c̄2
c1

c1 ≤ σ1σ2 ≤ c̄2 κ

((
CBURA

DD,k

)−1
A
)
≤ c̄2

c1

c1 < c̄2 < σ1σ2 κ

((
CBURA

DD,k

)−1
A
)
≤ σ1σ2

c1
>

c̄2
c1

Corollary 2. The recommended interval for the product of the scaling parameters σ1σ2 involved in
the the definition of the BURA based non-overlapping DD preconditioner CBURA

DD,k is

c1 ≤ σ1σ2 ≤ c̄2. (23)

In this case,

κ

((
CBURA

DD,k

)−1
A
)
≤ c̄2

c1
. (24)

The behaviour of the preconditioner CBURA
DD,k for large degree k is determined by the

following asymptotic properties, which follow from (12) and (23):
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lim
k→∞

c1 = c1, lim
k→∞

c̄2 = c2, lim
k→∞

σ2 = 1

and consequently

κ

((
CBURA

DD,k

)−1
A
)
≤ c2

c1
+ εk, where lim

k→∞
εk = 0. (25)

The error of the BURA has an exponential convergence rate with respect to the degree
k; see (12). However, the use of smaller k may also be of practical interest when the condition
EBURA

α,k (Lh) < 1 is not met. Such cases are numerically studied in [12], showing that for
coupled interface problems and α = 0.5, k ≥ 4 may be enough. This conclusion is also
supported by the results of the numerical experiments presented in Section 6.

5. Implementation Issues and Computational Complexity Estimate

An additive representation of the rational function r̃α,k(z) := rα,k(1/z) can be used for
implementation of the BURA method:

r̃α,k(z) = c̃0 +
k

∑
i=1

c̃i

z− d̃i

where c̃i > 0 and d̃i < 0 [13]. In this way, the inverse of BURA approximation (14) reads as

(
CBURA

α,k (B)
)−1

= λ−α
1,h

(
c̃0I+

k

∑
i=1

(λ1,h c̃i)(B− λ1,hd̃iI)−1

)
. (26)

Therefore, the implementation of the preconditioner CBURA
α,k (B) requires solving k

auxiliary linear systems with sparse SPD matrices, which are obtained by positive diagonal
perturbations of B.

The following assumptions will be used to analyze the computational complexity of
the introduced BURA based non-overlapping DD preconditioner:

(A1) A quasi uniform mesh with a mesh parameter h is used for FEM approximation of the
considered elliptic problem. Thus, the number of unknowns is n = O(h−2) and the
number of unknowns related to the interface γ is nγ = O(h−1) ≤ cA1

√
n.

(A2) Under the assumption A1, for the condition number of the stiffness matrix holds,
κ(A) = O(h−2). We will assume in particular that κ(Lγ) ≤ cA2n.

(A3) The stiffness matrix A has at most cA3 non=zero elements per row (column).
(A4) For systems with sparse SPD matrices that appear in the implementation of CBURA

DD ,
a solver with optimal computational complexity is applied. In particular, we will
assume that the cost of the solver is bounded from above by cA4 arithmetic operations
per unknown. Such commonly used solvers are based, for example, on multigrid or
multilevel preconditioners.

(A5) For the iterative solution of the system (4), the PCG method with preconditioner
CBURA

DD,k is used.

The computational complexity of one PCG iteration reads as

N it
C = NC−1 +NA + 10n + 2 (27)

where NC−1 is the cost of solving a system with the preconditioner C, and NA is the cost of
a matrix vector multiplication with the stiffness matrix A.

Thus, the next step is to estimate the computational complexity of solving a system
with the preconditioner CBURA

DD,k . Following (18), the complexity of one iteration can be
written in the form

N it
(CBURA

DD,k )−1 = N(CBURA
0.5,k (Lγ))−1 + 2NA−1

I
+NAIγ

+NAγI + 2n +NA + 10n + 2 (28)
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whereNA−1
I

andN(CBURA
0.5,k )−1 are the costs for solving systems with the blocks AI and CBURA

0.5,k ,

respectively, and NAIγ
and NAγI are the costs for matrix vector multiplications with AIγ

and AγI . Then, (26) is applied to the last before term in (28), thus obtaining

N(CBURA
0.5,k (Lγ))−1 =

k

∑
i=1
N

(Lγ−λ1,h d̃iIγ)−1 + (3k + 1)nγ + 2k (29)

whereN
(Lγ−λ1,h d̃iI)−1 is the cost of solving a system with the sparse SPD matrix Lγ− λ1,hd̃iI.

Combining (28) and (29) and using the assumptions (A1)–(A5), we get the estimate

N it
(CBURA

DD,k )−1 ≤ (cA4k + 3(k + 1))nγ + 2k + cA4n + cA3n + 2n + cA3n + 10n + 2

= 2(cA3 + cA4 + 6)n + (cA4k + 3k + 1)nγ + 2(k + 1)
≤ 2(cA3 + cA4 + 6)n + (cA4k + 3k + 1)cA1

√
n + 2(k + 1).

(30)

Lemma 6. Let k be the minimal integer such that

√
k ≥

ln
(
24
√

cA2n
)

√
2π

. (31)

Then the following estimate is valid for the relative condition number of the non-overlapping
DD preconditioner

κ
(
(CBURA

DD,k )−1A
)
≤ 2

c1

c2
. (32)

Proof. From assumption (A2) and (31), we get the inequality

√
k ≥

ln
(
24
√

κ(Lγ)
)

√
2π

,

which is equivalent to

e
√

2π
√

k ≥ 24
√

κ(Lγ).

The last inequality can be written in the form√
κ(Lγ)8e−2π

√
k/2 ≤ 1

3

and consequently

E0.5,k(κ(Lγ))
0.5 ≤ 1

3
. (33)

Combining the last estimate with the definitions (21) and the estimate (24) from
Corollary 2, we get

κ
(
CBURA

DD,k )−1A
)
≤

4
3

c1

2
3

c2

,

which completes the proof.

The presented analysis is summarized in the following theorem.

Theorem 1. Let the assumptions (A1)–(A5) be valid and let

k :=

⌈
ln
(
24
√

cA2n
)

√
2π

⌉
. (34)
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Then, for large scale problems (i.e., n is large enough) the PCG iterative solution of the
system (4) with the BURA based non-overlapping DD preconditioner (18) has optimal computa-
tional complexity.

Proof. From Lemma 6 and the setting (34), we obtain that the number of PCG iterations
with the preconditioner CBURA

DD,k that are needed to achieve the prescribed accuracy is
bounded by a constant that is independent of n. Thus, the proof of the theorem follows
directly from (30), given that, for sufficiently large n, the first term dominates in the estimate
of N it

CBURA
DD,k )−1 .

Remark 2. A larger degree of the BURA k can be used while maintaining the optimal computational
complexity of the BURA based non-overlapping DD preconditioner. In this way, the estimate (33)
can be improved to

E0.5,k(κ(Lγ))
0.5 ≤ 1

m
,

m > 3 is a given integer, which reduces the constant in (32) from 2 to (1 + 1/m)/(1− 1/m).

6. Numerical Tests

The presented numerical tests are aimed at an experimental study of the precondi-
tioner CBURA

DD,k , introduced and analyzed in the previous sections. The case of Laplacian is
considered, i.e., {aij}2

i,j=1 = diag(1, 1) in (1).

Example 1. The numerical results are for a test problem in Ω = (0, 1) × (0, 1), N = 4, and
Ω1 = (0, 0.5)× (0.5, 1), Ω2 = (0.5, 1) × (0.5, 1), Ω3 = (0, 0.5) × (0, 0.5), and
Ω4 = (0.5, 1)× (0, 0.5). The right-hand side is f (x, y) = sin(πx) sin(πy), corresponding to
the solution u(x, y) = sin(πx) sin(πy)/(2π2). All matrices are obtained by FEM discretization
of the boundary value problem. Linear finite elements are used. A uniform rectangular mesh with
a mesh parameter h is applied, in which each square cell is split into two triangles. The number
of PCG iterations with the non-overlapping DD preconditioner CBURA

DD,k are examined, where the
parameters k and σ1σ2 are varied.

We start with a uniform rectangular mesh with mesh parameter h = 1/16, ne = 512
triangle finite elements, and n = 255 unknowns. Then, `r = 7 consecutive uniform
refinement steps are applied, thus obtaining the finest mesh with h = 1/2048, ne =

8,388,608 elements, and n = 4,190,209 unknowns. The non-overlapping DD of Ω =
4⋃

i=1

Ωi,

the initial mash, and the first mesh refinement are shown in Figure 1.

Ω1 Ω2

Ω3 Ω4

γ

Ω1 Ω2

Ω3 Ω4

γ

Figure 1. Non-overlapping DD with four subdomains: Initial mesh with ne = 2× 16× 16 = 512 finite el-
ements (left); First step of uniform mesh refinement with ne = 2× 32× 32 = 2048 finite elements (right).
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The first step in our analysis concerns the behaviour of the condition number κ(Lγ),
as shown in Table 3. The condition numbers corresponding to the first four meshes are
computed. The results confirm the estimate κ(Lγ) = O(h−2). More precisely, we observe
that, for smaller h, κ(Lγ) is proportional to h−2. The last four condition numbers are
marked with ” ∗ ”, indicating that they were obtained using the estimate.

Table 3. Number of finite elements ne, number of unknowns n, number of unknowns corresponding
to the interface nγ, and condition number κ(Lγ): `r levels of uniform mesh refinements.

`r ne n nγ κ(Lγ)

7 8,388,608 4,190,209 4093 2,248,960 *
6 2,097,152 1,046,529 2045 562,240 *
5 524,288 261,121 1101 140,560 *
4 131,072 65 025 509 35,140 *
3 32,768 16,129 253 8785
2 8192 3696 125 2179
1 2048 961 61 537
0 512 255 29 130

As shown in Corollary 2, the condition number of the BURA based non-overlapping
DD preconditioner tends to the optimal value of c2/c1 when κ

(
[CBURA

0.5,k (Lγ)]−1L0.5
γ

)
tends

to 1. In addition to the theoretical estimates, we show in Table 4 the computed condition
numbers of BURA preconditioners (see for more details [12]), with respect to 3 ≤ k ≤ 9,
for δ = κ(Lγ) ∈ {105, 106, 107, 108}.

Table 4. Computed estimates of κ
(
[CBURA

0.5,k (Lγ)]−1L0.5
γ

)
, with respect to 3 ≤ k ≤ 9, for δ = κ(Lγ) ∈

{105, 106, 107, 108}.

k δ = 105 δ = 106 δ = 107 δ = 108

3 1.46 3.23 9.98 31.50
4 1.38 1.46 3.29 10.19
5 1.08 1.43 1.46 3.78
6 1.03 1.08 1.46 1.66
7 1.02 1.06 1.18 1.46
8 1.01 1.03 1.08 1.34
9 1.00 1.01 1.03 1.08

Combining the experimental data from Tables 3 and 4, we conclude that k > 9 should
be enough to ensure an optimal relative condition number of the CBURA

DD,k preconditioner.
The results reported in Table 5 illustrate the optimal convergence rate of the BURA

based non-overlapping DD method. The used degree of BURA is k = 12. In this set of
experiments, we have chosen the parameter σ1σ2 = 2. According to the theory, the number
of iterations is independent of h and therefore of n.

Table 5. Number of finite elements ne, number of unknowns n, and number of PCG iterations nit

with preconditioner CBURA
DD,12 : `r levels of uniform mesh refinements, σ1σ2 = 2, and stopping criteria

ε = 10−6.

`r ne n nit

7 8,388,608 4,190,209 9
6 2,097,152 1,046,529 8
5 524,288 261,121 8
4 131,072 65,025 8
3 32,768 16,129 7
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In Table 6, we examine the influence of the scaling parameter by changing σ1σ2 ∈
{1, 2, 3, 4, 5} and keeping the degree of the BURA k = 12. The presented results show a
stable behaviour of the number of PCG iterations. The minimal values for nit are obtained
for σ1σ2 = 2. This picture is in very good agreement with Lemma 5 and Consequence 2. It

is also worth noting that, for k = 12, the condition number κ

((
CBURA

DD,k

)−1
A
)

is very close

to 1 (see the numerical experiments in [12]), resulting in σ2 ≈ 1.

Table 6. Number of PCG iterations nit with preconditioner CBURA
DD,12 varying the scaling parameter

σ1σ2: `r levels of uniform mesh refinements and stopping criteria ε = 10−6.

`r
nit nit nit nit nit

σ1σ2 = 1 σ1σ2 = 2 σ1σ2 = 3 σ1σ2 = 4 σ1σ2 = 5

7 10 9 9 10 10
6 10 8 9 9 9
5 10 8 9 9 9
4 9 8 8 9 9
3 9 7 8 8 8

So far, the degree k = 12 has been chosen to ensure that E0.5,k(κ(Lγ))
0.5 is sufficiently

small. Table 7 presents a comparative analysis of the number of iterations when the degree
of BURA, k ∈ {4, 8, 12}, varies. We notice that k = 4 is applicable for smaller problems,
with up to n = 65, 025 unknowns, while in general k ∈ {8, 12} leads to an equal number of
iterations. It is also worth noting that larger n such values of the degree k have little effect
on the overall computational complexity.

Table 7. Number of PCG iterations nit with preconditioner CBURA
DD,k varying the degree k: `r levels of

uniform mesh refinements, σ1σ2 = 2, and stopping criteria ε = 10−6.

`r
nit nit nit

k = 4 k = 8 k = 12

7 27 8 9
6 19 8 8
5 14 9 8
4 9 8 8
3 8 7 7

7. Concluding Remarks

We analyzed the non-overlapping DD method in the general framework of problems
which involve coupling at interfaces that are manifolds of lower dimensions. This nat-
urally gives rise to interface conditions formulated in fractional Sobolev spaces. Thus,
the construction of the method is based on the spectral equivalence of the energy norm
associated with the related Steklov-Poincaré operator and the Sobolev norm of index 1/2.
The matrix formulation of the preconditioner uses the spectral equivalence of the Schur
complement and the discrete fractional Laplacian over the interface γ, denoted by Lγ. For a
long time, the direct application of this approach was avoided due to the lack of efficient
numerical methods for solving fractional diffusion problems in domains (interfaces) of
general geometry. The situation has changed significantly in recent years [11].

The proposed new non-overlapping DD preconditioner is based on BURA approx-
imation of L1/2

γ . A complete theoretical analysis of the method is provided, including,
in particular, a characterization of the introduced scaling parameters σ1 and σ2. Finally,
we have proved the overall optimality of the computational complexity. The presented
numerical results illustrate in detail the theoretical estimates, ending with some practical
tips for choosing the degree of rational approximation k and the parameter σ1σ2.
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Although presented in 2D formulation, the theory can easily be extended to the 3D
case. Note that the estimates of the condition number of CBURA

0.5,k (Lγ) are robust, with
respect to the spatial dimension and the geometry of γ. This argues that we can get optimal
preconditioning properties of the BURA based non-overlapping DD methods for a very
wide class of problems. This statement is supported by the numerical results published
in [1], where exact solution of the systems with fractional Laplacian over the interface γ
is used. Although this approach is computationally too expensive, the reported results
are indicative for what we can expect in terms of BURA-based DD behavior in cases of
general geometry of the interface and heterogeneous diffusion coefficients in 2D and 3D.
We also note that a coarse grid solver may be needed to stabilize the DD iterations for a
larger number of subdomains.

Possibilities for generalizing the presented results include: theoretical and exper-
imental analysis of the new method for three-dimensional problems; development of
robust domain decomposition preconditioners for the case of strongly heterogeneous and
anisotropic media; computational complexity analysis for the case of fractal geometry
interfaces. The application of the BURA-based non-overlapping domain decomposition
approach to couple non-linear problems is a separate challenging direction for obtaining
future results with great potential and practical significance.

One of the remarkable recent examples of effective application of domain decomposi-
tion approaches to elliptic PDEs is that of the Poisson-Boltzmann equations (see [16,17])
widely arising in the colloid science, protein electrostatics, implicit solvent models, and
plasma physics. Development of BURA based non-overlapping domain decomposition
preconditioners for the Poisson-Boltzmann elliptic boundary value problems gives another
good perspective for state-of-the-art real-world applications.
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Abbreviations

BPS Bramble-Pasciak-Schatz.
BURA best uniform rational approximation.
DD domain decomposition.
FEM finite element method.
FETI finite element tearing and interconnect.
FFT fast Fourier transform.
PCG preconditioned conjugate gradient.
SPD symmetric positive definite.
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