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Abstract: Optimal operation and control, which can result in the global optimal operation perfor-
mance of industrial processes, has been a hot topic in recent control strategy designs. However,
existing control strategies, such as real-time optimization (RTO), dynamic real-time optimization
(DRTO), and economic model predictive control (EMPC), have their own limitations, and they can
only generate sub-optimal operation performance. In order to further improve online global opera-
tion performance, a new kind of control strategy named efficiency-oriented model predictive control
(EfiMPC) is proposed in this paper. The aim of the EfiMPC is discussed first, and then, the ideal
EfiMPC strategy with a nested structure is proposed, where the inner layer is the offline construction
of an efficiency-oriented terminal region, and the outer layer is the direct optimization of the transient
operation performance. This efficiency-oriented terminal region can guarantee a dynamic operation
performance in the closed-loop perspective, and a better global operation performance can thus
be obtained. A practical EfiMPC strategy, which replaces the offline construction of the efficiency-
oriented terminal region with the online optimization of the average dynamic operation performance
in the inner layer, is also proposed, and the recursive feasibility as well as the closed-loop stability of
practical EfiMPC are discussed. Finally, a CSTR application was used to test the superiority of the
proposed EfiMPC strategy, and the simulation results show that EfiMPC can obtain the best global
operation performance compared with the other three control strategies; thus, the effectiveness of
EfiMPC is demonstrated.

Keywords: nonlinear model predictive control; optimal operation and control; real-time optimization;
optimization; optimal control

MSC: 93B45; 93B45

1. Introduction

The optimal operation and control (or optimal operation performance) of industrial
processes has been a hot topic in recent control strategy designs, where the optimal opera-
tion performance refers to the optimal global performance of the whole system, and this
optimal global performance is usually defined by economic objectives [1]. One cornerstone
of the optimal operation and control of industrial processes is calculating the optimal
operating conditions and maintaining them, despite the presence of different kinds of
uncertainties and disturbances [2]. Thus, it is typical to first calculate the optimal steady-
state operating condition via a real-time optimization (RTO) layer (calculating the optimal
operating conditions), and then, this calculated optimal steady state is passed to the lower
advanced control layer (maintaining optimal operating conditions) [3].

Specifically, RTO is an optimization layer that aims to obtain optimal steady states
based on an updated rigorous steady-state model at certain intervals [4]. These updated
optimal steady-state setpoints are sent to the lower supervisory control layer, which is
usually model predictive control [5,6]. Model predictive control (MPC) refers to a class of
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computer control algorithms that utilize an explicit process model to predict the future
responses of a plant [7], and the main advantage of MPC is its explicit constraint handling
ability [8,9].

Optimal operation and control are realized by the separation of optimization and
control in RTO, but it also has some drawbacks resulting from this separation [10]: (1) before
implementing RTO, the controlled system has to be steady enough, which means there is a
steady-state waiting time in RTO [11]; (2) there is a model mismatch between the RTO layer
and the MPC layer; thus, the MPC may track unreachable setpoints optimized by RTO [12];
(3) the RTO layer focuses only on the steady-state operation, and there may exist better
dynamic operations [13].

In order to further improve the global operation performance of the processes, re-
searchers proposed dynamic real-time optimization (DRTO) [14]. As its name implies,
DRTO uses a dynamic model to replace the steady-state model used in the RTO layer, and
this high-fidelity dynamic model gives DRTO the ability to optimize the transient operation
performance [15,16]. Unlike RTO, which only passes the steady states as setpoints to the
lower MPC layer, DRTO optimizes a dynamic trajectory based on the global performance
of the whole system and then transmits this optimal trajectory to the lower advanced
control layer. In this way, the model mismatch problem is fixed in DRTO, and DRTO can
directly optimize the optimal dynamic operation rather than the optimal steady-state oper-
ation considered in RTO [17]. In other words, DRTO can obtain a better global operation
performance than that obtained by RTO.

However, DRTO still preserves the two-layer structure, and the lower control layer,
such as nonlinear model predictive control (NMPC), minimizes the tracking errors with
respect to the optimized trajectory obtained in the upper DRTO layer [18]. Since there is
still a time-scale separation problem between the DRTO layer and the control layer, the
real-time disturbances in the processes will make the optimized trajectory sub-optimal
during the control, and the NMPC has to track this outdated trajectory until the tracking
trajectory is re-optimized at the next DRTO sample instant.

Recently, researchers proposed economic model predictive control (EMPC), which
combines the DRTO layer and the control layer into one framework to avoid the time-scale
separation problem [19,20]; in this way, EMPC focuses on how to address economic op-
timization (the operation performance in industrial processes) directly in real time [21].
Unlike the quadratic objective function used in tracking MPC, EMPC incorporates a general
cost function that directly accounts for process economics such as process yield or produc-
tion rate, and this process economics-oriented general objective function gives EMPC the
ability to generate optimal dynamic operation performance [22]. In other words, EMPC
can determine the operating conditions leading to the optimal operation performance, and
the safe operating conditions of the processes can also be guaranteed [23].

The direct responses to the dynamic economic optimization resulting from the gen-
eral objective function in EMPC will inevitably bring stability issues to the controlled
processes [24]. Additional conditions are required for EMPC to guarantee closed-loop
stability, and there are mainly two types of common approaches to ensuring stability in
the EMPC community: one is the use of the dissipativity condition, and the other is the
additional terminal constraints. Dissipativity-based EMPC is terminal-free EMPC, which
relies on the turnpike property [25,26], but the turnpike property and dissipativity both
have strict requirements on the controlled plant; thus, we mainly focus on the terminal
constraint-based EMPC in this paper. Terminal constraints in EMPC can be categorized into
three common types: terminal equality-based EMPC [27], terminal region-based EMPC [28],
and Lyapunov-based EMPC [29]. However, Lyapunov-based EMPC needs to construct
a Lyapunov function, terminal equality-based EMPC needs to steer the terminal state
into a pre-determined steady state, which makes the feasible region small, and terminal
region-based EMPC ignores the operation performance within the terminal region.
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Thus, terminal constraint-based EMPC loses some optimality of the global operation
performance because of the terminal conditions, and a better control strategy that can
realize a better optimal dynamic operation performance is desired.

To summarize, given a general economic objective function defined in the operational
layer, the global operation performance of the whole system can be evaluated (which
will be discussed in detail in Section 2). The advantage of RTO is that it separates the
optimizing control of the global operation performance into two layers: the upper RTO layer
calculates the optimal steady-state operation first, and then the lower control layer tracks
this optimized setpoint. In this way, the optimization of the global operation performance in
RTO is easy to realize. However, RTO cannot optimize the transient operation performance.
DRTO, on the other hand, uses a dynamic model in the RTO layer, which can optimize
the transient operation performance, and the global operation performance can thus be
improved. However, the time-scale separation of DRTO makes the optimized trajectory
sub-optimal in real-time control. EMPC integrates DRTO and the MPC layer to address
the time-scale separation problem to further increase the global operation performance,
but the additional terminal conditions restrict the improvements of the global operation
performance. Thus, the main aim of this study is to address the drawbacks of EMPC to
further improve the global operation performance of the controlled system.

In view of the above issues, the main contribution of this paper is to propose a new kind
of control strategy named efficiency-oriented model predictive control (EfiMPC), which
can further improve the global operation performance of industrial processes. Specifically,
EfiMPC is a nested optimization structure where the outer layer mainly focuses on the
global performance of the whole system, and the inner layer mainly focuses on the control
performance to guarantee the closed-loop stability of the processes. Ideal EfiMPC is
first proposed, where the inner layer is the offline construction of an efficiency-oriented
terminal region, and then a practical EfiMPC is constructed, where the inner layer is the
online optimization of the dynamic operation performance, and the efficiency-oriented
terminal region needs not to be explicitly defined in practical EfiMPC. With this nested
optimization structure, EfiMPC can realize a better global dynamic operation performance
by optimizing control.

The rest of this article is organized as follows. Section 2 presents the problem that
efficiency-oriented model predictive control (EfiMPC) tries to address. In Section 3, the
details of the proposed EfiMPC are given, and ideal EfiMPC, where the inner layer is
calculated offline, and practical EfiMPC, where the inner layer is optimized online, are
discussed. The recursive feasibility, as well as the closed-loop stability of practical EfiMPC,
is also discussed briefly. Section 4 demonstrates the superiority of the proposed EfiMPC
strategy compared to the other three control strategies in a CSTR application. Finally,
Section 5 concludes this article.

2. Problem Statement

The problem considered in this paper is the optimization of the operation performance
of industrial processes, namely the global performance of the whole system, and to obtain
optimal operation performance results from the optimal operation and control of plants
with the help of the ideal control strategy. This operation performance is usually evaluated
by a general economic objective function lP defined in the operational layer. Mathemati-
cally speaking, the ideal optimizing control problem, which aims to achieve the optimal
operation performance, has the following form:

J∗P = min
uP

JP(uP; x0) = min
uP

∫ t f
t0

lP(x(t), uP(t))dt,

s.t.
.
x = f (x(t), uP(t)), x(t0) = x0

x(t) ∈ X , uP(t) ∈ U , t0 ≤ t ≤ t f

(1)
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where x0 is the initial state of the system, up is the decision variable of the optimization
problem (1), lP is the economic objective function defined in the operational layer represent-
ing the instantaneous global performance of the whole system, f is the nonlinear dynamics
of the industrial process, and X and U are the constraints of the system states and control
inputs, respectively.

In Equation (1), t0 is the starting instant of the process operation, and t f is the ending
instant of the process operation. JP is the global operation performance function of the
controlled process over the entire operation interval from t0 to t f , J∗P is the optimal global
operation performance, and u∗P is the corresponding optimal input trajectory.

However, optimizing control problem (1) is too idealistic to implement in practice. The
main issues are: (1) the optimal solution u∗P to Equation (1) is an offline optimal solution,
and thus, the optimality of u∗P will be degraded when disturbances or uncertainties exist
during the process operation; (2) the optimization horizon of Equation (1) is the entire
operation interval from t0 to t f , which is too large to solve this optimization problem
successfully.

In view of these issues, researchers prefer to use a receding horizon strategy to approx-
imate this idealistic optimizing control problem (1). To be specific, short-horizon-based
online optimization problems can be used to solve this global optimizing control problem
at every sample instant tk, and it is usually denoted as (nonlinear) model predictive control
(MPC) with the following typical definition:

J∗k = min
uk

Jk(uk; xk) = min
uk

∫ tk+H
tk

lF(x(t), uk(t))dt + VF(xk+H)

s.t.
.
x = f (x(t), uk(t)), x(tk) = xk, xk+H = x(tk + H)

x(t) ∈ X , uk(t) ∈ U , tk ≤ t ≤ tk + H

xk+H ∈ XF

(2)

where tk, k = 0, 1, . . . , represents the current sample instant, xk = x(tk) represents the
system state at time instant tk for brevity, H represents a finite prediction horizon and
xk+H = x(tk + H) represents the terminal state at the end of the online optimization
problem (2); VF(xk+H) is a terminal cost and XF is a terminal constraint, and they are added
mainly to guarantee the closed-loop stability of the controlled process; lF is a stage cost
function of the controller aiming to guide the control actions. Usually, this stage cost lF
is typically a penalty function of the tracking error with respect to the setpoint (xs, us),
and this setpoint is obtained from a real-time optimization (RTO) layer implementing the
optimization of the steady-state operation performance lP(xs, us).

However, unlike the idealistic problem (1), which directly optimizes the global opera-
tion performance, the approximation problem (2) focuses only on optimizing the control
performance with respect to the optimal steady state (xs, us) within the prediction hori-
zon H, and the local operation performance is a byproduct of maintaining the optimal
steady-state operation.

Specifically, in Equation (2), Jk is an open-loop control performance function, J∗k is
the optimal control performance, and u∗k is the corresponding optimal control action. At
every sample instant tk, k = 0, 1, 2, . . ., MPC will solve the online optimization problem (2)
repeatedly, and then the first control action u∗k (tk) will be implemented in the plant. The
resulting implicit closed-loop input profile is defined as follows:

u∗C(t) = u∗k (tk), for t ∈ [tk, tk+1), k = 0, 1, 2, . . .
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The closed-loop system controlled by u∗C(t) has a corresponding global operation
performance J∗C evaluated by the economic objective function lP defined in the operational
layer, and its specific value is calculated as follows:

J∗C =
∫ t f

t0

lP(x(t), u∗C(t))dt

Since this operation performance J∗C is realized by the online optimization of problem (2),
which aims to optimize the control performance lF, the degree of the approximation of J∗C
towards the ideal optimal operation performance J∗P is disappointing. Thus, it is desired
to construct a control strategy that can realize optimizing control with a better operation
performance J∗E, and the efficiency-oriented model predictive control (EfiMPC) proposed
in this paper is a promising control strategy that aims to better approximate J∗P by J∗E. The
term efficiency-oriented can be understood as EfiMPC improving the efficiency of this
approximation J∗E

J∗P
→ 1 , where J∗P is determined by the controlled industrial process itself.

3. Efficiency-Oriented Model Predictive Control
3.1. Motivations for Efficiency-Oriented MPC

The recently proposed economic MPC (EMPC) strategies, for example, terminal-
equality-based EMPC (Equ-EMPC) and terminal-region-based EMPC (Reg-EMPC), can
improve the global operation performance of the process operation to some extent, but
they have their own limitations that result from their structures. The advantages and
disadvantages of Equ-EMPC and Reg-EMPC are briefly illustrated in Figure 1.
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In Figure 1, xk is the system state at the current sample instant tk, and xs is the optimal
steady state in the interior of a terminal region Xter, which means xs ∈ Xter. This optimal
steady state xs is obtained from the following sub-optimization problem:

minimize
xs ,us

lP(xs, us)

s.t. f (xs, us) = 0

xs ∈ Xter ⊆ X , us ∈ U

(3)
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where lP is the economic objective defined in the operational layer, f is the dynamic model
of the industrial process, and X and U are the constraints of the system states and control
inputs, respectively. This optimal steady state xs can be used as the terminal equality
constraint to guarantee the closed-loop stability of the controlled system, and the resulting
Equ-EMPC is defined as follows:

V∗Equ = min
u

∫ tk+Hp
tk

lP(x(t), u(t))dt

s.t.
.
x = f (x, u)

x(t) ∈ X , u(t) ∈ U , ∀t ∈
[
tk, tk + Hp

)
x
(
tk + Hp

)
= xs

(4)

where tk is the current sample instant, Hp is the prediction horizon of the online optimiza-
tion problem, f (x, u) is the dynamic model of the controlled process, and X and U are the
constraints of system states and control inputs, respectively. x

(
tk + Hp

)
is the terminal state

at the end of the optimization horizon, and it is steered into the optimal steady state xs.
Equ-EMPC can optimize the transient operation performance before steady-state oper-

ation, and the global operation performance has thus been improved accordingly. However,
for the general economic objective function lP considered in this paper, it is assumed that
a better dynamic state xbest ∈ Xter exists that satisfies lP(xbest, ubest) < lP(xs, us); thus, the
optimal dynamic operation is more desirable than the steady-state operation defined by
xs. On the other hand, this hard equality constraint x

(
tk + Hp

)
= xs restricts the feasible

searching space of the control input, and the range of the corresponding admissible control
trajectories are reduced accordingly. These admissible states constrained by xs are denoted
by the region within the dashed-blue lines in Figure 1, and the optimization of the transient
operation performance is degraded because of this smaller feasible region.

To summarize, the limitations of Equ-EMPC with respect to the operation performance
are mainly twofold: (1) it cannot lead to the optimal dynamic operation based on a general
objective function lP; (2) the transient operation performance before stabilizing into the
optimal steady state xs is also degraded because of a smaller feasible region.

As for Reg-EMPC, the terminal region Xter illustrated in Figure 1 helps to enlarge the
feasible space of the admissible trajectories denoted by the region within the dashed-green
lines; thus, the transient operation performance of Reg-EMPC is better than that of the
Equ-EMPC. The detailed definition of Reg-EMPC is as follows:

V∗Reg = min
u

∫ tk+Hp
tk

lP(x(t), u(t))dt

s.t.
.
x = f (x, u)

x(t) ∈ X , u(t) ∈ U , ∀t ∈
[
tk, tk + Hp

)
x
(
tk + Hp

)
∈ Xter

(5)

where the definitions of most parameters are the same as those defined in Equation (4), and
Xter is the terminal region where xs ∈ Xter.

In Reg-EMPC, it is assumed that there exists a local control policy
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(·) within the
terminal region Xter such that any states x ∈ Xter can be controlled to stay within this
terminal region. This local control policy is used mainly for the considerations of the
recursive feasibility and the closed-loop stability, while the operation performance within
this terminal region has been ignored. As shown in Figure 1, Reg-EMPC will steer the
terminal state x

(
tk + Hp

)
into the terminal region Xter, but the future behaviors of the

system with respect to the operation performance are uncertain; thus, it is not safe to say
that the closed-loop operation performance of Reg-EMPC is definitely better than that
of Equ-EMPC. Instead, it can only be concluded that the open-loop transient operation
performance of Reg-EMPC is better than that of Equ-EMPC.
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To summarize, Reg-EMPC can guarantee a better open-loop transient operation per-
formance than Equ-EMPC, but the closed-loop operation performance of Reg-EMPC is
uncertain because of the use of the terminal region Xter. In other words, Reg-EMPC can
directly optimize the local operation performance, but it is unable to directly optimize the
global operation performance.

Drawbacks, on the other hand, always mean there are chances for improvement. The
newly proposed control strategy in this paper mainly aims to address the limitations that
exist in Equ-EMPC and Reg-EMPC. Briefly speaking, efficiency-oriented model predictive
control (EfiMPC) tries to (1) improve the open-loop operation performance, which means
enlarging the admissible state region for optimization, and (2) improve the closed-loop
operation performance, which means guaranteeing the operation performance within the
terminal region Xter to generate a better global operation performance.

3.2. Ideal Efficiency-Oriented Model Predictive Control

Ideal efficiency-oriented MPC (ideal EfiMPC) is defined as follows:

V∗I−E f i = min
u

∫ tk+Hp
tk

lP(x(t), u(t))dt

s.t.
.
x = f (x, u)

x(t) ∈ X , u(t) ∈ U , ∀t ∈
[
tk, tk + Hp

)
x
(
tk + Hp

)
∈ X E f i

ter ⊆ Xter

(6)

where the definitions of most parameters are the same as those defined in Equation (5), X E f i
ter

is an efficiency-oriented terminal region, which is a subset of the control forward-invariant
set Xter, and the optimal steady state xs is in the interior of this X E f i

ter . A corresponding
local control policy
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(·) as defined in Reg-EMPC can also guarantee stabilization within
this efficiency-oriented terminal region X E f i

ter .
The specific definition of X E f i

ter is as follows:

X E f i
ter =

{
x
∣∣∣∀x(t0) ∈ X

E f i
ter , ∃u(t0; tter) such that x(tter) = xs and Ave(Xter) ≤ lP(xs, us)

}
(7)

where u(t0; tter) = u(t), t ∈ [t0, tter) is a feasible control sequence that can steer the state
x(t0) ∈ X

E f i
ter into the optimal steady state xs ∈ X E f i

ter . In other words, xs is in the interior of
X E f i

ter , and xs can be reached from any state within this efficiency-oriented terminal region.
Ave(Xter) is the average dynamic operation performance of the system dynamics controlled
by u(t0; tter), and it satisfies:

Ave(Xter) =

∫ tter
t0

lP(x(t), u(t))dt

tter − t0
.

This inequality condition ave(Xter) ≤ lP(xs, us) guarantees that the dynamic operation
performance controlled by ideal EfiMPC is at least no worse than the optimal steady-state
operation (minimum implies optimum in this paper).

The brief ideas of ideal EfiMPC are illustrated in Figure 2, and its superiorities over
Equ-EMPC and Reg-EMPC are as follows:

(1) Since xs ∈ X E f i
ter , the feasible region of the admissible states of ideal EfiMPC is greater

than that of Equ-EMPC; thus, the transient operation performance of ideal EfiMPC
evaluated by the economic objective lP is better than that of Equ-EMPC. In addition,
because the average dynamic performance of Ave(Xter) is at least no worse than
the optimal steady-state operation, ideal EfiMPC can also realize a better dynamic
operation, and the closed-loop operation performance is thus better than that of
Equ-EMPC.
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(2) Reg-EMPC focuses mainly on the improvement of the local operation performance
within the prediction horizon Hp, and the global operation performance of Reg-
EMPC cannot be guaranteed. On the contrary, ideal EfiMPC can guarantee the global
operation performance within the efficiency-oriented terminal region X E f i

ter with the
help of the average dynamic performance condition Ave(Xter) ≤ lP(xs, us); thus, the
closed-loop performance of Reg-EMPC evaluated by the economic objective cannot be
guaranteed, while ideal EfiMPC can definitely generate a better dynamic operation
performance.
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The performance of ideal EfiMPC is heavily dependent on the construction of the
efficiency-oriented terminal region X E f i

ter . As shown in Figure 2, the state trajectory from xk
to xk+Hp aims to improve the transient operation performance within the prediction horizon
Hp, and it can be regarded as an outer layer focusing on the optimization perspective; the

terminal state xk+Hp is controlled into an efficiency-oriented terminal region X E f i
ter which

relates the local operation performance with the global operation performance, and it can
be regarded as an inner layer focusing on the control perspective.

In essence, ideal EfiMPC can be regarded as a nested optimization structure based on
the construction of an efficiency-oriented terminal region X E f i

ter in its inner layer as follows:

V∗I−E f i = min
u

∫ tk+Hp
tk

lP(x(t), u(t))dt

s.t.
.
x = f (x, u)

x(t) ∈ X , u(t) ∈ U , ∀t ∈
[
tk, tk + Hp

)
x
(
tk + Hp

)
∈ X E f i

ter ⊆ Xter

s.t. X E f i
ter =

{
x
∣∣∣∀x(t0) ∈ X

E f i
ter , ∃u(t0; tter) such that x(tter) = xs and Ave(Xter) ≤ lP(xs, us)

}
(8)

where the inner layer is an offline construction of X E f i
ter in ideal EfiMPC, and X E f i

ter is defined
in Equation (7). This nested structure integrates the optimization and control into one
framework, where the outer layer aims to optimize the transient operation performance
by u(t), t ∈

[
tk, tk + Hp

)
, and the inner layer aims to control the closed-loop system while

guaranteeing the dynamic operation performance, which is at least no worse than the
optimal steady-state operation.
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Remark 1. When X E f i
ter = {xs}, ideal EfiMPC will be degraded into Equ-EMPC, and when

X E f i
ter = Xter, ideal EfiMPC will be degraded into Reg-EMPC. Thus, it is not surprising that ideal

EfiMPC can outperform both Equ-EMPC and Reg-EMPC because they can be regarded as two
extremes of ideal EfiMPC.

Ideally, if one can obtain an optimal X E f i
ter by offline construction, ideal EfiMPC can

generate the optimal dynamic operation performance as expected. However, this X E f i
ter is a

problem-dependent subset that has to be constructed for every control problem, and the
construction itself is not a simple task. Indeed, we do not need such an optimal efficiency-
oriented terminal region X E f i

ter where every element x ∈ X E f i
ter in it can generate a promising

dynamic operation; instead, we only need to find one feasible dynamic operation that
outperforms steady-state operation. Of course, we want this “feasible” dynamic operation
to perform as best as possible, and this leads to an online optimization of the dynamic
operation within X E f i

ter . Thus, the offline construction of X E f i
ter in the inner layer in ideal

EfiMPC can be realized by an online optimization problem. This kind of nested control
strategy is denoted as “practical efficiency-oriented MPC” (practical EfiMPC), and it is
discussed in detail in the following subsection.

3.3. Practical Efficiency-Oriented Model Predictive Control

Practical efficiency-oriented MPC (practical EfiMPC) is defined as follows:

V∗P−E f i = min
uHp ,uHter

∫ tk+Hp
tk

lP
(
x(t), uHp(t)

)
dt + VP

(
x
(
tk + Hp

))
s.t.

.
x = f

(
x, uHp

)
x(t) ∈ Xout, uHp(t) ∈ Uout, ∀t ∈

[
tk, tk + Hp

)
x
(
tk + Hp

)
∈ Xter

VP
(

x
(
tk + Hp

))
=

{
0, Vave ≤ le(xs, us)

∞, otherwise

Vave = min
uHter

1
Hter

∫ tp+Hter
tp

lP(x(t), uHter (t))dt

s.t.
.
x = f (x, uHter ), x

(
tp
)
= x

(
tk + Hp

)
x(t) ∈ Xin, uHter (t) ∈ Uin, ∀t ∈

[
tp, tp + Hter

)
x
(
tp + Hter

)
= xs

(9)

where the definitions of most parameters are the same as those defined in Equation (8),
Hp is the prediction horizon of the outer level optimization problem, uHp is the decision
variable of the outer level, x

(
tk + Hp

)
is the terminal state of the outer level, which plays the

role of a connecting parameter transmitting the information between the outer level and the
inner level, and VP is the optimizing control parameter indicating whether a better dynamic
operation exists. Its specific value depends on Vave, which is the average dynamic operation
performance of the inner level. Specifically, if the value of Vave is better (smaller in this
paper) than the optimal steady-state operation le(xs, us), then VP is set to be zero to accept
this promising dynamic operation performance; otherwise, VP is set to infinity to indicate
that the local performance resulting from uHp is not acceptable from the perspective of
the global operation performance, and this disappointing dynamic operation has to be
rejected. Hter is the prediction horizon of the inner level optimization problem, and uHter

is the decision variable of the inner level that can steer the system state into the optimal
steady state xs ∈ X E f i

ter .
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In practical EfiMPC, X E f i
ter is an implicitly defined efficiency-oriented terminal re-

gion: if the optimizing control parameter VP = 0, it implies that x
(
tk + Hp

)
falls into an

efficiency-oriented terminal region, and the dynamic operation performance is better than
the optimal steady-state operation; otherwise, it implies that x

(
tk + Hp

)
does not belong to

any efficiency-oriented terminal region, and the performance of the optimized dynamic
operation is poor. In addition, the control actions uHp and uHter in practical EfiMPC are
both piece-wise constant control sequences, which means u(
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steady-state operation is the best operation for the controlled process. If the optimal so-

lution to practical EfiMPC (9) is 𝑉𝑃−𝐸𝑓𝑖
∗ = ∞, which means that a better dynamic opera-

tion does not exist, then practical EfiMPC will update the terminal region 𝒳𝑡𝑒𝑟  to execute 

the optimal steady-state operation. The update mechanism is as follows: 

𝒳𝑡𝑒𝑟 = {
𝑥𝑠,    𝑖𝑓 𝑉𝑃−𝐸𝑓𝑖

∗ = ∞

𝒳𝑡𝑒𝑟 ,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
  

∈ [tk, tk+1).
The brief ideas of practical EfiMPC are illustrated in Figure 3. As shown in Figure 3,

the admissible states of the outer level are not constrained by the control-oriented equal-
ity constraint xs; thus, practical EfiMPC can optimize the transient operation perfor-
mance to a larger extent. While in the inner level, the control-oriented equality constraint
x
(
tp + Hter

)
= xs will shrink the range of the admissible states, and the operation per-

formance suffers as a result. In this sense, the main functions of these two levels are
different: the outer level focuses mainly on improving the operation performance within
the prediction horizon Hp, while the inner level focuses mainly on satisfying the control
performance to steer the system into xs. The terminal state x

(
tk + Hp

)
at the outer level is

the connecting parameter between the two nested levels; it is the result of the operation
performance optimization of the outer level, and then it becomes the starting point of the
inner level. At the inner level, the system state is steered into xs, and the dynamic operation
performance is also optimized along the system trajectory.
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Figure 3. Illustration of practical efficiency-oriented MPC.

The nested structure of practical EfiMPC is illustrated in Figure 4. The dynamic
operation performance of the inner level sends feedback information to the outer level:
if the average dynamic operation performance is better than the optimal steady-state
operation, it is implied that the controller finds a better dynamic operation; otherwise, the
steady-state operation is the best operation for the controlled process. If the optimal solution
to practical EfiMPC (9) is V∗P−E f i = ∞, which means that a better dynamic operation does
not exist, then practical EfiMPC will update the terminal region Xter to execute the optimal
steady-state operation. The update mechanism is as follows:

Xter =

{
xs, i f V∗P−E f i = ∞

Xter, otherwise
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Remark 2. With the help of the update mechanism of the terminal region Xter, practical EfiMPC
can intelligently distinguish whether the controlled process has a better dynamic operation than the
optimal steady-state operation. If such a better dynamic operation based on the current system state
does not exist, practical EfiMPC will be degraded into Equ-EMPC, and the online optimization
problem will be re-optimized with the updated terminal region Xter = {xs}; otherwise, practi-
cal EfiMPC will obtain an optimal dynamic operation to generate the optimal global dynamic
operation performance.

The recursive feasibility and the closed-loop stability of practical EfiMPC are discussed
briefly as follows. At the current sample instant tk, assume that the practical EfiMPC
problem (9) has an optimal solution uk

∗ =
{

uk
Hp ,∗, uk

Hter ,∗

}
, where

uk
Hp ,∗ =

{
uk

Hp ,∗(0), uk
Hp ,∗(1), . . . , uk

Hp ,∗
(

Hp − 1
)}

,

and
uk

Hter ,∗ =
{

uk
Hter ,∗(0), uk

Hter ,∗(1), . . . , uk
Hter ,∗(Hter − 1)

}
.

At the next sample instant tk+1, there must exist a feasible solution uk+1
f =

{
uk+1

Hp , f , uk+1
Hter , f

}
such that

uk+1
Hp , f =

{
uk

Hp ,∗(1), uk
Hp ,∗(2), . . . , uk

Hp ,∗
(

Hp − 1
)
, uk

Hter ,∗(0)
}

,

and
uk+1

Hter , f =
{

uk
Hter ,∗(1), uk

Hter ,∗(2), . . . , uk
Hter ,∗(Hter − 1), us

}
.

where us is the optimal steady-state control action satisfying f (xs, us) = 0.
Since feasibility at sample instant tk guarantees the feasibility at the next sample

instant tk+1 and by backward recursion and induction, practical EfiMPC is recursively
feasible if it is initially feasible.

The recursive feasibility of practical EfiMPC guarantees that there always exists a
feasible solution to the problem Equation (9); thus, it is implied that the system states
x(tk), k = 0, 1, . . . can be steered into xs within

(
Hp + Hter

)
steps. These steerable states

form a reachable set XR, where the optimal steady state xs is reachable from any state
x ∈ XR in it. Let the initial state satisfy x(t0) ∈ XR, then x(t) ∈ XR, ∀t ≥ t0; thus, the
system states controlled by practical EfiMPC will be kept in this reachable set XR, and the
closed-loop stability with respect to XR is guaranteed.

4. Results and Discussion
4.1. Application to a Chemical Process Example

In this section, a chemical process example from [30] is used to demonstrate the
effectiveness of the proposed practical efficiency-oriented model predictive control (prac-
tical EfiMPC or just EfiMPC for brevity in this simulation section), and the simulation
results of practical EfiMPC are compared with traditional tracking MPC (TMPC), equality-
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constraint-based economic MPC (Equ-EMPC), and region-constraint-based economic MPC
(Reg-EMPC) control strategies.

Specifically, the chemical process considered in this paper is the oxidation of ethylene
to ethylene oxide in a non-isothermal continuously stirred tank reactor (CSTR). The CSTR
process is defined by the following three complex reactions:

C2H4 +
1
2O2 → C2H4O

C2H4 + 3O2 → 2CO2 + 2H2O

C2H4O + 5
2O2 → 2CO2 + 2H2O

(10)

The dimensionless equation representing this CSTR application is
.
x = f (x, u), which

has the following specific definitions [31,32]:
.
x1 = u1(1− x1x4)
.
x2 = u1(u2 − x2x4)− A1eγ1/x4(x2x4)

0.5 − A2eγ2/x4(x2x4)
0.25

.
x3 = −u1x3x4 + A1eγ1/x4(x2x4)

0.5 − A3eγ3/x4(x2x4)
0.5

.
x4 = u1

x1
(1− x4) +

B1
x1

eγ1/x4(x2x4)
0.5 + B2

x1
eγ2/x4(x2x4)

0.25 + B3
x1

eγ3/x4(x2x4)
0.5 − B4

x1
(x4 − Tc)

(11)

In Equation (11), the constant parameters and their specific values are as follows [30]:
γ1 = −8.13, γ2 = −7.12, γ3 = −11.07, A1 = 92.80, A2 = 12.66, A3 = 2412.71, B1 = 7.32,
B2 = 10.39, B3 = 2170.57, B4 = 7.02, and Tc = 1.0. In addition, the dimensionless state
variables x1, x2, x3, and x4 represent the dimensionless gas density, ethylene concentra-
tion, ethylene oxide concentration, and temperature in the reactor, respectively; u1, u2 are
control inputs, where u1 represents the feed volumetric flow rate, and u2 represents the
concentration of ethylene in the feed.

The aim of this CSTR application is to maximize the global operation performance
P
(

t0, t f

)
over the whole process operation from the starting instant t0 to the ending instant

t f , and it can be defined by the minimization problem as follows:

max
u

P
(

t0, t f

)
= −min

u
P
(

t0, t f

)
= min

u
− P

(
t0, t f

)
= min

u

∫ t f
t0
−lP(t)dt

s.t.Cr =
∫ t f

t0
u1(t)u2(t)dt ≤ C f s

(12)

where Cr represents the amount of the reactant feedstock during the CSTR process opera-
tion, and it is limited by the inventory constraint C f s. lP(t) is the instantaneous operation
performance defined in the operational layer that represents the yield of oxide, and it has
the following form as defined in [30]:

lP(t) = lCSTR
P (x(t), u(t)) = u1(t)x3(t)x4(t) (13)

Due to the actuator limitations, the control actions u are constrained by
0.0704 ≤ u1 ≤ 0.7042, 0.2465 ≤ u2 ≤ 2.4648. The CSTR process is assumed to be ini-
tialized at the initial state x0 = [0.9, 1.5, 0.2, 0.8]T , and a sample interval ∆tsam = 1s is used
in this simulation. The first-order Runge–Kutta numerical integration method was used
to obtain the discrete model fd from Equation (11), and the integration step used here is
hu = 10−2. The feedstock constraint defined in Equation (12) satisfies C f s = 0.175

(
t f − t0

)
.

In addition, xs = [0.9956, 1.7511, 0.2511, 1.0043]T represents the optimal steady state, and
us = [0.0704, 2.4648]T is the corresponding optimal control input.

The practical EfiMPC strategy for this CSTR application is defined as follows:

EfiMPC : V∗P−E f i = min
uHp ,uHter

∫ tk+Hp

tk

lP
(
x(t), uHp(t)

)
dt + VP

(
x
(
tk + Hp

))
(14)
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s.t. Equation (11), ∀t ∈
[
tk, tk + Hp

)
(14a)

0.0704 ≤ uHp,1(t) ≤ 0.7042, tk ≤ t ≤ tk + Hp (14b)

0.2465 ≤ uHp,2(t) ≤ 2.4648, tk ≤ t ≤ tk + Hp (14c)∫ tk+Hp

tk

uHp,1(t)uHp,2(t)dt ≤ 0.175Hp (14d)

x
(
tk + Hp

)
∈ Xter = Bδp(xs) =

{
x
∣∣∣‖x− xs‖2 ≤ δp

}
VP
(

x
(
tk + Hp

))
=

{
0, Vave ≤ le(xs, us)
∞, otherwise

Vave = min
uHter

1
Hter

∫ tp+Hter

tp
lP(x(t), uHter (t))dt

s.t. x
(
tp
)
= x

(
tk + Hp

)
Equation (11), ∀t ∈

[
tp, tp + Hter

)
0.0704 ≤ uHter ,1(t) ≤ 0.7042, ∀t ∈

[
tp, tp + Hter

)
0.2465 ≤ uHter ,2(t) ≤ 2.4648 , ∀t ∈

[
tp, tp + Hter

)
x
(
tp + Hter

)
= xs

where most of the parameters are defined the same as those in Equation (9), Equation (11)
is the dynamic model of the CSTR process, Bδp(xs) is a δp-neighborhood of the optimal

steady state xs, and ‖x‖2 is a norm computation satisfying ‖x‖2 =
√

x2.
The comparative control strategies TMPC, Equ-EMPC, and Reg-EMPC for controlling

this CSTR application are defined as follows:

TMPC : V∗TMPC = min
u

∫ tk+Hp
tk

‖x(t)− xs‖2
Q + u(t)− us‖2

Rdt

s.t. Equations (14a–d)
(15)

Equ− EMPC : V∗Equ = min
u

∫ tk+Hp
tk

−u1(t)x3(t)x4(t)dt

s.t. Equations (14a–d)

x
(
tk + Hp

)
− xs = 0

(16)

Reg− EMPC : V∗Reg = min
u

∫ tk+Hp
tk

−u1(t)x3(t)x4(t)dt

s.t. Equations (14a–d)

‖x
(
tk + Hp

)
− xs‖2 ≤ δR

(17)

where Q and R are symmetric positive semi-definite weighting matrices, and δR is a positive
scalar value. In Equation (15), the setpoint (xs, us) is optimized and passed by the real-time
optimization (RTO) layer; thus, the TMPC strategy (15) also represents an RTO algorithm.

Remark 3. Some readers may be confused that the comparative control strategies (14)–(17) target
different behaviors by their corresponding objective functions and constraints. However, indeed, com-
parisons among these control strategies are fair because the controlled system dynamics were used to
calculate the same closed-loop operation performance LP =

∫ t f
t0
−lP(x(t), u(t))dt in the simulation.

In addition, the values of Lp indicate the superiorities of the comparative control strategies.
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4.2. Simulation Results

The parameters of the simulations in this paper are defined as follows:
Q = diag([1, 1, 1, 1]), R = diag([1, 1]), t f = 50, δp = 1, δR = 0.1, Hp = 10, Hter = 10,
x0 = [0.9, 1.5, 0.2, 0.8]T , xs = [0.9956, 1.7511, 0.2511, 1.0043]T , and us = [0.0704, 2.4648]T ,
where diag represents the diagonal matrix, and the superscript T represents the transpose
of the vector.

The instantaneous operation performances of the comparative control strategies are
illustrated in Figure 5, and the minimum value of the instantaneous operation performance
implies the optimal objective function value l∗P. As shown in the figure, the instantaneous
operation performance controlled by the TMPC strategy is almost steady. This is because
the aim of the TMPC is to control the system into steady-state operation, and the operation
performance is only a byproduct of this stabilization control performance; thus, a steady-
state control performance will lead to a stable operation performance.
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The instantaneous operational performances controlled by Equ-EMPC and Reg-EMPC
are a little bit more dynamic than that controlled by TMPC, and some of the instantaneous
operation performances can perform better than steady-state operation; this better dy-
namic operation performance mainly results from the transient operation performance
optimization that exists in Equ-EMPC and Reg-EMPC.

The instantaneous operation performance controlled by EfiMPC has the best dy-
namic operation performance, which is better than that of Equ-EMPC and Reg-EMPC.
EfiMPC also has the best instantaneous operation performance with the minimum value
ldynamic
P,∗ = −0.0984 < lsteady

P,∗ (xs, us) = −0.0178. This optimal dynamic operation perfor-
mance of EfiMPC is realized by the outer level of the nested structure, where the dynamic
operation of the operation performance is directly optimized at the control layer online.
However, this transient superiority of EfiMPC resulting from the instantaneous operation
performance alone does not mean the superiority of the optimal global performance of
the whole system; thus, the closed-loop operation performances are required to further
compare the global performances of the comparative control strategies.

The closed-loop operation performances of the comparative control strategies are
illustrated in Figure 6, and it is calculated as follows, where the maximum value of the
closed-loop operation performance implies the optimum:

LP =
∫ t f

t0

−lP(x(t), u(t))dt
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where lP(x(t), u(t)) represents the instantaneous operation performance, and t0 and t f
represent the starting instant of the CSTR process and the ending instant of the CSTR
process, respectively.
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As shown in Figure 6, it is clear that EfiMPC can generate the best closed-loop op-
eration performance with the value of LE f i

P = 0.9487 (the maximum value implies the
optimum), and the closed-loop operation performances controlled by TMPC, Equ-EMPC,
and Reg-EMPC are LTMPC

P = 0.8383, LEqu−EMPC
P = 0.8919, and LReg−EMPC

P = 0.8529,
respectively.

The Equ-EMPC strategy and the Reg-EMPC strategy can both outperform the TMPC
strategy. This is because Equ-EMPC and Reg-EMPC both can optimize the transient
operation performance, while TMPC only optimizes the control performance, and the
operation performance of TMPC is heavily dependent on the steady-state operation.

The reason that EfiMPC can outperform Equ-EMPC and Reg-EMPC is that EfiMPC
can not only optimize the transient operation performance in a wider search space but also
guarantee that the optimized dynamic operation performance is better than the steady-state
operation in the closed-loop perspective.

Thus, the effectiveness of the proposed EfiMPC has been demonstrated by the best
closed-loop operation performance LE f i

P = 0.9487, as reported in Table 1.

Table 1. The closed-loop operation performance of the comparative control strategies.

EfiMPC TMPC Equ-EMPC Reg-EMPC
LP 0.9487 0.8383 0.8919 0.8529
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To further investigate the performances of the comparative control strategies, the state
trajectories of these four comparative control strategies are illustrated in Figure 7, and the
control inputs of these four comparative control strategies are illustrated in Figure 8. As
shown in these two figures, after a short transient behavior period, the control actions, as
well as the corresponding state trajectories controlled by TMPC, become steady, which
indicates that TMPC leads to steady-state operation in this CSTR process.
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Figure 7. The state trajectories of the comparative control strategies.

Unlike TMPC, which focuses only on the control performance with respect to the
optimal steady state, Equ-EMPC and Reg-EMPC both can optimize the transient operation
performance before steady state, and the resulting control actions and the corresponding
state trajectories thus have dynamic behaviors. However, limited by the small search space
of Equ-EMPC and by the uncertain operation performance within the terminal region of
Reg-EMPC, Equ-EMPC and Reg-EMPC can only optimize the dynamic operation to a
small extent.

On the other hand, thanks to the nested structure of EfiMPC, it can obtain a better
dynamic operation performance compared to the optimal steady-state operation online,
and the control actions can perform a much more dynamic behavior with a higher fre-
quency compared to Equ-EMPC and Reg-EMPC, as shown in Figure 8. More flexible
movements of the control actions imply a higher optimization potential for closed-loop
operation performance.
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4.3. Discussion

Although TMPC aims only to optimize the control performance with respect to the
optimal steady state (xs, us), it can also generate an acceptable closed-loop operation
performance with LTMPC

P = 0.8383, and this operation performance is mainly guaranteed
by the optimal steady state (xs, us) optimized by the upper RTO layer. To be specific,
the upper RTO layer optimizes the global objective of the whole system lP based on a
steady-state model of the controlled process. The lower advanced control layer receives
this optimized set point and tries its best to stabilize the system into this steady state.
Although the objective of the control layer is the control performance with respect to
the given set point, the operation performance can be guaranteed in a neighborhood
of the optimal steady-state operation by this control performance. Thus, although the
operation performance is a byproduct of the TMPC strategy, its operation performance can
be guaranteed to some extent.

Since TMPC can only guarantee the operation performance near the optimal steady-
state operation, the optimization of the transient operation performance has the potential
to lead to a better closed-loop operation performance, and Equ-EMPC and Reg-EMPC
are introduced by researchers for this purpose. Take this CSTR process for example,
LEqu−EMPC

P = 0.8919 and LReg−EMPC
P = 0.8529 indicate that Equ-EMPC and Reg-EMPC can

find a better dynamic operation than that of TMPC. However, it is necessary to mention
that the improvements in Equ-EMPC and Reg-EMPC can only be achieved for the control
applications where the steady-state operation is not the optimal operation and better
dynamic operations exist in the controlled problem; otherwise, the superiorities of Equ-
EMPC and Reg-EMPC will deteriorate.

As for the proposed EfiMPC strategy, the nested structure gives it the ability to
recognize whether better dynamic operations based on the current system state exist, and
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it can find the optimal dynamic operation if it exists; otherwise, EfiMPC will lead to the
optimal steady-state operation instead. Thus, EfiMPC can be applied to general control
applications, and the operation performance can be optimized no matter if the optimal
operation mode is steady-state operation or dynamic operation. In this CSTR application,
EfiMPC finds the best global dynamic operation performance with LE f i

P = 0.9487.
One interesting phenomenon that appeared in the simulation is that TMPC performed

a steady-state operation for most of the processing time as expected, but it led to an obvious
dynamic behavior that deviated from the steady state at the end of the process operation.
For example, the control action u2 of TMPC had a sudden change at the end of the operation,
as shown in Figure 8. This phenomenon reveals the main limitation of the TMPC strategy:
since TMPC focuses only on the control performance, it ignores the transient operation
behavior during the period before the steady state, and it has to compensate for this
transient operation behavior at the end of the control process. On the other hand, EfiMPC
takes the transient operation performance into consideration online at every sample instant;
thus, EfiMPC can take advantage of these transient operation performances, leading to
optimal dynamic operation.

In addition, as shown in Figure 8, the control actions of EfiMPC change frequently
with large values, and the control actions of TMPC are stable most of the time. This implies
that the better dynamic operation controlled by EfiMPC is realized by the dynamic control
actions, which means EfiMPC sacrifices some control performance to achieve a better
dynamic operation performance. If we put some constraints on the variation of the control
actions, the control actions will change less frequently and to a smaller extent, but the
improvements in the operation performance will suffer accordingly.

Finally, Table 2 illustrates the online computation times of the comparative control
strategies, and their values are all smaller than the sample interval ∆tsam = 1s. As shown
in Table 2, EfiMPC has the largest computation burden, and TMPC spends the least time
on computation. This indicates that although the nested structure of EfiMPC can heavily
improve the global operation performance, it has a larger computation burden for this
improvement. In order to make EfiMPC more applicable to fast applications, future research
should investigate how to reduce the computational burden of EfiMPC.

Table 2. The online computation times of the comparative control strategies (seconds).

EfiMPC TMPC Equ-EMPC Reg-EMPC

Simulation time 0.6522 0.1688 0.4140 0.4385

5. Conclusions

A novel control strategy that aims to improve global operation performance to realize
optimal operation and control is proposed in this paper. First, the ideal EfiMPC strategy
with a nested structure was proposed, where the inner layer is the offline construction of
an efficiency-oriented terminal region and the outer layer is the direct optimization of the
transient operation performance. This efficiency-oriented terminal region can guarantee
a dynamic operation performance in the closed-loop perspective, and a better global
operation performance can thus be obtained.

In order to avoid the construction of the optimal efficiency-oriented terminal region, a
practical EfiMPC strategy in which the efficiency-oriented terminal region needs not to be
defined explicitly is then proposed. Specifically, the inner layer in practical EfiMPC is the
online optimization of the average dynamic operation performance, and it is guaranteed to
perform better than the optimal steady-state operation. The inner layer in practical EfiMPC
focuses mainly on the control performance to guarantee the closed-loop stability, and the
outer layer focuses mainly on the free optimization of the transient operation performance;
thus, practical EfiMPC integrates optimization and control into a nested structure to realize
optimal control. The recursive feasibility and the closed-loop stability of practical EfiMPC
were also discussed.



Mathematics 2022, 10, 2324 19 of 20

A CSTR process application was used to test the superiority of the proposed practi-
cal EfiMPC. Compared with the TMPC, Equ-EMPC, and Reg-EMPC strategies, practical
EfiMPC generated the best global operation performance, as expected; thus, the effective-
ness of the proposed EfiMPC has been demonstrated.

This paper introduces the initial idea of nested structure-based EfiMPC. For future
studies, the offline construction of the optimal efficiency-oriented terminal region in ideal
EfiMPC can be investigated. In addition to the average dynamic operation used in the
inner layer in practical EfiMPC, other types of inner optimization problems aiming to
guarantee closed-loop operation can be researched. Finally, the effectiveness of EfiMPC in
applications with disturbances can be studied.
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