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Abstract: We proved the local Marchenko–Pastur law for sparse sample covariance matrices that
corresponded to rectangular observation matrices of order n×m with n/m→ y (where y > 0) and
sparse probability npn > logβ n (where β > 0). The bounds of the distance between the empirical
spectral distribution function of the sparse sample covariance matrices and the Marchenko–Pastur
law distribution function that was obtained in the complex domain z ∈ D with Im z > v0 > 0 (where
v0) were of order log4 n/n and the domain bounds did not depend on pn while npn > logβ n.
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1. Introduction

The random matrix theory (RMT) dates back to the work of Wishart in multivariate
statistics [1], which was devoted to the joint distribution of the entries of sample covariance
matrices. The next RMT milestone was the work of Wigner [2] in the middle of the last
century, in which the modelling of the Hamiltonian of excited heavy nuclei using a large
dimensional random matrix was proposed, thereby replacing the study of the energy levels
of nuclei with the study of the distribution of the eigenvalues of a random matrix. Wigner
studied the eigenvalues of random Hermitian matrices with centred, independent and
identically distributed elements (such matrices were later named Wigner matrices) and
proved that the density of the empirical spectral distribution function of the eigenvalues of
such matrices converges to the semicircle law as the matrix dimensions increase. Later, this
convergence was named Wigner’s semicircle law and Wigner’s results were generalised in
various aspects.

The breakthrough work of Marchenko and Pastur [3] gave impetus to new progress
in the study of sample covariance matrices. Under quite general conditions, they found
an explicit form of the limiting density of the expected empirical spectral distribution
function of sample covariance matrices. Later, this convergence was named the Marchenko–
Pastur law.

Sample covariance matrices are of great practical importance for the problems of
multivariate statistical analysis, particularly for the method of principal component analysis
(PCA). In recent years, many studies have appeared that have connected RMT with other
rapidly developing areas, such as the theory of wireless communication and deep learning.
For example, the spectral density of sample covariance matrices is used in calculations
that relate to multiple input multiple output (MIMO) channel capacity [4]. An important
object of study for neural networks is the loss surface. The geometry and critical points of
this surface can be predicted using the Hessian of the loss function. A number of works
that have been devoted to deep networks have suggested the application of various RMT
models for Hessian approximation, thereby allowing the use of RMT results to reach
specific conclusions about the nature of the critical points of the surface.

Another area of application for sample covariance matrices is graph theory. The ad-
jacency matrix of an undirected graph is asymmetric, so the study of its singular values
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leads to sample covariance matrices. An example of these graphs is the bipartite random
graph, the vertices of which can be divided into two groups in which the vertices are not
connected to each other.

If we assume that the probability pn of having graph edges tends to zero as the
number of vertices n increases to infinity, we arrive at the concept of sparse random
matrices. The behaviour of the eigenvalues and eigenvectors of a sparse random matrix
significantly depends on its sparsity and results that are obtained for non-sparse matrices
cannot be applied. Sparse sample covariance matrices have applications in random graph
models [5] and deep learning problems [6] as well.

Sparse Wigner matrices have been considered in a number of papers (see [7–10]), in which
many results have been obtained. With the symmetrisation of sample covariance matrices, it
is possible to apply these results when observation matrices are square. However, when the
sample size is greater than the observation dimensions, the spectral limit distribution has a
singularity at zero, which requires a different approach. The spectral limit distribution of
sparse sample covariance matrices with a sparsity of npn ∼ nε (where ε > 0 was arbitrary
small) was studied in [11,12]. In particular, a local law was proven under the assumption
that the matrix elements satisfied the moment conditions E |Xjk|q ≤ (Cq)cq. In this paper,
we considered a case with a sparsity of npn ∼ logα n for α > 1 and assumed that the matrix
element moments satisfied the conditions E |Xjk|4+δ ≤ C < ∞ and |Xjk| ≤ c1(npn)

1
2−κ for

κ > 0.

2. Main Results

We let m = m(n), where m ≥ n. We considered the independent and identically
distributed zero mean random variables Xjk, 1 ≤ j ≤ n and 1 ≤ k ≤ m with E Xjk = 0 and
E X2

jk = 1 and an independent set of the independent Bernoulli random variables ξ jk, 1 ≤
j ≤ n and 1 ≤ k ≤ m with E ξ jk = pn. In addition, we supposed that npn → ∞ as n→ ∞.
In what follows, we omitted the index n from pn when this would not cause confusion.

We considered a sequence of random matrices:

X =
1

√
mpn

(ξ jkXjk)1≤j≤n,1≤k≤m. (1)

Denoted by s1 ≥ · · · ≥ sn, the singular values of X and the symmetrised empirical spectral
distribution function (ESD) of the sample covariance matrix W = XX∗ were defined as:

Fn(x) =
1

2n

n

∑
j=1

(
I{sj ≤ x}+ I{−sj ≤ x}

)
,

where I{A} stands for the event A indicator.
We let y := y(n, m) = n

m and Gy(x) be the symmetrised Marchenko–Pastur distribu-
tion function with the density:

gy(x) =
1

2πy|x|

√
(x2 − a2)(b2 − x2) I{a2 ≤ x2 ≤ b2},

where a = 1 − √y and b = 1 +
√

y. We assumed that y ≤ y0 < 1 for n, m ≥ 1.
When the Stieltjes transformation of the distribution function Gy(x) was denoted by Sy(z)
and the Stieltjes transformation of the distribution function Fn(x) was denoted by sn(z),
we obtained:

Sy(z) =
−z + 1−y

z +
√
(z− 1−y

z )2 − 4y

2y
,

sn(z) =
1

2n

[ n

∑
j=1

1
sj − z

+
n

∑
j=1

1
−sj − z

]
=

1
n

n

∑
j=1

z
s2

j − z2
.
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We also put:

b(z) = z− 1− y
z

+ 2ySy(z) = −
1

Sy(z)
+ ySy(z). (2)

In this paper, we proved the so called local Marchenko–Pastur law for sparse covariance
matrices. We let:

Λn := Λn,y(z) = sn(z)− Sy(z).

For a constant δ > 0, we defined the value κ = κ(δ) := δ
2(4+δ)

. We assumed that
a sparse probability of pn and that the moments of the matrix elements Xij satisfied the
following conditions:

• Condition (C0): for c0 > 0 and n ≥ 1, we have npn ≥ c0 log
2
κ n;

• Condition (C1): for δ > 0, we have µ4+δ := E |X11|4+δ < ∞;
• Condition (C2): a constant c1 > 0 exists, such that for all 1 ≤ j ≤ n and 1 ≤ k ≤ m,

we have |Xjk| ≤ c1(npn)
1
2−κ .

We introduced the quantity v0 = v0(a0) := a0n−1 log4 n with a positive constant a0.
We then introduced the region:

D(a0) := {z = u + iv : (1−√y− v)+ ≤ |u| ≤ 1 +
√

y + v, V ≥ v ≥ v0}.

For constants u0 > 0 and V, we defined the region:

D̃(a0, a1) = {z = u + iv : |u| ≤ u0, V ≥ v ≥ v0, |b(z)| ≥ a1Γn}.

Next, we introduced some notations. We let:

Γn = 2C0 log n
( 1

nv
+ min

{ 1
np|b(z)| ,

1
√

np

})
.

We introduced the quantity:

d(z) =
Im b(z)
|b(z)|

and put:

dn(z) :=
1

nv

(
d(z) +

log n
nv|b(z)|

)
+

1
np|b(z)| . (3)

We stated the improved bounds for Λn(z) and put:

Tn :=I{|b(z)| ≥ Γn}
(

dn(z) + d
3
4
n (z)

1

(nv)
1
4
+ d

1
2
n (z)

1

(nv)
1
2

)

+ I{|b(z)| ≤ Γn}

(Γn

nv

) 1
2
+ Γ

1
2
n

 Γ
1
2
n√
nv

+
1
√

np

.

Theorem 1. Assuming that the conditions (C0)–(C2) are satisfied. Then, for any Q ≥ 1 the posi-
tive constants C = C(Q, δ, µ4+δ, c0, c1), K = K(Q, δ, µ4+δ, c0, c1) and a0 = a0(Q, δ, µ4+δ, c0, c1)
exist, such that for z ∈ D(a0):

Pr
{
|Λn| ≥ KTn

}
≤ Cn−Q.

We also proved the following result.
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Theorem 2. Under the conditions of Theorem 1 and for Q ≥ 1, the positive constants C =
C(Q, δ, µ4+δ, c0, c1), K = K(Q, δ, µ4+δ, c0, c1), a0 = a0(Q, δ, µ4+δ, c0, c1) and a1 = a1(Q, δ, µ4+δ,
c0, c1) exist, such that for z ∈ D̃(a0, a1):

Pr
{
| Im Λn| ≥ KTn

}
≤ Cn−Q.

2.1. Organisation

The paper is organised as follows. In Section 3, we state Theorems 3–5 and several
corollaries. In Section 4, the delocalisation is considered. In Section 4, we prove the
corollaries that were stated in Section 3. Section 6 is devoted to the proof of Theorems 3–5.
In Section 7, we state and prove some auxiliary results.

2.2. Notation

We use C for large universal constants, which may be different from line to line.
Sy(z) and sn(z) denote the Stieltjes transformations of the symmetrised Marchenko–Pastur
distribution and the spectral distribution function, respectively. R(z) denotes the resolvent
matrix. We let T = {1, . . . , n}, J ⊂ T, T(1) = {1, . . . , m} and K ⊂ T(1). We consider the
σ-algebras M(J,K), which were generated by the elements of X (with the exception of the
rows from J and the columns from K). We write M

(J,K)
j instead of M(J∪{j},K) and M

(J,K)
l+n

instead of M(J,K∪{l}) for brevity. The symbol X(J,K) denotes the matrix X, from which the
rows with numbers in J and columns with numbers in K were deleted. In a similar way, we
denote all objects in terms of X(J,K), such that the resolvent matrix is R(J,K), the ESD Stieltjes
transformation is s(J,K)

n , Λ(J,K)
n , etc. The symbol Ej denotes the conditional expectation with

respect to the σ-algebra Mj and El+n denotes the conditional expectation with respect to
σ-algebra Ml+n. We let Jc = T \ J and Kc = T(1) \K.

3. Main Equation and Its Error Term Estimation

Note that Fn(x) is the ESD of the block matrix:

V =

[
On X
X∗ Om

]
,

where Ok is a k× k matrix with zero elements.
We let R = R(z) be the resolvent matrix of V:

R = (V− zI)−1.

By applying the Schur complement, we obtained:

R =

[
z(XX∗ − z2I)−1 (XX∗ − z2I)−1X

X∗(XX∗ − z2I)−1 z(X∗X− z2I)−1

]
.

This implied:

sn(z) =
1
n

n

∑
j=1

Rjj =
1
n

m

∑
l=1

Rl+n,l+n +
m− n

nz
.

For the diagonal elements of R, we could write:

R(J,K)
jj = Sy(z)

(
1− ε

(J,K)
j R(J,K)

jj + yΛ(J,K)
n R(J,K)

jj
)
, (4)

for j ∈ Jc and:

R(J,K)
l+n,l+n = − 1

z + ySy(z)
(
1− ε

(J,K)
l+n R(J,K)

l+n,l+n + yΛ(J,K)
n R(J,K)

l+n,l+n
)
, (5)
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for l ∈ Kc. The correction terms ε
(J,K)
j for j ∈ Jc and ε

(J,K)
l+n for l ∈ Kc were defined as:

ε
(J,K)
j = ε

(J,K)
j1 + · · ·+ ε

(J,K)
j3 ,

ε
(J,K)
j1 =

1
m

m

∑
l=1

R(J,K)
l+n,l+n −

1
m

m

∑
l=1

R(J∪{j},K)
l+n,l+n ,

ε
(J,K)
j2 =

1
mp

m

∑
l=1

(X2
jlξ jl − p)R(J∪{j},K)

l+n,l+n ,

ε
(J,K)
j3 =

1
mp ∑

1≤l 6=k≤m
Xjl Xjkξ jlξ jkR(J∪{j},K)

l+n,k+n ;

and

ε
(J,K)
l+n = ε

(J,K)
l+n,1 + · · ·+ ε

(J,K)
l+n,3,

ε
(J,K)
l+n,1 =

1
m

n

∑
j=1

R(J,K)
jj − 1

m

n

∑
j=1

R(J,K∪{l+n})
jj ,

ε
(J,K)
l+n,2 =

1
mp

n

∑
j=1

(X2
jlξ jl − p)R(J,K∪{l+n})

jj ,

ε
(J,K)
l+n,3 =

1
mp ∑

1≤j 6=k≤n
Xjl Xklξ jlξkl R

(J,K∪{l+n})
jk .

By summing Equation (4) (J = ∅ and K = ∅), we obtained the self-consistent
equation:

sn(z) = Sy(z)(1 + Tn − yΛnsn(z)),

with the error term:

Tn =
1
n

n

∑
j=1

ε jRjj.

We let s0 > 1 be positive constant V, depending on δ. The exact values of these
constants were defined as below. For 0 < v ≤ V, we defined kv as:

kv = kv(V) := min{l ≥ 0 : sl
0v ≥ V}.

Remembering that:
Λn = Λn(z) := sn(z)− Sy(z),

and:
Γn = 2C0 log n

( 1
nv

+ min
{ 1

np|b(z)| ,
1
√

np

})
.

We defined:

an(z) = an(u, v) =

{
Im b(z) + Γn, if |b(z)| ≥ Γn,
Γn, if |b(z)| ≤ Γn.

The function b(z) was defined in (2). For a given γ > 0, we considered the event:

Qγ(v) :=
{
|Λn(u + iv)| ≤ γan(u, v), for all u

}
and the event:

Q̂γ(v) =
kv⋂

l=0

Qγ(sl
0v).

For any γ value, the constant V = V(γ) existed, such that:

Pr{Q̂γ(V)} = 1. (6)
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It could be V =
√

2/γ, for example. In what follows, we assumed that γ and V were
chosen so that (6) was satisfied and we wrote:

Q := Q̂γ.

We defined:

βn(z) :=
an(z)

nv
+
|A0(z)|2

np
,

where
A0(z) = ySy(z)−

1− y
z

.

In this section, we demonstrate the following results.

Theorem 3. Under the condition (C0), the positive constants C = C(δ, µ4+δ, c0), a0 = a0(δ, µ4+δ, c0)
and a1 = a1(δ, µ4+δ, c0) exist, such that for z = u + iv ∈ D̃:

E |Tn|qI{Q} ≤ C
(

F1 + · · ·+ F6

)
,

where

F1 =
aq

n(z)
nqvq , F2 = |Sy(z)|2qβ

q
n(z)I{|b(z)| ≥ Γn}+ |Sy(z)|2q β

q
2
n (z)Γ

q
2
n ,

F3 = |Sy(z)|2qβ
q
2
n (z)Γ

q
n(I{|b(z)| ≤ Γn}I{z /∈ D})

+
[ |Sy(z)|3q β

q
2
n (z)a

q
2
n (z)

(nv)q

(
|Sy(z)|q|A0(z)|

q
2 β

q
2
n (z) +

|A0(z)|
q
2

(np)
q
2

+
1

(nv)
q
2

)]
,

F4 =
|Sy(z)|2qβ

q
2
n (z)

a
q
2
n (z)(nv)q

(
|Sy(z)|q|A0(z)|

q
2 β

q
2
n (z) +

|A0(z)|
q
2

(np)
q
2

+
1

(nv)
q
2

)
,

F5 = q
q
2 |Sy(z)|

3q
2 β

q
2
n (z)|A0(z)|

q
4

a
q
4
n (z)

(nv)
q
2
(an(z) + |b(z)|)

q
2

+ Cqq
q
2

(
an(z)|Sy(z)|

nv

) q
4 (
|Sy(z)|2βn(z)

) q
4
(an(z) + |b(z)|)

q
2
|Sy(z)|

q
4

(np)
q
4

1

(nv)
q
4

+ Cqqq

(
|Sy(z)|2an(z)

nv

) q
4 (
|Sy(z)|2βn(z)

) q
4
(an(z) + |b(z)|)

q
2

1

(nv)
q
2

,

F6 = Cqq2(q−1)(an(z) + |b(z)|)q−1|Sy(z)|β
1
2
n (z)

[(
qq−1 |Sy(z)|an(z)

nv

)q−1 1
(np)2κ(q−1)

+ qq
( |Sy(z)|an(z)

nv

)q−1

|Sy(z)|q−1β
q−1

2
n (z)

+ q
3(q−1)

2

(
|Sy(z)|2an(z)

nv

) q−1
2 ( 1

nv

)q−1

+
q2(q−1)

(np)2(q−1)κ(nv)q−1

+ q2(q−1) |Sy(z)|
q−1

2

(nv)q−1

(
an(z)|Sy(z)|

(nv)

) q−1
2

+ q
5(q−1)

2
1

nq−1vq−1

( |Sy(z)|an(z)
nv

) q−1
2

+
q3(q−1)

(np)2(q−1)κ(nv)q−1

]
.

Remark 1. Theorem 3 was auxiliary. Tn was the perturbation of the main equation in the Stieltjes
transformation of the limit distribution. The size of Tn was responsible for the stability of the
solution of the perturbed equation. We were interested in the estimates of Tn that were uniform
in the domain D and had an order of log n/(nv) (such estimates were needed for the proof of the
delocalisation of Theorem 6). It was important to know to what extent the estimates depended on
both npn and nv. The estimates behaved differently on the beam and at the ends of the support of the
limit distribution (the introduced functions an(z) and b(z) were responsible for the behaviour of the
estimates, depending on the real part of the argument: on the beam or at the ends of the support of
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the limit distribution). For Λn estimation, there were two regimes: for |b(z)| ≥ Γn, we used the
inequality (10) and for |b(z)| ≤ Γn, we used the inequality (18).

Corollary 1. Under conditions of Theorem 3, the following inequalities hold:

I{|b(z)| ≥ Γn}E |Tn|qI{Q} ≤ Cq|b(z)|q
[( q2

(np)2κ

)q−1
d

2q−1
2

n (z)

+ d
3q
4

n (z)
( q2

nv

) q
4
+ d

q
2
n (z)

( q2

nv

) q
2
+ qq−1d

3q−2
2

n (z)

+ q2(q−1)dq
n(z)

1
(nv)q−1 + q3(q−1)d

1
2
n (z)

1
(nv)q−1(np)2κ(q−1)

]
(7)

and

I{Γn ≥ |b(z)|}E |Tn|qI{Q} ≤ Cq
(

Γn

nv
+

1
np

) q
2
Γ

q
2
n . (8)

Corollary 2. Under the conditions of Theorem 3 and in the domain:

D = {z = u + iv : 1−√y− v ≤ |u| ≤ 1 +
√

y + v, V ≥ v ≥ v0},

for any Q > 1, a constant C exists that depends on Q, such that:

Pr
{
|Λn| >

1
2

Γn;Q
}
≤ Cn−Q.

Moreover, for z = u + iv to satisfy v ≥ v0 and |z| ≥ C max{
√

log n√
np , log4 n

(np)2κ } and for Q > 1,
a constant C exists that depends on Q, such that:

Pr
{
| Im Λn| >

1
2

Γn;Q
}
≤ Cn−Q.

Corollary 3. Under the conditions of Theorem 3, for Q ≥ 1, a constant C that depends on Q exists,
such that:

Pr{Q} ≥ 1− Cn−Q.

Theorem 4. Under the conditions of Theorem 1, for Q ≥ 1, the positive constants C = C(Q, δ, µ4+δ,
c0, c1) and a0 = a0(Q, δ, µ4+δ, c0, c1) exists, such that for z = u + iv ∈ D(a0):

Pr{ |Λn| ≥
1
2

Γn} ≤ Cn−Q.

Moreover, for Q ≥ 1, the positive constants C = C(Q, δ, µ4+δ, c0, c1), C0 = C0(Q, δ, µ4+δ, c0, c1)
and a0 = a0(Q, δ, µ4+δ, c0, c1) exist, such that for z = u + iv satisfying v ≥ v0 and |z| ≥ Γn:

Pr
{
| Im Λn| >

1
2

Γn

}
≤ Cn−Q, (9)

where
Γn = C0 log n

( 1
nv

+ min
{ 1

np|b(z)| ,
1
√

np

})
.

To prove the main result, we needed to estimate the entries of the resolvent matrix.

Theorem 5. Under the condition (C0) and for 0 < γ < γ0 and u0 > 0, the constants H =
H(δ, µ4+δ, c0, γ, u0), C = C(δ, µ4+δ, c0, γ, u0), c = c(δ, µ4+δ, c0, γ, u0), a0 = a0(δ, µ4+δ, c0, γ,
u0) and a1 = a1(δ, µ4+δ, c0, γ, u0) exist, such that for 1 ≤ j ≤ n, 1 ≤ k ≤ m and z = u+ iv ∈ D̃,
we have:

Pr{|Rjk| > H|Sy(z)|; Q̂γ(v)} ≤ Cn−c log n,
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Pr{max{|Rj,k+n|, |Rj+n,k|} > H|Sy(z)|; Q̂γ(v)} ≤ Cn−c log n,

Pr{|Rj+n,k+n| > H|A0(z)|; Q̂γ(v)} ≤ Cn−c log n,

where
A0(z) = ySy(z)−

1− y
z

.

Corollary 4. Under the conditions of Theorem 5, for v ≥ v0 and q ≤ c log n, a constant H exists,
such that for j, k ∈ T∪ (T(1) + n):

E |Rjk|q I{Q̂γ} ≤ Hq|Sy(z)|q.

4. Delocalisation

In this section, we demonstrate some applications of the main result. We let L =
(Ljk)

n
j,k=1 and K = (Kjk)

m
j,k=1 be orthogonal matrices from the SVD of matrix X s.t.:

X = LD̃K∗,

where D̃ =
[
Dn On,m

]
and D = diag{s1, . . . , sn}. Here and in what follows, Ok,n denotes

a k× n matrix with zero entries. The eigenvalues of matrix V are denoted by λj (λj = sj
for j = 1, . . . , n, λj = −sj for j = n + 1, . . . , 2n and λj = 0 for j = 2n + 1, . . . , n + m). We
let uj = (uj,1, . . . , uj,n+m) be the eigenvector of matrix V, corresponding to eigenvalue λj,
where j = 1, . . . , n + m.

We proved the following result.

Theorem 6. Under the conditions (C0)–(C2), for Q ≥ 1, the positive constants
C1 = C1(Q, δ, µ4+δ, c0, c1) and C2 = C2(Q, δ, µ4+δ, c0, c1) exist, such that:

Pr
{

max
1≤j,k≤n

|Ljk|2 ≤ C1
log4 n

n

}
≤ C2n−Q.

Moreover, for j = 1, . . . n, we have:

Pr
{

max
1≤j≤n,1≤k≤m

|Kjk|2 ≤ C1
log4 n

n

}
≤ C2n−Q.

Proof. First, we noted that according to [13] based on [14] and Theorem 1, c̃1, c̃2, C > 0
exists, such that:

Pr{c̃1 ≤ sn ≤ s1 ≤ c̃2} ≥ 1− Cn−Q.

Furthermore, by Lemma 11, we obtained:

Rjj =
n

∑
k=1
|Ljk|2

( 1
sk − z

− 1
sk + z

)
=
∫ ∞

−∞

1
x− z

dFnj(x),

where

Fnj(x) =
1
2

n

∑
j=1
|Ljk|2(I{sk ≤ x}+ I{sk > −x}).

We noted that:

max
1≤j≤n

|Ljk|2 ≤ 2 sup
u:|u|≥c̃1/2

(Fnj(u + λ)− Fnj(u)),
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and

Fnj(x + λ)− Fnj(x) =
∫ x+λ

x
dFnj(u)

≤ 2λ
∫ λ

0

λ

(x + λ− u)2 + λ2 dFnj(u) ≤ 2λ Im Rjj(x + λ + iλ).

These implied that:

sup
x:|x|≥ c̃1

2

|Fnj(x + λ)− Fnj(x)| ≤ 2λ sup
|x|> c̃1

4

Im Rjj(x + iλ).

We chose λ ∼ n−1 log4 n. Then, by Corollary 4, we obtained:

Pr
{

sup
x:|x|> c̃1

2

|Fnj(x + λ)− Fnj(x)| ≤ C log4 n
n

}
≥ 1− Cn−Q.

We obtained the bounds for Kjk in a similar way. Thus, the theorem was proven.

5. Proof of the Corollaries
5.1. The Proof of Corollary 4

Proof. We could write:

E |Rjk|q I{Q} ≤ E |Rjk|q I{Q} I{A(v)}+E |Rjk|q I{Q} I{Ac(v)}.

Combining this inequality with |Rjk| ≤ v−1, we found that:

E |Rjk|q I{Q} ≤ Cq + v−q
0 E{ I{Q} I{Ac(v)}.

By applying Theorem 5, we obtained what was required.
Thus, the corollary was proven.

5.2. The Proof of Corollary 2

Proof. We considered the domain D. We noted that for z ∈ D, we obtained:

|z|2 ≥ (1−√y− v)2 + v2 ≥ 1
2
(1−√y)2 and |A0(z)| ≤ C,

and
|b(z)| ≤ 1− y

α
+ 2
√

y + B.

First, we considered the case |b(z)| ≥ Γn. This inequality implied that:

|b(z)| ≥
√

2C0 log n
√

np
≥ 1
√

np
.

From there, it followed that:

min
{ 1

np|b(z)| ,
1
√

np

}
=

1
np|b(z)| .

Furthermore, for the case |b(z)| ≥ Γn, we obtained |bn(z)|I{Q} ≥ (1− γ)|b(z)|I{Q}.
We used the inequality:

|Λn|I{Q} ≤
C|Tn|
|b(z)| . (10)
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By Chebyshev’s inequality, we obtained:

Pr{|Λn| ≥
1
2

Γn;Q} ≤ 2q E |Tn|qI{Q}
Γq

n|b(z)|q
.

By applying Corollary 1, we obtained:

Pr{|Λn| ≥
1
2

Γn;Q} ≤ 2qHq
n

Γq
n

,

where

Hq
n : = Cq

[( q
1
2

(np)2κ

)q−1
d

2q−1
2

n (z) + d
3q
4

n (z)
( q2

nv

) q
4
+ d

q
2
n (z)

( q
nv

) q
2

+ qq−1d
3q−2

2
n (z) + q2(q−1)dq

n(z)
1

(nv)q−1 + q3(q−1)d
1
2
n (z)

1
(nv)q−1(np)2κ(q−1

]
. (11)

First, we noted that for q = K log n:

dn(z)
Γn

≤ C
log n

. (12)

Moreover, for q = C log n:
q2

nvΓn
≤ C log n. (13)

From there, it followed that:

Cqd
3q
4

n (z)
(

q2

nv

) q
4

≤ (
C

log n
)

q
2 . (14)

Furthermore:

Cq
(

dn(z)
Γn

) q
2
(

q
nvΓn

) q
2
≤
(

C
log n

) q
2
. (15)

Using these estimations, we could show that:

2qHq
n

Γq
n
≤
(

C
log n

) q
2

(16)

By choosing q = K log n and K > C(Q), we obtained:

Pr{|Λn| ≥
1
2

Γn;Q} ≤ Cn−Q.

Then, we considered the case |b(z)| ≤ Γn. In this case:

Γ
1
2
n (

Γn

nv
+

1
np

)
1
2 /Γn ≤ (

1
nv

+
1

npΓn
)

1
2 ≤ C

log n
. (17)

By applying the inequality |Λn(z)| ≤ C
√
|Tn| and Corollary 1, we obtained:

Pr{|Λn| ≥
1
2

Γn;Q} ≤
2q( Γn

nv + 1
np )

q
2

Γ
q
2
n

≤ Cq(
1

nv
+

1
npΓn

)
q
2 .
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It was then simple to show that:

Pr{|Λn| ≥
1
2

Γn;Q} ≤ Cn−Q.

Thus, the first inequality was proven. The proof of the second inequality was similar
to the proof of the first. We had to use the inequality:

| Im Λn| ≤ C
√
|Tn|, (18)

which was valid on the real line, instead of |Λn| ≤ C
√
|Tn|, which held in the domain D̂.

Moreover, we noted that for any z value, we obtained:

|Sy(z)||A0(z)| ≤ C.

Thus, the corollary was proven.

5.3. Proof of Corollary 3

Proof. According to Theorem 4:

Pr{|Λn(z)| ≤
1
2

Γn(z);Q} ≥ 1− Cn−Q.

We noted that for v = V:
Pr{Q(z)} = 1.

Furthermore: ∣∣∣dΛ(z)
dz

∣∣∣ ≤ 2
v2 .

We split the interval [v0, V] into subintervals by v0 < v1 < · · · < vM = V, such that
for k = 1, . . . , M:

|Λn(u + ivk)−Λn(u + ivk−1)| ≤
1
2

Γn(z).

We noted that the event Qk = {|Λn(u + ivk)| ≤ 1
2 Γn(u + ivk)} implied the event

Q̃k+1 = {|Λn(u + ivk)| ≤ Γn}. From there, for vk ≤ v ≤ vk+1, k = 0, . . . , M − 1, we
obtained:

Pr{Q(u + iv)} ≥ 1− Pr{Q(u + ivk−1)} − Pr{Qk−1
c;Q(u + ivk−1)} ≥ 1− Cn−Q.

6. Proof of the Theorems
6.1. Proof of Theorem 1

Proof. We obtained:

Pr{|Λn(z)| ≥ Tn} ≤ Pr{|Λn(z)| ≥ Tn;Q}+ Pr{Qc}.

The second term in the RHS of the last inequality was bounded by Corollary 3. For z
(such that |b(z)| ≥ CΓn(z)), we used the inequality:

|Λn(z)| ≤
|Tn|
|bn(z)|

,

the inequality:
|bn(z)| ≥ (1− γ)|b(z)|
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and the Markov inequality. We could write:

Pr{|Λn(z)| ≥ Tn} ≤
E{|TN |q;Q}
|Tn|q|b(z)|q

+ Cn−c log log n.

We recalled that in the case |b(z)| ≥ Γn:

Tn := K
(
d̂n(z) + d̂

3
4
n (z)

1

(nv)
1
4
+ d̂

1
2
n (z)

1

(nv)
1
2

)
.

In the case |b(z)| ≥ Γn and using Corollary 1, we obtained:

Pr{|Λn(z)| ≥ KTn} ≤
(
Hn

KTn

)q
+ Cn−c log log n.

First, we considered the case |b(z)| ≥ Γn. By our definition of rn(z), we obtained:

Pr{|Λn(z)| ≥ Tn} ≤
(

C
1

K log
1
2 n

)q

+ Cn−c log log n. (19)

This inequality completed the proof for |b(z)| ≥ Γn.
We then considered |b(z)| ≤ Γn. We used inequality |Λn(z)| ≤

√
|Tn| and Corollary 1

to obtain:

Pr{|Λn(z)| ≥ Tn} ≤
(

C
K

)q
. (20)

By choosing a sufficiently large K value, we obtained the proof. Thus, the theorem
was proven.

6.2. Proof of Theorem 2

Proof. The proof of Theorem 2 was similar to the proof of Theorem 1. We only noted that
inequality:

| Im Λn(u + iv)| ≤
√
|Tn|

held for all u ∈ R.

6.3. The Proof of Theorem 5

Proof. Using the definition of the Stieltjes transformation, we obtained:

sn(z) =
1

2n

( n

∑
j=1

1
sj − z

+
n

∑
j=1

1
−sj − z

)
=

1
n

n

∑
j=1

z
s2

j − z2
,

and

Sy(z) =
−(z2 − ab) +

√
(z2 − a2)(z2 − b2)

2yz
.

It is also well known that for z = u + iv:

|Sy(z)| ≤
1
√

y

and
A0(z) := − 1

ySy(z) + z
=
(

ySy(z)−
1− y

z

)
.
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We considered the following event for 1 ≤ j ≤ n, 1 ≤ k ≤ m and C > 0:

Ajk(v, J,K; C) = {|R(J,K)
jk (u + iv)| ≤ C}.

We set:

A(1)(v, J,K) = ∩n
j=1 ∩m

k=1Aj,k(v, J,K; C|Sy(z)|),

A(2)(v, J,K) = ∩m
j=1 ∩n

k=1Aj+n,k(v, J,K; C|Sy(z)|),

A(3)(v, J,K) = ∩n
j=1 ∩m

k=1Aj,k+n(v, J,K; C|Sy(z)|),

A(4)(v, J,K) = ∩m
j=1 ∩m

k=1Aj+n,k+n(v, J,K; C|A0(z)|).

For j ∈ Jc, k ∈ Kc and u, we obtained:

|R(J,K)
jk (z)| ≤ 1

v
.

We recalled:

a := an(u, v) =

{
Im b(z) + Γn, if |b(z)| ≥ Γn,
Γn, if |b(z)| ≤ Γn.

Then:
Γn = Γn(z) = 2C0 log n(

1
nv

+ min{ 1
np|b(z)| ,

1
√

np
}).

We introduced the events:

Q̂(J,K)
γ (v) :=

kv⋂
l=0

{
|Λ(J,K)

n (u + isl
0v)| ≤ γan(u, sl

0v) +
|J|+K|

nsl
0v

}
.

It was easy to see that:
Q̂γ(v) ⊂ Q̂(J,K)

γ (v).

In what follows, we used Q := Q̂γ(v).
Equations (4) and (5) and Lemma 10 yielded that for γ ≤ γ0 and for J,K that satisfied

(|J|+ |K|)/nv ≤ 1/4, the following inequalities held:

|R(J,K)
jj | I{Q} ≤ 2|Sy(z)||ε(J,K)

j ||R(J,K)
jj | I{Q}+ 2|Sy(z)| (21)

and |A0(z)|(|J|+ |K|)/nv ≤ 1/4,

|R(J,K)
l+n,l+n| I{Q} ≤ 2|A0(Z)||ε(J,K)

l+n ||R
(J,K)
l+n,l+n| I{Q}+ 2|A0(z)|. (22)

We noted that for |z| ≥ C1 log n
nv and |J| ≤ C2 log n under appropriate C1 and C2, we

obtained A0(z)(|J|+ |K|)/nv ≤ 1/4.
We considered the off-diagonal elements of the resolvent matrix. It could be shown

that for j 6= k ∈ Jc:

R(J,K)
jk = R(J,K)

jj

(
− 1
√

mp

m

∑
l=1

Xjlξ jl R
(J∪{j},K)
l+n,k

)
= R(J,K)

jj ζ
(J,K)
jk , (23)
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for l 6= k ∈ Kc:

R(J,K)
l+n,k+n = R(J,K)

l+n,l+n

(
− 1
√

mp

n

∑
r=1

Xrlξrl R
(J,K∪{l+n})
k+n,r

)
= R(J,K)

l+n,l+nζ
(J,K)
l+n,k+n, (24)

and

R(J,K)
j,k+n = R(J,K)

jj

(
− 1
√

mp

m

∑
r=1

Xjrξ jrR(J∪{j},K)
r+n,l+n

)
= R(J,K)

jj ζ
(J,K)
j,k+n,

R(J,K)
k+n,j = R(J,K)

jj

(
− 1
√

mp

m

∑
r=1

Xjrξ jrR(J∪{j},K)
r+n,k+n

)
= R(J,K)

j,j ζ
(J,K)
k+n,j, (25)

where

ζ
(J,K)
jk = − 1

√
mp

m

∑
l=1

Xjlξ jl R
(J∪{j},K)
l+n,k , ζ

(J,K)
j+n,k+n = − 1

√
mp

n

∑
r=1

XrjξrjR
(J,K∪{j+n})
r,k+n ,

ζ
(J,K)
j+n,k = −

1
√

mp

m

∑
l=1

Xklξkl R
(J∪{k},K)
l+n,j+n , ζ

(J,K)
j,k+n = − 1

√
mp

n

∑
l=1

XlkξlkR(J∪{j},K)
l+n,k+n . (26)

Inequalities (21) and (22) implied that:

Pr{|Rjj|I{Q} > C|Sy(z)|} ≤ Pr
{
|ε j|I{Q} >

1
4

}
(27)

for 1 ≤ j ≤ n and C > 4√
y and that:

Pr{|Rl+n,l+n|I{Q} > C|A0(z)|} ≤ Pr
{
|ε l+n|I{Q} >

1
4|A0(z)|

}
(28)

for 1 ≤ l ≤ m and C > 2. Equations (23)–(25) produced:

Pr{|Rjk|I{Q} > C|Sy(z)|} ≤ Pr{|Rjj|I{Q} > C|Sy(z)|}+ Pr{|ζ jk|I{Q} > 1}

for 1 ≤ j 6= k ≤ n and:

Pr{|Rl+n,k+n|I{Q} > C|A0(z)|} ≤ Pr{|Rl+n,l+n|I{Q} > C|A0(z)|}
+ Pr{|ζl+n,k+n|I{Q} > 1}

for 1 ≤ l 6= k ≤ m. Similarly, we obtained:

Pr{|Rl,k+n|I{Q} > C|Sy(z)|} ≤ Pr{|Rl,l |I{Q} > C|Sy(z)|}+ Pr{|ζl,k+n|I{Q} > 1}

and

Pr{|Rl+n,k|I{Q} > C|Sy(z)|} ≤ Pr{|Rk,k|I{Q} > C|Sy(z)|}+ Pr{|ζl+n,k|I{Q} > 1}.

We noted that for |z| ≤ B, we obtained:

1
|A0(z)|

≤ B +
√

y.

Using Rosenthal’s inequality, we found that:

Ej |ζ jk|q ≤ Cq
(

q
q
2 (nv)−

q
2 (Im R(j)

kk )
q
2 + qq(np)−qκ−1 1

n

m

∑
l=1
|R(j)

k,l+n|
q
)
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for 1 ≤ j 6= k ≤ n and that:

Ej+n |ζ j+n,k+n|q ≤ Cq
(

q
q
2 (nv)−

q
2 (Im R(j+n)

k+n,k+n)
q
2

+ qq(np)−qκ−1 1
n

n

∑
r=1
|R(j+n)

k+n,r |
q
)

,

Ej |ζ j,k+n|q ≤ Cq
(

q
q
2 (nv)−

q
2 (Im R(j+n)

k+n,k+n)
q
2

+ qq(np)−qκ−1 1
n

n

∑
r=1
|R(j+n)

k+n,r+n|
q
)

,

Ej+n |ζ j+n,k|q ≤ Cq
(

q
q
2 (nv)−

q
2 (Im R(j+n)

k+n,k+n)
q
2

+ qq(np)−qκ−1 1
n

n

∑
r=1
|R(j+n)

k+n,r+n|
q
)

for 1 ≤ j 6= k ≤ m. We noted that:

Pr{|ε(J,K)
j | > 1

4
;Q} ≤ Pr{A(4)(sv, J,K)

c
;Q}+ Pr{|ε(J,K)

j | > 1
4

;A(4)(sv, J,K);Q},

Pr{|ε(J,K)
j+n | >

1
4|A0(z)|

;Q} ≤ Pr{A(1)(sv, J,K)
c
;Q}

+ Pr{|ε(J,K)
j+n | > 1/(4|A0(z)|);A(1)(sv, J,K);Q; },

Pr{|ζ(J,K)
jk | > 1;Q} ≤ Pr{A(2)(sv, J,K)

c
;Q}

+ Pr{|ζ(J,K)
jk | > 1;A(2)(sv, J,K);Q},

Pr{|ζ(J,K)
l+n,k+n| > 1;Q} ≤ Pr{A(3)(sv, J,K)

c
;Q}

+ Pr{|ζ(J,K)
l+n,k+n| > 1;A(3)(sv, J,K);Q; },

Pr{|ζ(J,K)
j+n,k| > 1;Q} ≤ Pr{A(4)(sv, J,K)

c
;Q}

+ Pr{|ζ(J,K)
j+n,k| > 1;Q;A(4)(sv, J,K)},

Pr{|ζ(J,K)
k,j+n| > 1;Q} ≤ Pr{A(4)(sv, J,K)

c
;Q}

+ Pr{|ζ(J,K)
k,l+n(v)| > 1;Q;A(4)(sv, J,K)}.

Using Chebyshev’s inequality, we obtained:

Pr{|ε(J,K)
j | > 1/4;Q;A(4)}

≤ Cq E
(
Ej |ε j|q

)
I{Q(J,K)}I{A(4)}.

By applying the triangle inequality to the results of Lemmas (1)–(3) (which were
the property of the multiplicative gradient descent of the resolvent matrix), we arrived at
the inequality:

Ej I{A(4)(sv, J,K)}|ε j|q ≤ Cq
[

1
(nv)q +

(
qs|A0(z)|2

np

) q
2

+
1

np

(
qs|A0(z)|
(np)2κ

)q

+

(
q2s(an(z) + |A0(z)|)

nv

) q
2

+
1

np

(
qs|A0(z)|

(nv)

) q
2
(

q2

np

) q
2

+

(
q2s|A0(z)|
(np)2κ

)q 1
(np)2

]
.
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When we set q ∼ log2 n, nv > C log4 n and np > C(log n)
2
κ and took into account that

κ < 1/2 and |A0(z)| ≤ C/|z|, then we obtained:

Ej |ε j|q I{A(4)(sv, J∪ {j},K)} ≤ Cn−c log n.

Moreover, the constant c could be made arbitrarily large. We could obtain similar esti-
mates for the quantities of ε l+n, ζ jk, ζ j+nk, ζ jk+n, ζ j+n,k+n. Inequalities (27) and (28) implied:

Pr{|R(J,K)
jj | I{Q} > C|Sy(z)|} ≤ Pr{A(4)(sv, J∪ {j},K)

c
}+ Cn−c log n,

Pr{|R(J,K)
l+n,l+n| I{Q} > C|A0(z)|} ≤ Pr{A(1)(sv, J,K∪ {l})

c
}+ Cn−c log n,

Pr{|R(J,K)
jk | I{Q} > C|Sy(z)|} ≤ Pr{A(2)(sv, J,K∪ {l})

c
}+ Cn−c log n,

Pr{|Rj+n,k| I{Q} > C|Sy(z)|} ≤ Pr{A(4)(sv, J,K∪ {j})
c
}+ Cn−c log n,

Pr{|Rk+n,j| I{Q} > C|Sy(z)|} ≤ Pr{A(4)(sv, J,K∪ {j})
c
}+ Cn−c log n,

Pr{|Rk+n,j+n| I{Q} > C|A0(z)|} ≤ Pr{A(3)(sv, J,K∪ {j})
c
}+ Cn−c log n.

The last inequalities produced:

max
j,k∈Jc∪Kc

Pr{|R(J,K)
j,k | I{Q} > C} ≤ Cn−c log n

+ max
j∈Jc ,k∈Kc

max{Pr{Ac(sv, J∪ {j},K; CA0(z))}, Pr{Ac(s0v, J,K∪ {k}; CA0(z))}.

We noted that kv ≤ C log n for v ≥ v0 = n−1 log4 n. So, by choosing c large enough,
we obtained:

Pr{Ac(v) ∩Q} ≤ Cn−c log n.

This completed the proof of the theorem.

6.4. The Proof of Theorem 3

Proof. First, we noted that for z ∈ D, a constant C = C(y, V) exists, such that:

|b(z)| ≤ C.

Without a loss of generality, we could assume that Γ−1
n ≥ |b(z)|. We recalled that:

a := an(z) := an(u, v) =

{
Im b(z) + Γn if |b(z)| ≥ Γn,
Γn, if |b(z)| ≤ Γn.

Then:
Γn = 2C0 log n

( 1
nv

+ min
{ 1

np|b(z)| ,
1
√

np

})
.

We considered the smoothing of the indicator hγ(x):

hγ(x, v) =


1, for |x| ≤ γa,

1− |x|−γa
γa , for γa ≤ |x| ≤ 2γa,

0, for |x| > 2γa.

We noted that:
IQ̂γ(v)

≤ hγ(|Λn(u + iv)|, v) ≤ IQ̂2γ(v)
,
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where, as before:

Q̂γ(v) =
kv⋂

ν=0
{|Λn(u + isν

0v)| ≤ γan(u, sν
0v)}.

We estimated the value:

Dn := E |Tn|qhq
γ(|Λn|, v).

It was easy to see that:
E |Tn|qI{Q} ≤ Dn.

To estimate Dn, we used the approach developed in [15], which refers back to Stein’s
method. We let:

ϕ(z) := z|z|q−2.

We set:
T̂n := Tnhγ(|Λn|, v).

Then, we could write:
Dn := E T̂n ϕ(T̂n).

The equality:

Tn = 1 +
(

z− 1− y
z

)
sn(z) + ys2

n(z) = b(z)Λn(z) + yΛ2
n(z)

implied that a constant C exists that depends on γ in the definition of Q, such that:

|Tn| I{Q} ≤ (|b(z)||Λn(z)|+ y|Λn(z)|2)I{Q} ≤ C(a2
n(z) + |b(z)||an(z)|)I{Q} ≤ C.

We considered:
B := A(1) ∩A(2) ∩A(3) ∩A(4).

Then:
Dn ≤ E |Tn|q I{Q} I{B}+ Cn−c log n.

By the definition of Tn, we could rewrite the last inequality as:

Dn :=
1
n

n

∑
j=1

E ε jRjjhγ(|Λn|, v)ϕ(T̂n) I{B}+ Cn−c log n.

We set:
Dn = D(1)

n + D(2)
n + Cn−c log n, (29)

where

D(1)
n :=

1
n

n

∑
j=1

E ε j1Rjjhγ(|Λn|, v)ϕ(T̂n) I{B},

D(2)
n :=

1
n

n

∑
j=1

E ε̂ jRjjhγ(|Λn|, v)ϕ(T̂n) I{B},

ε̂ j := ε j2 + ε j3.

We obtained:
1
n

n

∑
j=1

ε j1Rjj =
1

2n
s′n(z) +

sn(z)
2nz

and this yielded: ∣∣∣ 1
n

n

∑
j=1

ε j1Rjj

∣∣∣ ≤ C
nv

Im sn(z) +
C
n
+

C|Λn|
n|z| . (30)
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Then, we used:

|Sy(z)|
|z| ≤ 1

1− y
(y|Sy(z)|2 + |z||Sy(z)|+ 1}) ≤ C.

Inequality (30) implied that for z ∈ D:

|D(1)
n | ≤ J1D

q−1
q

n , (31)

where

J1 = C
an(z)

nv
.

Further, we considered:

T̂(j)
n = Ej T̂n, T(j)

n = Ej Tn, Λ(j)
n = Ej Λn.

We noted that by the Jensen inequality, for q ≥ 1:

E |T̂(j)
n |q ≤ E |T̂n|q.

We represented D(2)
n in the form:

D(2)
n = D(21)

n + · · ·+ D(24)
n , (32)

where

D(21)
n :=

Sy(z)
n

n

∑
j=1

E ε̂ jhγ(|Λ(j)
n |, v)ϕ(T̂(j)

n ) I{B},

D(22)
n :=

1
n

n

∑
j=1

E ε̂ j(Rjj − Sy(z))hγ(|Λ(j)
n |, v)ϕ(T̂(j)

n ) I{B},

D(23)
n :=

1
n

n

∑
j=1

E ε̂ jRjj(hγ(|Λn|, v)− hγ(|Λ(j)
n |, v))ϕ(T̂(j)

n ) I{B},

D(24)
n :=

1
n

n

∑
j=1

E ε̂ jRjjhγ(|Λn|, v)(ϕ(T̂n)− ϕ(T̂(j)
n )) I{B}.

Since Ej ε̂ j = 0, we found:

D(21)
n =

Sy(z)
n

n

∑
j=1

E ε̂ jhγ(|Λ(j)
n |, v)ϕ(T̂(j)

n ) I{Bc}.

From there, it was easy to obtain:

|D(21)
n | ≤ Cn−c log n. (33)

6.4.1. Estimation of D(22)
n

Using the representation of Rjj, we could write:

D(22)
n = D̃(22)

n + D̂(22)
n + D̆(22)

n ,
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where

D̃(22)
n :=

Sy(z)
n

n

∑
j=1

E ε̂2
j Rjjhγ(|Λ(j)

n |, v)ϕ(T̂(j)
n ) I{B},

D̂(22)
n :=

ySy(z)
n

n

∑
j=1

E ε̂ jΛnRjjhγ(|Λ(j)
n |, v)ϕ(T̂(j)

n ) I{B},

D̆(22)
n :=

ySy(z)
n

n

∑
j=1

E ε̂ jε j1Rjjhγ(|Λ(j)
n |, v)ϕ(T̂(j)

n ) I{B}

By Hölder’s inequality:

|D̂(22)
n | ≤

C|Sy(z)|
n

n

∑
j=1

E
1
q
[
Ej |ε̂ j||Λn||Rjj|hγ(|Λ(j)

n |, v) I{B}
]q

D
q−1

q
n . (34)

Further:

Ej

[
|ε̂ j||Λn||Rjj|hγ(|Λ(j)

n |, v) I{B}
]
≤ C|Sy(z)|Ej

[
|ε̂ j||Λn|hγ(|Λ(j)

n |, v) I{B}
]
.

We obtained:

|Λn|hγ(|Λ(j)
n |, v) I{B} ≤ |Λn|hγ(|Λn|, v) I{B}

+ |Λn||hγ(|Λn|, v)− hγ(|Λ(j)
n |, v)| I{B}.

In the case |bn(z)| ≥
√
|Tn|, we obtained:

|Λn| ≤
|Tn|
|bn(z)|

≤
√
|Tn|.

This implied that:

|Λn|hγ(|Λn|, v) I{B}I{
√
|Tn| ≤ |bn(z)|} ≤ C

√
|Tn|h(|Λn|, v).

Furthermore, in the case |bn(z)| ≤
√
|Tn| and |b(z)| ≥ Γn, we obtained:

|bn(z)|I{Q} ≥ (1− 2γ)|b(z)|I{Q} > c|b(z)|I{Q}.

This implied that:

|Λn|I{Q} ≤ C(Im b(z) + Γn)I{Q} ≤ C
√
|Tn|.

For |b(z)| ≤ Γn, we could write:

Ej

[
|ε̂ j||Λn||Rjj|hγ(|Λ(j)

n |, v) I{B}
]
≤ C|Sy(z)|Ej

[
|ε̂ j||Λn|I{|Λ(j)

n | ≤ CΓn}, I{B}
]

≤ C|Sy(z)|Γn Ej

[
|ε̂ jI{|Λ

(j)
n | ≤ CΓn}, I{B}

]
.

Using this, we concluded that:

Ej

[
|ε̂ j||Λn|hγ(|Λ(j)

n |, v) I{B}
]
≤ E

1
2
j |ε̂ j|2I{|Λ

(j)
n | ≤ Can(z)}I{B}

×
(
I{|b(z)| ≥ Γn}E

1
2
j |T̂n|+ ΓnI{|b(z)| ≤ Γn}I{z /∈ D}

)
.
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By applying Lemmas 2 and 3, we obtained:

Ej

[
|ε̂ j||Λn|hγ(|Λ(j)

n |, v) I{B}
]
≤ Cβ

1
2
n (z)

(
E

1
2
j |T̂n|+ ΓnI{|b(z)| ≤ Γn}I{z /∈ D}

)
. (35)

By combining inequalities (34) and (35), |Sy(z)||A0(z)| ≤ C and Young’s inequality,
we obtained:

|D̂(22)
n | ≤H1D

2q−1
2q

n + H2D
q−1

q
n , (36)

where

H1 =C|Sy(z)|2β
1
2
n (z)I{|b(z)| ≥ Γn},

H2 =|Sy(z)|2Γnβ
1
2
n (z)I{|b(z)| ≤ Γn}I{z /∈ D}.

Hölder’s inequality and (35) produced:

|D̃(22)
n | ≤ C|Sy(z)|2βn(z)D

q−1
q

n . (37)

6.4.2. Estimation of D(23)
n

We noted that:

|hγ(|Λn|, v)− hγ(|Λ(j)
n |, v)||Rjj| I{B}

≤ C
an(z)

|Λn −Λ(j)
n | I{max{|Λn|, |Λ(j)

n |} ≤ 2γan(z)} I{B}.

Using Hölder’s inequality and Cauchy’s inequality, we obtained:

D(23)
n ≤

C|Sy(z)|
an(z)

1
n

n

∑
j=1

E
1
q
{[

Ej |ε̂ j|2I{Q}I(B)
] q

2
[
Ej |Λn −Λ(j)

n |2I{Q}I(B)
] q

2
}

D
q−1

q
n .

By applying Lemmas 2, 3 and 5, we obtained:

D(23)
n ≤ C|Sy(z)|a−1

n (z)β
1
2
n (z)

1
n

n

∑
j=1

E
1
q
[
Ej |Λn −Λ(j)

n |2I{Q}I(B)
] q

2 D
q−1

q
n .

6.4.3. Estimation of D(24)
n

Using Taylor’s formula, we obtained:

D(24)
n =

1
n

n

∑
j=1

E ε̂ jRjjhγ(|Λn|, v)(T̂n − T̂(j)
n )ϕ′(T̂(j)

n + τ(T̂n − T̂(j)
n )) I{B},

where τ is uniformly distributed across the interval [0, 1] and the random variables are
independent from each other. Since I{B} = 1 yields |Rjj| ≤ C|Sy(z)|, we found that:

|D(24)
n | ≤

C|Sy(z)|
n

n

∑
j=1

E |ε̂ j|hγ(|Λn|, v)|T̂n − T̂(j)
n ||ϕ′(T̂

(j)
n + τ(T̂n − T̂(j)

n ))| I{B}.

Taking into account the inequality:

|ϕ′(T̂(j)
n + τ(T̂n − T̂(j)

n ))| ≤ Cq
[
|T̂(j)

n |q−2 + qq−2|T̂n − T̂(j)
n |q−2

]
,
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we obtained:

|D(24)
n | ≤

Cq|Sy(z)|
n

n

∑
j=1

E |ε̂ j|hγ(|Λn|, v)|T̂n − T̂(j)
n ||T̂

(j)
n |q−2 I{B}

+
Cqq−1|Sy(z)|

n

n

∑
j=1

E |ε̂ j|hγ(|Λn|, v)|T̂n − T̂(j)
n |q−1 I{B} =: D̂(24)

n + D̃(24)
n .

By applying Hölder’s inequality, we obtained:

D̂(24)
n ≤

Cq|Sy(z)|
n

n

∑
j=1

E
2
q
[
Ej{|ε̂ j|hγ(|Λn|, v)|T̂n − T̂(j)

n | I{B}}
] q

2 E
q−2

q |T̂(j)
n |q.

Jensen’s inequality produced:

D̂(24)
n ≤

Cq|Sy(z)|
n

n

∑
j=1

E
2
q
[
Ej{|ε̂ j|hγ(|Λn|, v)|T̂n − T̂(j)

n | I{B}}
] q

2 D
q−2

q
n .

To estimate D̂(24)
n , we had to obtain the bounds for:

V
q
2

j := E
[
Ej
{
|ε̂ j|hγ(|Λn|, v)|T̂n − T̂(j)

n | I{B}
}] q

2 .

Using Cauchy’s inequality, we obtained:

V
q
2

j ≤ E(V(1)
j )

q
4 (V(2)

j )
q
4 ≤ E

1
2 (V(1)

j )
q
2 E

1
2 (V(2)

j )
q
2 (38)

where

V(1)
j :=Ej |ε̂ j|2 I{Q̂2γ(v)} I{B},

V(2)
j :=Ej |T̂n − T̂(j)

n |2h2
γ(|Λn|, v) I{B}.

6.4.4. Estimation of V(1)
j

Lemma 2 produced:

Ej |ε j2|2] I{Q̂2γ(v)} I{B} ≤
C|A0(z)|2

np
,

and, in turn, Lemma 3 produced:

Ej |ε j3|2 I{Q̂2γ(v)} I{B} ≤
C
nv

an(z).

By summing the obtained estimates, we arrived at the following inequality:

V(1)
j ≤ Can(z)

nv
+

CA2
0(z)

np
= βn(z). (39)

6.4.5. Estimation of V(2)
j

We considered T̂n − T̂(j)
n . Since T̂n = Tnhγ(|Λn|, v) and T̂(j)

n = Ej T̂n, we obtained:

T̂n − T̂(j)
n = (Tn − T(j)

n )hγ(|Λn|, v)

+ T(j)
n

(
[hγ(|Λn|, v)− hγ(|Λ(j)

n |, v)]−Ej Tn

[
hγ(|Λn|, v)− hγ(|Λ(j)

n |, v)
])

.
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Further, we noted that:

Tn = Λnbn = Λnb(z) + yΛ2
n,

T(j)
n z = Λ(j)

n b(z) + yEj Λ2
n.

Then:

Tn − T(j)
n = (Λn −Λ(j)

n )(b(z) + 2yΛ(j)
n )

+ y(Λn −Λ(j)
n )2 − yEj(Λn −Λ(j)

n )2. (40)

We obtained:

T̂n − T̂(j)
n = (b(z) + 2yΛ(j)

n )
[
(Λn −Λ(j)

n )hγ(|Λn|, v) ]

+ y
[
(Λn −Λ(j)

n )2 −Ej(Λn −Λ(j)
n )2

]
hγ(|Λn|, v)

+ T(j)
n

[
(hγ(|Λn|, v)− hγ(|Λ(j)

n |, v)−Ej(hγ(|Λn|, v)− hγ(|Λ(j)
n |, v))

]
. (41)

Then, we returned to the estimation of V(2)
j . Equality (41) implied:

V(2)
j ≤ 4|b(z)|2 Ej |Λn −Λ(j)

n |2h4
γ(|Λn|, v) I{B}

+ 8y2 Ej |Λ
(j)
n |2|Λn −Λ(j)

n |2h4
γ(|Λn|, v) I{B}

+ 4y2
[
Ej |Λn −Λ(j)

n |4h4
γ(|Λn|, v)

]
I{B}

+ 4y2
[
Ej(Λn −Λ(j)

n )2hγ(|Λn|, v)
]2

Ej h2
γ(|Λn|, v) I{B}

+ 4|T(j)
n |2 Ej

[
hγ(|Λn|, v)− hγ(|Λ(j)

n |, v)
]2

h2
γ(|Λn|, v) I{B}

+ 4|T(j)
n |2

[
Ej

(
hγ(|Λn|, v)− hγ(|Λ(j)

n |, v)
)]2

Ej h2
γ(|Λn|, v) I{B}.

We could rewrite this as:

V(2)
j ≤ A1 + A2 + A3 + A4,

A1 = C|b(z)|2 Ej |Λn −Λ(j)
n |2h4

γ(|Λn|, v)I{B},

A2 = CEj |Λ
(j)
n |2|Λn −Λ(j)

n |2h4
γ(|Λn|, v)I{B},

A3 = CEj |Λn −Λ(j)
n |4h2

γ(|Λn|, v)
(
h2

γ(|Λn|, v) +Ej h2
γ(|Λn|, v)

)
I{B},

A4 = C|T(j)
n |2 Ej

∣∣∣hγ(|Λn|, v)− hγ(|Λ(j)
n |, v)

∣∣∣2(h2
γ(|Λn|, v) +Ej h2

γ(|Λn|, v)
)
I{B}.

First, we found that:

A1 ≤ C|b(z)|2 Ej |Λn −Λ(j)
n |2h4

γ(|Λn|, v)I{B}.

and

A2 ≤Ca2
n(z)Ej |Λn −Λ(j)

n |2h4
γ(|Λn|, v)I{B}.

We noted that:

A3 ≤
C

n2v2 Ej |Λn −Λ(j)
n |2h2

γ(|Λn|, v)I{B}.
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It was straightforward to see that:

|T(j)
n |2(h2

γ(|Λn(z)|, v) +Ej h2
γ(|Λn(z)|, v)) ≤ C(|b(z)|2a2

n(z) + a4
n(z) +

1
n4v4 ).

This bound implied that:

A4 ≤ C(|b(z)2a2
n(z) + a4

n(z) +
1

n4v4 )Ej

∣∣∣hγ(|Λn|, v)− hγ(|Λ(j)
n |, v)

∣∣∣2I{B}.
Further, since:∣∣∣hγ(|Λn|, v)− hγ(|Λ(j)

n |, v)
∣∣∣ ≤ C

γan(z)
|Λn −Λ(j)

n |I{max{|Λn|, |Λ(j)
n |} ≤ (1 + γ)an(z)},

we could write:

A4 ≤C(|b(z)|2 + a2
n(z))Ej |Λn −Λ(j)

n |2I{max{|Λn|, |Λ(j)
n |} ≤ Can(z)}I{B}.

By combining the estimates that were obtained for A1, . . . , A4, we concluded that:

V(2)
j ≤C(a2

n(z) + |b(z)|2)Ej |Λn −Λ(j)
n |2I{max{|Λn|, |Λ(j)

n |} ≤ Can(z)}I{B}.

Inequalities (38) and (39) implied the bounds:

V
q
2

j ≤ Cqβ
q
4
n (z)(a2

n(z) + |b(z)|2)
q
4

×E
(
Ej |Λn −Λ(j)

n |2I{max{|Λn|, |Λ(j)
n |} ≤ Can(z)}I{B}

) q
4
. (42)

We noted that:

D̂(24)
n ≤ Cq|Sy(z)|

( 1
n

n

∑
j=1

Vj

)
D

q−2
q

n .

Then, Inequality (42) yielded:

D̂(24)
n ≤ Cq|Sy(z)|β

1
2
n (z)(a2

n(z) + |b(z)|2)
1
2

× 1
n

n

∑
j=1

E
2
q
(
Ej |Λn −Λ(j)

n |2I{max{|Λn|, |Λ(j)
n |} ≤ Can(z)}I{B}

) q
4 D

q−2
q

n .

We rewrote this as:

D̂(24)
n ≤ L1D

q−2
q

n , (43)

where

L1 =Cq|Sy(z)|β
1
2
n (z)(a2

n(z) + |b(z)|2)
1
2

× 1
n

n

∑
j=1

E
2
q
(
Ej |Λn −Λ(j)

n |2I{max{|Λn|, |Λ(j)
n |} ≤ Can(z)}I{B}

) q
4
.

6.4.6. Estimation of D̃(24)
n

We recalled that:

D̃(24)
n =

Cqqq−1

n
|Sy(z)|

n

∑
j=1

E |ε̂ j||T̂n − T̂(j)
n |q−1hγ(|Λn|, v) I{B}.
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Using Inequalities (40) and (41) and an(z) ≥ C
nv , we obtained:

|T̂n − T̂(j)
n | ≤

(
|b(z)|+ |an(z)|+

C
an(z)

|T(j)
n |
)
|Λn −Λ(j)

n |I{max{|Λn|, |Λ(j)
n |} ≤ Can(z)}.

By applying:

|T(j)
n |I{|Λ

(j)
n (z)| ≤ Can(z)} ≤ C(a2

n(z) + |b(z)|an(z)),

we obtained:

|T̂n − T̂(j)
n | ≤C(|b(z)|+ an(z))|Λn −Λ(j)

n |I{max{|Λn|, |Λ(j)
n |} ≤ Can(z)}.

The last inequality produced:

D̃(24)
n ≤ Cqqq−1(an(z) + |b(z)|)q−1

n
|Sy(z)|

n

∑
j=1

E
1
q
(
Ej |ε j|2hγ(|λn|, v)I{B}

) q
2

×E
q−1

q
(
Ej |Λn −Λ(j)

n |2qI{B}
) 1

2

≤ Cqqq|Sy(z)|β
1
2
n (z)(an(z) + |b(z)|)q−1 1

n

n

∑
j=1

(
E
(
Ej |Λn −Λ(j)

n |2qI{Q}I{B}
)) q−1

2q
.

We put:

Rn(q) :=
1
n

n

∑
j=1

E
(
Ej |Λn −Λ(j)

n |2I{B}I{Q}
) q

2

and

Un(q) :=
1
n

n

∑
j=1

E |Λn −Λ(j)
n |2qI{B}I{Q}.

By applying Lemma 5, we obtained:

Rn(q) ≤ Cq |Sy(z)|qa
q
2
n (z)

(nv)q

(
|Sy(z)|q|A0(z)|

q
2 β

q
2
n (z) +

|A0(z)|
q
2

(np)
q
2

+
1

(nv)
q
2

)
.

Finally, using Lemma 6, we obtained:

U
q−1
2q

n (q) ≤ Cqqq−1
(

an(z)
nv

)q−1

|Sy(z)|2(q−1)
(
|A0(z)|
(np)2κ

)q−1

+ Cq
(

an(z)
nv

)q−1

|Sy(z)|2(q−1)β
q−1

2
n (z)

+ Cq−1q
q−1

2

( |Sy(z)|an(z)
nv

) q−1
2
( |Sy(z)||A0(z)|

nvnp

) q−1
2

+ Cq−1qq−1
( |Sy(z)

nv

)q−1( |A0(z)|
(np)2κ

)(q−1)

+ Cqqq−1
( |Sy(z)|

nv

)q−1( an(z)
nv

) q−1
2

+ Cq−1q
3(q−1)

2

(
an(z)|Sy(z)|

nv

) q−1
2
( |A0(z)||Sy(z)|

(np)2κ

) q−1
2
(

1
nv

)q−1

+ Cq−1q2(q−1) |A0(z)|q−1|Sy(z)|q−1

(nv)q−1(np)2κ(q−1)
.

Using:
|Sy(z)||A0(z)| ≤ 1 + 2

√
y,
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we could write:

U
q−1
2q

n (q) ≤ Cq−1qq−1
( |Sy(z)|an(z)

nv

)q−1 1
(np)2κ(q−1)

+ Cq−1
( |Sy(z)|an(z)

nv

)q−1

|Sy(z)|q−1β
q−1

2
n (z)

+ Cq−1q
q−1

2

 |Sy(z)|
1
2 a

1
2
n (z)

nv

q−1(
1

np

) q−1
2

+ Cqqq−1
(

1
nv

)q−1( 1
np

)2κ(q−1)

+ Cq−1qq−1 |Sy(z)|
q−1

2

(nv)q−1

(
an(z)|Sy(z)|

(nv)

) q−1
2

+ Cqq
3(q−1)

2
1

nq−1vq−1

( |Sy(z)|an(z)
nv

) q−1
2 1
(np)(q−1)κ

+ Cq−1q2(q−1 1
(nv)q−1(np)2κ(q−1)

.

By combining Inequalities (29), (31), (32), (33), (36), (37) and (43) and applying Young’s
inequality, we obtained the proof.

6.5. The Proof of Theorem 4

Proof. We considered the case z ∈ D, where

D = {z = u + iv : (1−√y− v)+ ≤ |u| ≤ 1 +
√

y + v, V ≥ v ≥ v0 = n−1 log4 n}.

For z, we obtained:

2V + (1 +
√

y) ≥ |z| ≥ 1√
2
(1−√y).

This implied that the constant C1 exists, depending on V, y, such that:

|b(z)| ≤ C1.

First, we considered the case |b(z)| ≥ Γn. Without a loss of generality, we assumed
that C0 ≥ C1, where C0 is the constant in the definition of an(z). This meant that an(z) =
Im b(z) + C0Γn. Furthermore:

|bn(z)|I{Q} ≥ (1− 2γ)|b(z)|I{Q}

and

|Λn(z)|I{Q} ≤ C
|Tn|
|b(z)| .

Using Theorem 3, we obtained:

E |Λn(z)|qI{Q} ≤ Cq
qq
(

F1 + · · ·+ F6

)
|b(z)|q .

We let:

d(z) =
Im b(z)

∨ 1
nv

|b(z)| .

The analysis of Fi/|b(z)|q for i = 1, . . . , 6.
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• The bound of F1/|b(z)|q. By the definition of an(z) and F1, we obtained:

F1/|b(z)|q ≤ Cq
(

d(z)
nv

+
1

np|b(z)|

)q
.

• The bound of F2/|b(z)|q. By the definition of F2, we obtained:

F2/|b(z)|q ≤ Cq|Sy(z)|2q
( d(z)
(nv)

+
1

(np|b(z)|)

)q
.

For this, we used |Sy(z)||A0(z)| = |1 + zSy(z)| ≤ C.
• The bound for F3/|b(z)|q. By the definition of F3, we obtained:

F3/|b(z)|q ≤

 |Sy(z)|
3q
2 a

q
2
n (z)

(nv)q +
|Sy(z)|

q
2

(nv)
q
2 (np)

q
2
+
|Sy(z)|q

(nv)q

( 1
(np)|b(z)| +

d(z)
nv

)q
.

• The bound of F4/|b(z)|q. Simple calculations showed that:

F4(z)/|b(z)|q ≤

 |Sy(z)|
3q
2

(nv)qa
q
2
n (z)

+
|Sy(z)|

q
2

a
q
2
n (z)(nv)

q
2

+
|Sy(z)|q

(annv)
q
2

( 1
(np)|b(z)| +

d(z)
nv

)q
.

• The bound of F5/|b(z)|q. We noted that:

(an(z) + |b(z)|)/|b(z)| ≤ C.

From there and from the definition of F5, it followed that:

F5(z)/|b(z)|q ≤ Cqq
q
2

((d(z)
nv

+
1

(np)|b(z)|

) 3q
4
(

1
nv

) q
4

+
(d(z)

nv
+

1
(np)|b(z)|

) q
2
( |Sy(z)|

nv

) q
2
)

.
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• The bound of F6/|b(z)|q. Simple calculations showed that:

F6/|b(z)|q ≤ Cqq2(q−1)

(np)2κ(q−1)
β

1
2
n (z)
|b(z)|

(d(z)
nv

+
1

np|b(z)|

)q−1

+ Cqq2(q−1)β
1
2
n (z)|b(z)|−1

(d(z)
nv

+
1

np|b(z)|

) 3(q−1)
2

+
Cqq

5(q−1)
2

(np)
q−1

2

β
1
2
n (z)|b(z)|−1

(d(z)
nv

+
1

np|b(z)|

) (q−1)
2 1

(nv)
q−1

2

+
Cqq3q

(np)2κ(q−1)
1

(nv)q−1

+ qq |Sy(z)|
q−1

2

(nv)q−1
β

1
2
n (z)
|b(z)|

(d(z)
nv

+
1

np|b(z)|

) q−1
2

+
Cqq3q

(nv)
q−1

2

β
1
2
n (z)
|b(z)|

(d(z)
nv

+
1

np|b(z)|

) q−1
2 1
(np)κ(q−1)

+
Cqq4(q−1)

(np)2κ(q−1)
1

(nv)q−1
β

1
2
n (z)
|b(z)| .

We defined:

dn(z) :=
d(z)
nv

+
1

(np)|b(z)| .

By combining all of these estimations and using:

dn(z)|b(z)| ≥
1

np
,

we obtained:

I{Γn ≤ |b(z)|}E |Λn|qI{Q} ≤ Cqqq(q
q
2 (nv)−

q
2 d

q
2
n (z) + dq

n(z)).

For z ∈ D (such that Γn ≤ |b(z)|), we could write:

E |Λn(z)|qI{Q} ≤ Cqqq(q
q
2 (nv)−

q
2 d

q
2
n (z) + dq

n(z)) ≤ δqΓq
n.

Then, we considered |b(z)| ≤ Γn. In this case, we used the inequality:

|Λn| ≤
√
|Tn|.

In what follows, we assumed that q ∼ log n.
The bound of E |Tn|q for |b(z)| ≤ Γn.

• By the definition of an(z), we obtained:

an(z)
nv

=
Γn

nv
.

We could obtain from this that, for sufficiently small δ > 0 values:

F1 ≤ CqΓq
n/(nv)q ≤ δqΓ2q

n .

• We noted that Γn ≥ Im b(z) ≥ Im A0(z). This immediately implied that:

CqqqF2 ≤ δqΓ2q
n .
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• We noted that for Im b(z) ≤ |b(z)| ≤ Γn, we obtained:

min{ 1
np|b(z)| ,

1
√

np
} = 1
√

np

and
1

np
≤ δΓ2

n/ log2 n.

From there, it followed that:
Cqqq ≤ δqΓ2q

n .

• Simple calculations showed that:

CqqqF4 ≤ δqΓ2q
n .

• Simple calculation showed that:

CqqqF5 ≤ CqΓ4q
n ≤ δqΓ2q

n .

• It was straightforward to check that:

CqqqF6 ≤ CqΓ3q
n ≤ δqΓ2q

n .

By applying the Markov inequality for Γn ≤ Im b(z) ≤ C, we obtained:

Pr{|Λn| > Kdn(z) log n;Q} ≤ Cn−q.

On the other hand, when Im b(z) ≤ Γn, we used the inequality:

|Λn| ≤ C|Tn|
1
2 .

By applying the Markov inequality, we obtained:

Pr{|Λn(z)| ≤ 2δΓn;Q} ≤ Cn−Q.

This implied that:

Pr{|Λn(v)| ≤
1
2

Γn;Q} ≤ Cn−Q.

We noted that Q = Q(v) for V ≥ v ≥ v0 and that for V ≥ v ≥ v0:

an(z) ≥
C log2 n

n
.

On the other hand:

sup
u
|Λn(v)−Λn(v′)| ≤

|v− v′|
v2

0
≤ n2|v− v′| = n2∆v.

We chose ∆v, such that:

sup
u
|Λn(v)−Λn(v′)| ≤

1
2

Γn.

It was enough to put ∆v := n−4. We let K :=
[

V−v0
∆v

]
. For ν = 0, . . . , K− 1, we defined:

vν = v0 + ν∆v,
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and vK = V. We noted that v0 < v1 < · · · > vK = V and that:

sup
u
|Λn(vν+1 −Λn(vν)| ≤

1
2

Γn.

We started with vK = V. We noted that:

Pr{Q(V)} = 1.

This implied that:

Pr{|Λn(vK)| ≤
1
2

Γm} ≤ Cn−Q.

From there, it followed that:

Pr{Q(vK−1)} ≤ Cn−Q.

By repeating this procedure and using the union bound, we obtained the proof.
Thus, Theorem 4 was proven.

7. Auxiliary Lemmas

Lemma 1. Under the conditions of Theorem, for j ∈ Jc and l ∈ Kc, we have:

max
{
|ε(J,K)

j1 |, |ε(J,K)
l+n,1|

}
≤ C

nv
.

Proof. For simplicity, we only considered the case J = ∅ and K = ∅. We noted that:

ε j1 =
1

2m

((
Tr R− m− n

z
)
−
(

Tr R(j) − m− n− 1
z

))
=

1
2m
(

Tr R− Tr R(j))− 1
2mz

.

By applying Schur’s formula, we obtained:

|ε j1| ≤
1

nv
.

The second inequality was proven in a similar way.

Lemma 2. Under the conditions of Theorem 5, for all j ∈ Jc, the following inequalities are valid:

Ej |ε
(J,K)
j2 |2 ≤ µ4

np
1
n

m

∑
l=1

∣∣R(J∪{j},K)
l+n,l+n

∣∣2
and

El+n |ε
(J,K)
l+n,2|

2 ≤ µ4

np
1
n

n

∑
j=1

∣∣R(J,K∪{l})
jj

∣∣2.

In addition, for q > 2, we have:

Ej |ε
(J,K)
j2 |q ≤ Cq

( q
q
2

(np)
q
2

( 1
n

m

∑
l=1

∣∣R(J∪{j},K)
l+n,l+n

∣∣2) q
2
+

qq

(np)2qκ+1
1
n

m

∑
l=1

∣∣R(J∪{j},K)
l+n,l+n

∣∣q)
and for l ∈ Kc, we have:

El+n |ε
(J,K)
l+n,2|

q ≤ Cq
( q

q
2

(np)
q
2

( 1
n

n

∑
j=1

∣∣R(J,K∪{l})
jj

∣∣2) q
2
+

qq

(np)2qκ+1
1
n

n

∑
j=1

∣∣R(J,K∪{l})
jj

∣∣q).
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Proof. For simplicity, we only considered the case J = ∅ and K = ∅. The first two
inequalities were obvious. We only considered q > 2. By applying Rosenthal’s inequality,
for q > 2, we obtained:

Ej |ε j2|q =
1

(mp)q Ej

∣∣∣ m

∑
l=1

(X2
jlξ jl − p)R(j)

l+n,l+n

∣∣∣q
≤ Cq

(mp)q

[
q

q
2

( m

∑
l=1

Ej |X2
jlξ jl − p|2|R(j)

l+n,l+n|
2
) q

2

+ qq
m

∑
l=1

Ej |X2
jlξ jl − p|q|R(j)

l+n,l+n|
q
]

≤ Cq

(mp)
q
2

[
(qµ4)

q
2

( 1
m

m

∑
l=1
|R(j)

l+n,l+n|
2
) q

2

+
mqq

(mp)
q
2

µ̃2q
1
m

m

∑
l=1
|R(j)

l+n,l+n|
q
]
. (44)

We recalled that:
µ̃r = E |Xjkξ jk|r

and under the conditions of the theorem:

µ̃2q ≤ Cq p(np)q−2qκ−2µ4+δ.

By substituting the last inequality into Inequality (44), we obtained:

Ej |ε j2|q ≤ Cq
[ q

q
2

(mp)
q
2

( 1
m

m

∑
l=1
|R(j)

l+n,l+n|
2
) q

2
+

qq

(mp)2qκ+1
1
m

m

∑
l=1
|R(j)

l+n,l+n|
q
]
.

The second inequality could be proven similarly.

Lemma 3. Under the conditions of the theorem, for all j ∈ TJ, the following inequalities are valid:

Ej |ε
(J,K)
j3 |2 ≤

C ∑m
l,k=1 |R

(J∪{j},K)
l+n,k+n (z)|2

n2

and

El+n |ε
(J,K)
l+n,3|

2 ≤
C ∑n

i,k=1 |R
(J,K∪{l})
i,k (z)|2

n2 .

In addition, for q > 2, we have:

Ej |ε
(J,K)
j3 |q ≤ Cq

(
qq(nv)−

q
2
(

Im s(j)
n (z)− Im

{
1− y

z

}) q
2

+ q
3q
2 (nv)−

q
2 (np)−qκ−1 1

n

m

∑
l=1

(Im R(J∪{j},K)
l+n,l+n )

q
2

+ q2q(np)−2qκ 1
n2

m

∑
l=1

m

∑
k=1
|R(J∪{j},K)

l+n,k+n |
q
)
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and for l ∈ T1
K, we have:

El+n |ε
(J,K)
l+n,3|

q ≤ Cq
(

qq(nv)−
q
2
(

Im s(l)n (z)
) q

2

+ q
3q
2 (nv)−

q
2 (np)−qκ−1 1

n

m

∑
j=1

(Im R(J,K∪{l+n})
jj )q

+ q2q(np)−2qκn−2
n

∑
j=1

n

∑
k=1
|R(J,K∪{l+n})

kj |q
)

.

Proof. It sufficed to apply the inequality from Corollary 1 of [16].

We recalled the notation:

βn(z) =
an(z)

nv
+
|A0(z)|2

np
.

Lemma 4. Under the conditions of the theorem, the following bounds are valid:

Ej |Rjj −Ej Rjj|2 I{Q} I{B} ≤ C|Sy(z)|4βn(z) (45)

and

Ej |Rjj −Ej Rjj|q I{Q} I{B} ≤ Cq|Sy(z)|2qqq
(

qq
(
|A0(z)|
(np)2κ

)q
+ β

q
2
n (z)

)
. (46)

Proof. We considered the equality:

Rjj = −
1

z− 1−y
z + ys(j)

n (z)

(
1 + ε̂ jRjj

)
.

It implied that:

Rjj −Ej Rjj = −
1

z− 1−y
z + ys(j)

n (z)

(
ε̂ jRjj −Ej ε̂ jRjj

)
. (47)

Further, we noted that for a sufficiently small γ value, a constant H existed, such that:∣∣∣∣∣ 1

z− 1−y
z + ys(j)

n (z)

∣∣∣∣∣ I{Q} ≤ H|Sy(z)| I{Q}.

Hence:

Ej |Rjj −Ej Rjj|2 I{Q} I{B} ≤ H2|Sy(z)|2
(
Ej |ε̂ j|2|Rjj|2 I{Q} I{B}

+Ej I{Q} I{B}Ej |ε̂ j|2|Rjj|2
)

.

It was easy to see that:

Ej |ε̂ j|2|Rjj|2 I{Q} I{B} ≤ C|Sy(z)|2 Ej |ε̂ j|2 I{Q} I{B}

≤ C|Sy(z)|2
( an(z)

nv
+
|A0(z)|2

np

)
.

We introduced the events:

Q(j) =
{
|Λ(j)

n | ≤ 2γan(z) +
1

nv

}
.



Mathematics 2022, 10, 2326 32 of 38

It was obvious that:
I{Q} ≤ I{Q} I{Q(j)}.

Consequently:

Ej I{Q} I{B}Ej |ε̂ j|2|Rjj|2 ≤ Ej I{Q} I{B}Ej |ε̂ j|2|Rjj|2 I{Q(j)}.

Further, we considered Q̃ = {|Λn| ≤ 2γan(z)}. We obtained:

I{Q(j)} ≤ I{Q̃}.

Then, it followed that:

Ej I{Q} I{B}Ej |ε̂ j|2|Rjj|2 ≤ Ej I{Q} I{B}Ej |ε̂ j|2|Rjj|2 I{Q̃}.

Next, the following inequality held:

Ej |ε̂ j|2|Rjj|2 I{Q̃} ≤ Ej |ε̂ j|2|Rjj|2 I{Q̃}I{B̃}+Ej |ε̂ j|2|Rjj|2 I{Q̃}I{B̃c}. (48)

Under the condition C0 and the inequality |Rjj| ≤ v−1
0 , we obtained the bounds:

Ej |ε̂ j|2|Rjj|2 I{Q̃}I{B̃c} ≤ Cn−c log n.

By applying Lemmas 2 and 3, for the first term on the right side of (48), we obtained:

Ej |ε̂ j|2|Rjj|2 I{Q̃}I{B̃} ≤ C|Sy(z)|2
( an(z)

nv
+
|A0(z)|2

np

)
.

This completed the proof of Inequality (45).
Furthermore, by using representation (47), we obtained:

Ej |Rjj −Ej Rjj|q I{Q} I{B} ≤ Cq|Sy(z)|q E |ε̂ j|q|Rjj|qI{Q}IB}
≤ Cq|Sy(z)|2q Ej |ε̂ j|q|I{Q}IB}.

By applying Lemmas 2 and 3, we obtained:

Ej |Rjj −Ej Rjj|q I{Q} I{B} ≤ Cq|Sy(z)|2q

((
q|A0(z)|2

np

) q
2

+

(
q|A0(z)|
(np)2κ

)q

+

(
q2an(z)

nv

) q
2

+

(
q3|A0(z)|
nv(np)2κ

) q
2

+

(
q2|A0(z)|
(np)2κ

)q)
.

By applying Young’s inequality, we obtained the required proof. Thus, the lemma was
proven.

Lemma 5. Under the conditions of the theorem, we have:

Ej |Λn −Λ(j)
n |2 I{Q} I{B} ≤C

|Sy(z)|4|A0(z)|an(z)
(nv)2 βn + C

|Sy(z)|2|A0(z)|an(z)
(nv)2np

+ C
|Sy(z)|2an(z)

(nv)3 .

Proof. We set Λ̂(j)
n = s(j)

n (z)− Sy(z). Using Schur’s complement formula:

Λn − Λ̂(j)
n =

1
2n

(1 +
1

np

m

∑
l.k=1

XjlXjkξ jlξ jk[R(j)]2k+n,l+n)Rjj.
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Since Λ̂(j)
n was measurable with respect to M(j), we could write:

Λn −Λ(j)
n = (Λn − Λ̂(j)

n )−Ej{Λn − Λ̂(j)
n }.

We introduced the notation:

ηj1 =
1

np

m

∑
l=1

(X2
jlξ jl − p)[R(j)2

]l+n,l+n,

ηj2 =
1

np

m

∑
l=1

m

∑
k=1,k 6=l

XjlXjkξ jlξ jk[R
(j)2

]k+n,l+n.

In this notation:

Λn −Λ(j)
n =

1
n

(
1 +

1
n

m

∑
l=1

[R(j)2
]l+n,l+n

)
(Rjj −Ej Rjj)

+
1
n
(ηj1 + ηj2)Rjj −

1
n
Ej(ηj1 + ηj2)Rjj.

We noted that:

Ej |ηj1|2 I{Q} I{B} ≤
C

n2 p

m

∑
l=1

∣∣[R(j)2
]l+n,l+n

∣∣2 I{Q(j)} I{B(j)}.

Since: ∣∣[R(j)2
]l+n,l+n

∣∣ ≤ m

∑
k=1

∣∣R(j)
l+n,k+n

∣∣2 ≤ C
v

Im R(j)
l+n,l+n,

Theorem 5 produced:

Ej |ηj1|2 I{Q} I{B} ≤
C

npv2
1
n

m

∑
l=1

(
Im R(j)

l+n,l+n
)2 I{Q(j)} I{B(j)} ≤ C|A0(z)|an(z)

npv2 .

Similarly, for the moment of ηj2, we obtained the following estimate:

Ej |ηj2|2 I{Q} I{B} ≤
C
n2

m

∑
l,k=1

∣∣[R(j)]2l+n,k+n
∣∣2 I{Q(j)} I{B(j)}

≤ C
n2 Tr |R(j)|4I{Q(j)} I{B(j)} ≤ C

nv3 an(z).

From the above estimates and Lemma 4, we concluded that:

Ej |Λn −Λ(j)
n |2 I{Q} I{B}

≤ C
|A0(z)|an(z)

(nv)2

( |Sy(z)|2

np
+Ej |Rjj −Ej Rjj|2

)
I{Q} I{B}+

C|Sy(z)|2

(nv)2
an(z)

nv
.

Thus, the lemma was proven.

Lemma 6. Under the conditions of the theorem, for 2 ≤ q ≤ c log n, we have:
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Ej|Λn −Λ(j)
n |q I{Q} I{B}

≤ Cq|Sy(z)|2q aq
n(z)

(nv)q

(
qq
(
|A0(z)|
(np)2κ

)q
+ β

q
2
n (z)

)
+

Cq
q
2 |Sy(z)|q

(nv)q(np)
q
2
|A0(z)|

q
2 a

q
2
n (z)

+
Cqq|Sy(z)|q

(nv)q(np)2qκ+1 |A0(z)|q +
Cqqq|Sy(z)|q

(nv)
3q
2

a
q
2
n (z) +

Cqq
3q
2 |Sy(z)|q

(nv)
3q
2 (np)qκ+1

|A0(z)|
q
2 a

q
2
n (z)

+
C|Sy(z)|qq2q

(np)2qκ+2nqvq |A0(z)|q.

Proof. We used the representation:

Λn −Λ(j)
n =

1
n

(
1 +

1
n

m

∑
l=1

[R(j)2
]l+n,l+n

)
(Rjj −Ej Rjj)

+
1
n
(ηj1 + ηj2)Rjj −

1
n
Ej(ηj1 + ηj2)Rjj.

We noted that by using Rosenthal’s inequality:

Ej |ηj1|q I{Q} I{B} ≤
Cq

q
2 |A0(z)|

q
2 a

q
2
n (z)

vqn
q
2 p

q
2

+
Cqq|A0(z)|q
vq(np)2qκ+1 .

Similarly, for the second moment of ηj2, we obtained the following estimate:

Ej |ηj2|q I{Q} I{B} ≤
Cqqq

n
q
2 v

3q
2

a
q
2
n (z) +

Cqq
3q
2

n
q
2 v

3q
2 (np)qκ+1

|A0(z)|
q
2 a

q
2
n (z) +

Cqq2q|A0(z)|q
(np)2qκ+2vq .

From the estimates above and Lemma 4, we concluded that:

Ej |Λn −Λ(j)
n |q I{Q} I{B}

≤ Cq aq
n(z)

(nv)q Ej |Rjj −Ej Rjj|q I{Q} I{B}+
Cqq

q
2 a

q
2
n (z)|A0(z)|

q
2 |Sy(z)|q

(nv)q(np)
q
2

+
Cqqq|Sy(z)|q A0(z)|q

(nv)q(np)2qκ+1

+
Cqqqa

q
2
n (z)|Sy(z)|q

(nv)
3q
2

+
Cqq

3q
2 |Sy(z)|q|A0(z)|

q
2 a

q
2
n (z)

(nv)
3q
2 (np)qκ+1

+
C|Sy(z)|qq2q|A0(z)|q

(np)2qκ+2nqvq .

To finish the proof, we applied Lemma (45) and Inequality (46). Thus, the lemma was
proven.

Lemma 7. For 1−√y− v ≤ |u| ≤ 1 +
√

y + v, the following inequality holds:

|b(z)| ≤ Can(z).

Proof. We noted that:

b(z) = z− 1− y
z

+ 2ySy(z) =

√
(z− 1− y

z
)2 − 4y

and

an(z) = Im{
√
(z− 1− y

z
)2 − 4y}+ 1

nv
+

1
np

.
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It was easy to show that for 1−√y ≤ |u| ≤ 1 +
√

y:

Re{(z− 1− y
z

)2 − 4y} ≤ 0.

Indeed:

Re{(z− 1− y
z

)2 − 4y} ≤ u2 +
1− y)2

u2 − 2(1 + y).

The last expression was not positive for 1−√y ≤ |u| ≤ 1 +
√

y. From the negativity
of the real part, it followed that:

Im{
√
(z− 1− y

z
)2 − 4y} ≥ 1√

2

∣∣∣∣∣
√
(z− 1− y

z
)2 − 4y

∣∣∣∣∣
This implied the required proof. Thus, the lemma was proven.

Lemma 8. There is an absolute constant C > 0, such that for z = u + iv:

|Λn| ≤ C min{ |Tn|
|b(z)| ,

√
|Tn|}, (49)

and that for z = u + iv to satisfy 1−√y− v ≤ |u| ≤ 1 +
√

y + v and v > 0, the following
inequality is valid:

| Im Λn| ≤ C min{ |Tn|
|b(z)| ,

√
|Tn|}. (50)

Proof. We changed the variables by setting:

w =
1
√

y
(z− 1− y

z
), z =

w
√

y +
√

yw2 + 4(1− y)
2

,

and
S̃(w) =

√
ySy(z), s̃n(w) =

√
ysn(z).

In this notation, we could rewrite the main equation in the form:

1 + ws̃n(w) + s̃2
n(w) = Tn.

It was easy to see that:

Λn =
1
√

y
(s̃n(z)− S̃(w)).

Then, it sufficed to repeat the proof of Lemma B.1 from [17]. We noted that this lemma
implied that Inequality (50) held for all w with Im w > 0 (and, therefore, for all z) and that
Inequality (49) satisfied |Re w| ≤ 2 + Im w for w.From this, we concluded that Inequality
(49) held for z = u + iv, such that 1−√y− cv ≤ |u| ≤ 1 +

√
y + cv for a sufficiently small

constant c > 0.
Thus, the lemma was proven.

Lemma 9. For z = u + iv, we have:

|A0(z)| =
1

|z + ySy(z)|
≤ 1 + |b(z)|,

and
Im A0(z) ≤ Im b(z),

where
b(z) = z− 1− y

z
+ 2ySy(z).
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Proof. First, we noted that:

1
z + ySy(z)

= −
(

ySy(z)−
1− y

z

)
.

Using this, we could write:

b(z) = A0(z)−
1

A0(z)
. (51)

From there, it followed that:

A0(z) =
b(z)±

√
b2(z)+4

2
.

This implied that:
|A0(z)| ≤ 1 + |b(z)|.

Equality (51) yielded:

Im A0(z) =
|A0(z)|2

1 + |A0(z)|2
Im b(z) ≤ Im b(z).

Thus, the lemma was proven.

Lemma 10. A positive absolute constant B exists, such that:

an(z)|A0(z)| ≤ B

and
|Sy(z)||A0(z)| ≤ C.

Proof. First, we considered |b(z)| ≥ Γ−1. Then, for |z| ≥ CΓn:

an(z)|A0(z)| ≤ Γn(|b(z)|+ 1) ≤ CΓn

|z| ≤ C.

In the case Γn ≤ |b(z)| ≤ C, we obtained:

an(z)A0(z) ≤ |b(z)|(|b(z)|+ 1) ≤ C(C + 1).

we then considered the case |b(z)| ≤ Γn:

an(z)A0(z) ≤ (ySy(z) +
1− y
|z| )Γn ≤

√
yΓn + 1− y ≤ 1.

To prove the second inequality, we considered the equality:

|Sy(z)A0(z)| = |yS2
y(z)−

1− y
z

Sy(z)| = | − 1− zSy(z)| ≤ C.

Thus, the lemma was proven.

We let X be a rectangular n × m matrix with m ≥ n. We let s1 ≥ · · · ≥ sn be
the singular values of matrix X. The diagonal matrix with djj = sj was denoted by
Dn = (djk) n× n. We let On,k be an n× k matrix with zero entries. We put On = On,n

and D̃n =
[
DnOn,m−n

]
. We let L and K be orthogonal (Hermitian) matrices, such that the

singular value decomposition held:

X = LD̃nK.
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Furthermore, we let In be the identity of an n × n matrix and En =
[
InOn,m−n

]
.

We introduced the matrices Ln = LEn and Kn = KET
n . We noted that L∗n = ET

n L∗ and

K∗n = EnK∗. We introduced the matrix V =

[
O X
X∗ O

]
. We considered the matrix

Z = 1√
2

[
L Ln

Kn −K

]
. We then obtained the following:

Lemma 11.

Z∗VZ =

 Dn On On
On −Dn Om−n,n

Om−n,n Om−n,n Om−n

 =: D̂.

Proof. The proof followed direct calculations. It was straightforward to see that:

Z∗V =
1√
2

[
K∗nX∗ L∗X
−L∗nX K∗X

]
=

1√
2

[
EnD̃TL∗ D̃K∗

−EnD̃K∗ D̃TL∗

]
.

Furthermore:

Z∗VZ =
1
2

[
EnD̃T + D̃ET

n EnD̃T − D̃nET
n

−ET
n D̃ + D̃TEn −D̃TEn − ET

n D̃ = D̂

]
.

8. Conclusions

In this work, we obtained results by assuming that the conditions (C0)–(C2) were ful-
filled. The condition (C2) was of a technical nature. In our investigation on the asymptotic
behaviour of the Stieltjes transformation on a beam, this restriction could be eliminated.
However, this was a technically cumbersome task that requires separate consideration.
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