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Abstract: Siamese network trackers based on pre-trained depth features have achieved good perfor-
mance in recent years. However, the pre-trained depth features are trained in advance on large-scale
datasets, which contain feature information of a large number of objects. There may be a pair of
interference and redundant information for a single tracking target. To learn a more accurate tar-
get feature information, this paper proposes a lightweight target-aware attention learning network
to learn the most effective channel features of the target online. The lightweight network uses a
designed attention learning loss function to learn a series of channel features with weights online
with no complex parameters. Compared with the pre-trained features, the channel features with
weights can represent the target more accurately. Finally, the lightweight target-aware attention
learning network is unified into a Siamese tracking network framework to implement target tracking
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effectively. Experiments on several datasets demonstrate that the tracker proposed in this paper has
good performance.
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Visual target tracking is a branch in the field of computer vision, and thanks to the
development of deep learning techniques, especially the application of neural networks [1],
target tracking has entered a new phase. In the target tracking task, the target being
tracked is arbitrary, and the traditional trackers designed based on manual features [2]
perform generally in target modeling. Thanks to the powerful generalization ability of
depth features, which can model all kinds of targets well, depth feature-based trackers [3-5]
have achieved excellent results in recent years.

Although the existing depth feature-based trackers perform well, we find that the
pre-trained depth features still have some interference when modeling arbitrary targets.
This is because, firstly, the targets being tracked are arbitrary, and if the dataset used to
train the depth feature model does not contain such targets, that is, the depth feature model
has not learned information about such targets, then when extracting the target features,
it can only rely on the existing information for speculation, which often brings a lot of
uncertainties and leads to more disturbances in the model. Secondly, even if the deep
feature model has learned such targets, and when the general tracker uses the last layer
Attribution (CC BY) license (https://  ©T layers to extract the target features, it will lead to more disturbing factors in the feature
creativecommons.org/licenses /by / model because of the huge amount of data. Finally, the existing pre-trained deep feature
140/). models are created mainly for the target recognition task, where its main task is to identify
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all similar targets that appear in each frame. The target tracking task, on the other hand, is
different and is to identify the same target in subsequent frames, so the tracker based on
pre-trained features may be wrong in the face of interference from similar targets in the
same frame.

Some trackers use the designed lightweight network as the memory module and use
the target appearance information in each frame to update network parameters, to achieve
good appearance memory performance. In this paper, a lightweight target-aware attention
learning network is designed to learn the most effective channel features of the target online,
using the target information in the first frame template to learn a series of channel features
with weights, and by recombining these channel features. A compact and effective deep
feature is obtained, which can better distinguish the object from the background compared
to the pre-trained features. At the same time, a new attention learning loss function is
developed to optimize the training of the proposed network using the Adam optimization
method. Different from other methods, the lightweight network designed in this paper
does not require complex parameters and is easy to implement. It only needs to learn the
most salient features through the reliable information of the first frame of the target and
does not need to use too much memory temporarily, which is beneficial for the efficient use
of hardware resources. Finally, the lightweight target-aware attention learning network is
unified into the Siamese tracking network framework to effectively achieve target tracking.
Figure 1 shows that our tracker yields better tracking performance when compared with
other trackers.

Ours e SiamRPN CREST CF2 e

Figure 1. Comparison of our tracker with other trackers for Bolt (top), Basketball (bottom).

The main contributions of this article are described in summary as follows:

(1) Alightweight target-aware attention learning network is designed to learn the most
effective channel features of the target online. The new network mines the expressive-
ness of different channels to the target by the first frame template.

(2) A new attention learning loss function is developed to optimize the training of the
proposed network using the Adam optimization method. The loss function effectively
improves the modeling capability and tracking accuracy of the network by introducing
the gradient information during training.

(3) The lightweight target-aware attention learning network is unified into the Siamese
tracking network framework to effectively achieve target tracking. Moreover, the
proposed method performs better against other trackers.

2. Related Work

There are a large number of researchers who have made many contributions in the
field of visual tracking, and many excellent trackers have been proposed. In this section,
we discuss some trackers that are similar to our work.
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2.1. Lightweight Network-Based Tracker

Real-time target tracking is a very relevant research element. However, when the
tracking speed increases, the tracking accuracy is bound to be affected. Therefore, many
researchers have researched how to increase the tracking speed without affecting the
tracking accuracy. Zhao et al. [6] use a pruned convolutional neural network to construct
the tracker, which is trained by a mutual learning method to further improve the localization
accuracy. Cheng et al. [7] propose a real-time semantic segmentation method based on
extended convolution smoothing and lightweight up-sampling on the basis of a lightweight
network, which can achieve high segmentation accuracy while maintaining high-speed
real-time performance. Zhao et al. [8] design a lightweight memory network, which only
needs reliable target frame information to fine-tune network parameters online, so as to
enhance the memory ability of the target appearance. At the same time, it can maintain
good discriminant performance without a complicated update strategy. Unlike them, this
paper designs a lightweight network for online learning of the most salient features of the
target and achieves redundant feature channel trimming by back-propagating the weights
to determine the importance of the feature channels.

2.2. Siamese Network-Based Tracker

In recent years, the combination of Siamese networks and target tracking has led
target tracking to enter a new stage. Bertinetto et al. [9] propose a new structure of fully
convolutional Siamese networks. In the initial offline phase, deep convolutional networks
are regarded as a more general similarity learning problem, and then the simple online
estimation of the problem during tracking can achieve very competitive performance,
and the frame rate at runtime far exceeds the requirements of real-time performance.
Li et al. [10] developed a model consisting of a Siamese network and a region proposal
network, which discards the traditional multi-scale testing and online tracking, divides
the network into template branches and detection branches, and uses a large amount of
data for offline training to achieve a good tracking result. Gao et al. [11] propose a Siamese
Attentional Key-point Network for target tracking, by designing a new Siamese lightweight
hourglass network and a novel cross-attentional module to obtain more accurate target
features, and propose a key-points detection approach to accurately locate target location
and scale regression.

3. Proposed Method
3.1. Basic Siamese Network for Visual Tracking

Siamese networks are originally applied to template matching problems and are later
introduced into object tracking. It is composed of two networks with the same structure
and the same weight. These two networks are used to extract the depth feature of the target
and the depth feature of the search area, and finally the cross-correlation calculation is used
to find the highest response value in the search area. The position of this point is the final
target position. Moreover, the whole process can be expressed by the following formula:

f(z,x) = p(z) * p(x) +b-1 M
where z represents the initial frame position, x represents the position of the search region,
b - 1 denotes the deviation value, and * represents the convolution operation.

As shown in Figure 2, the proposed tracker contains a pre-trained feature extraction
network, a lightweight target-aware attention learning network, and a Siamese network
matching module. The VGG feature extraction network is a very deep convolutional
network for image classification and achieves the state-of-the-art performance on the
ImageNet challenge dataset. It is trained offline in this paper, and the proposed lightweight
target-aware attention learning network is trained online by using the given first frame
target information, and then the cross-correlation operation of the Siamese network is used
to locate target. The attention learning loss function used to train the lightweight target-
aware attention learning network is redesigned on the basis of the MSE loss function, and
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the Adam optimization method is used for training, and the feature channel is determined
according to the gradient value information of back propagation. The importance weight
is weighted to the original depth feature to represent the target, and finally the template
matching method of the Siamese network is used to locate the target. The calculation

process is shown in Formula (2):

fuew(z,%) = (9(z) ©a) * g(x) +b-1 ®
where z denotes the template image, x denotes the image of the search region, b - 1 denotes
the deviation value of each, « is the channel attention weight vector of the feature channel,
© denotes the Hadamard product, * denotes the convolution operation, and fyew (2, x)

denotes the response score.
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Figure 2. Overview of our network architecture for visual tracking.

3.2. Attentional Learning Loss Function

Most of the trackers based on correlation filtering use recurrent samples to train re-
gression models, while Chen et al. [12] propose to use single-layer convolution to solve
the linear regression problem and use the gradient-descent training method to solve the
regression problem in target tracking, which this paper is inspired by. In the linear regres-
sion model of the work [12], the objective is to learn a linear function using the training
samples X € R™*" and the corresponding regression objective Y € R™. Each element x; in
each row of the model X represents a training sample with feature dimensionality and the
corresponding regression target x; is the first element of the model Y. Then, the objective
is to learn the coefficients w of a regression function by minimizing the objective function
f(x) = w' - x during the offline training process.

argmin || X  w — Y||? + Al|w|? 3)
w

In Equation (3), ||| is the Euclidean parametrization, and A is the regularization
parameter to prevent overfitting.

The gradient values generated during the training of neural networks can be a good
indication of the channel saliency feature information for different target classes [13], and
this paper attempts to introduce this idea into a Siamese network-based tracker used for
training to generate a set of weights that can represent the contribution of different feature
channels to modeling, to enhance the target modeling capability of pre-trained depth
features. To this end, this paper redefines its input based on Equation (3), which can be
expressed by minimizing the following function:

argmin}_ ((Z; - w}) * X; = ¥i)* + A" Y wf? )
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where - is the dot product operation, * denotes the convolution operation, Z is the template
depth feature, X is the search area depth feature; they are obtained from the same frame,
and Z is located at the center of the X, A’ is regularization parameter, w’ is the regression
weight vector obtained by the network training, the dimension is the same as Z and X.

The comparison results of the target response maps are shown in Figure 3. Figure 3a
shows the weighted features of the feature channels after learning using the attention
learning loss function, and Figure 3b shows the target-specific diagnosis extracted directly
using the original features.

» |

s L ¥ AL | —
Image (a) (b)
Figure 3. Comparison of the before and after learning characteristics of attentional learning loss.

Finally, the regression weights w’ are mapped by the sigmoid function to obtain the
channel weights corresponding to the sample images.

ap = 1/(1 + g—wﬁ) ®)

where «; denotes the i-th value in &, and « € [0, 1], w! denotes the i-th value in w'.

In summary, the loss function generates the gradient information by training the target
information in the first frame. The gradient information is used to generate the weights
of the different channels of the feature to the target information expression. The feature
channel is determined according to the gradient value information of back propagation
under the attentional learning loss function. The importance weight is weighted to the
original depth feature to represent the target. Finally, the template matching method of the
Siamese network is used to locate the target. However, the loss function is used under the
assumption that the error between the model output and the groundtruth value obeys a
Gaussian distribution. When this condition is not satisfied, the loss function is limited in
its usefulness.

3.3. Lightweight Target-Aware Attention Learning Network

In a pre-trained deep model-based classification network, each feature channel con-
tains a specific target feature pattern, and all feature channels together construct a feature
space containing a priori information about different objects. The pre-trained network iden-
tifies object classes mainly through a subset of these feature channels, so the importance of
each channel should not be calculated equally when used to track the target representation.

As shown in Figure 4, the lightweight target-aware attention learning network pro-
posed in this paper is built on a single-layer convolutional network, which is used in
the same way as a general neural network, and its kernel is set to match the size of the
target template. However, to obtain better object appearance features, the lightweight
target-aware attention learning network proposed in this paper only uses the given first
frame object information for training and does not require complex offline training, while
using the more advanced Adam Optimization method to obtain network parameters.
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Figure 4. Lightweight target-aware attention learning network.

(1) Parameter learning process.

A search area of size X is intercepted around the given first frame target as an initial
training sample, w/ is a set of initial target feature channel weights with an initial value of 1.
In the subsequent learning process, the gradient value information is calculated to update its
value online according to the difference between the response values and labels of different
channels. The larger the gradient value is, the smaller the contribution of the feature
channel to the target model. Equation (4) is used to guide the online learning process, and
the Adam optimization method is used to optimize the network by empirically setting the
learning rate to, the momentum to 0.9, the weight decay to 1000, and the maximum number
of iterations to 100. Compared with the traditional gradient descent (SGD) optimization
method, the Adam optimization method is an improvement and extension of it, with high
computational efficiency and small memory occupation. Moreover, the learning rate of
the SGD optimization method is fixed, while the Adam optimization method can update
the learning rate of the third training process adaptively based on the average of the
first two training weights, which can improve the performance of the network on sparse
gradient problems.

(2) Obvious characteristic of the lightweight target-aware attention learning network.

The network designed in this paper is implemented on a single-layer convolutional
network, which learns the optimal representation of the target appearance by adjusting
a certain number of feature channel weights through simple single-layer convolutional
operations, using the proposed attention learning loss function to learn online, thus gener-
ating an optimal set of channel modeling parameters. This approach is computationally
simple, does not require complex model computation strategies, does not take up too many
valuable memory resources, and is easy to implement. Moreover, the number of parame-
ters in the network is small, which facilitates fast computation and achieves real-time fast
online tracking.

4. Experiment and Analysis

Our tracker is implemented on a PC with an i7-9700 3.0 GHz and a single NVIDIA
GeForce RTX 2060 GPU with Pytorch. The algorithm proposed in this chapter uses the
VGG-16 [14] neural network as the feature extraction network for the target and the search
region, and the outputs of the Conv4-1 and Conv4-3 layers are used for target appearance
modeling. The number of channel dimensions of the outputs is 512. Then the feature passes
through the lightweight network and its feature channels are given different weights,
and the number of channels is reduced to 380. Moreover, the kernel of the lightweight
target-aware attention learning network is set to match the size of the target template.
For the designed lightweight target-aware attention learning network, online training is
performed using the attention learning loss function only in the first frame of each video
sequence, setting the maximum number of iterations to 100, the momentum setting to 0.9,
and the convergence loss threshold to 0.01. To handle scale variations, we also search for
the object over three scales (0.957, 1, 1.047), and update the scales by scale weights (0.99,
1, 1.005). To evaluate the performance of the proposed algorithm, this section is tested on
the OTB-50 [15] and OTB-100 [16] dataset, TC-128 [17] dataset, UAV123 [18] dataset set,
VOT2016 [19] dataset and LaSOT dataset [20].
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4.1. Ablation Studies

To better explain the validity of the proposed method, the ablation experiment of this
work is analyzed on the OTB-100 dataset using one-pass evaluation. Our algorithm con-
tains the base Siamese-based tracker and the proposed lightweight target-aware attention
network. Figure 5 shows the precision and success rate of baseline without the proposed
attention network and our method.

From Figure 5, we can see that when the proposed attention network is added, the
accuracy and success rate of the tracking algorithm are improved. The network removes
redundant and partial background information from the features to achieve superior
tracking performance by online mining of different channels of the target depth features
for their ability to represent the target information. The experimental results in Figure 5
show that the proposed attention network contributes to the performance of the tracking
algorithm.

Success plots of OPE on OTB100 Precision plots of OPE on OTB100
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Figure 5. The ablation studies on the OTB-100 dataset.

4.2. OTB Dataset Experiments

In this paper, experiments are conducted on the popular OTB-50 and OTB-100 datasets
in the field of target tracking, which consist of 50 and 100 fully annotated videos, respec-
tively. In this paper, the accuracy maps in one-pass evaluation (OPE) are used to evaluate
different trackers and are compared with 10 advanced trackers SiamFC, attention-based
trackers MemTrack [21] and MemDTC [22], correlation filter-based trackers KCF [23], Sta-
ple [24], DSST [25] and SRDCEF [26], deep learning and correlation filter-based tracker
CF2 [27], CREST [28], and CSR-DCF [29] were compared for the results. As shown in
Figures 6 and 7, the performance of the proposed tracker (Oursl) in this chapter is at the
advanced level in both benchmark tests. Specifically, the proposed algorithm obtained
success rate scores of 0.655 and 0.643 on OTB-50 and OTB-100, respectively, and the pro-
posed algorithm gained 4.6% and 6.0% improvement over the Siamese network-based
tracking method SiamFC, which confirms the advantages of the lightweight target-aware
attention learning network and attention learning loss function proposed in this paper.
CF2 algorithm uses the depth features of three layers in the VGG-16 network for target
modeling to improve the discriminative power of the model, and obtains success rate
scores of 0.603 and 0.562 for OTB-50 and OTB-100, respectively, and the performance of the
proposed algorithm in this paper is 5.2% and 8.1% higher than that of the CF2 algorithm
without using more depth features. The CREST algorithm achieves a higher success rate
than the CF2 algorithm on the OTB-50 dataset and performs better than the algorithm
proposed in this paper in terms of both success rate and accuracy; the reason for this is
that the CREST algorithm introduces a residual network to extract the depth features of
the target, and the residual network structure can be used to build a deeper network to
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improve the accuracy of the features and alleviate the gradient disappearance problem
caused by the deep network.

Success plots of OPE Precision plots of OPE
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Figure 6. Success and precision rates on the OTB50 dataset.
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Figure 7. Success and precision rates on the OTB100 dataset.

For object-tracking algorithms, the real-time performance should also be used as one
of the criteria for evaluating tracker performance. In Table 1, we compared the operational
performance of some of the advanced trackers in terms of Precision score (%), Success
rate (%), and Speed (FPS) on the OTB-100 dataset. Table 1 shows the results of our tracker
compared with 7 advanced trackers including BaSiamlIoU [30], ATOM [31], CFML [32],
CREST [28], CSR-DCF [29], SRDCF [26], and SiamFC [9]. From Table 1, we can note that
ATOM draws on the IoU-Net idea and proposes loU modulation and IoU predictor to solve
the scale challenge in the tracking process, achieving better tracking performance in terms
of Precision score and Success rate. However, the speed performance of ATOM is not as
satisfactory as our tracker. Meanwhile, although SiamFC is capable of reaching 102.3 FPS in
speed, it is not able to adapt to changes in target appearance during tracking, resulting in
lower tracking accuracy. Our tracker achieves 83.3% in Precision score and 64.3% in Success
rate in 59 FPS. Overall, our tracker strikes a balance between Precision score, Success rate,
and Speed. Therefore, for some scenes with higher requirements on tracking speed, SiamFC
algorithm is a better choice, while for some scenarios where tracking accuracy is more
preferred, ATOM algorithm should be chosen. Our method is more suitable for applications
that require a certain degree of tracking accuracy and tracking speed.
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Table 1. The real-time performance of the advanced trackers on the OTB-100 dataset. In the table,
red, green and blue indicate the top three scores respectively.

Tracker Precision Score (%) Success Rate (%) Speed (FPS)
Ours 83.3 64.3
BaSiamIoU 83.9 70.8 50
ATOM 87.9 30
CFML 64.9 32
SiamFC 77.2 58.3 102.3

CREST 83.4 62.0 1.8
CSR-DCF 79.9 57.9 8.5
SRDCF 79.2 60.0 4.2

(1) Challenge analysis of the OTB dataset

This part shows the success rate plots on the OTB-50 dataset for multiple challenge
scenarios, as it contains 50 videos with relatively high tracking complexity in the OTB-100
dataset, which include: scale variation (SV), low resolution (LR), occlusion (OC), distortion
(DF), motion blur (MB), fast motion (FM), in-plane rotation (IR), out-of-plane rotation (IR),
out-of-field (OV), background clutter (BC), and illumination variation (IV).

More details of the performance of the proposed algorithm are shown in Figure 8.
Overall, the proposed algorithm performs well in all 11 challenges. For the attributes of
motion blur, distortion, and low resolution, the proposed algorithm outperforms the tracker
SiamFC, which is also based on Siamese networks. The SiamRPN algorithm combines
Siamese networks and region proposal network and has good tracking precision and speed,
but the algorithm proposed in this paper has better performance under the background
clutter challenge, indicating that the algorithm in this paper can extract the key features of
the target. For exceeding the visual field, the proposed algorithm performs much better
than the other nine compared trackers, which is attributed to the proposed lightweight
target-aware attention learning network model and the attention learning loss function. In
addition, the proposed algorithm performs better than most neural network-based trackers
under the background clutter challenge, which indicates that the proposed lightweight
target-aware attention learning network and attention learning loss function can effectively
modify the pre-trained depth features to remove redundant information while enhancing
the feature channels that are more important to the target representation, and thus it
can improve the feature representation of the target. Overall, the proposed algorithm in
this paper achieves good performance under several challenging attributes of the OTB-
50 dataset.

(2) Qualitative experimental analysis of the OTB dataset

To qualitatively evaluate the proposed method, Figure 8 shows some tracking results of
the proposed algorithm and other tracker on eleven challenging video sequences. SiamRPN
is a deep learning-based algorithm, CF2 is a correlation filtering-based algorithm, where
the SiamRPN algorithm also introduces region suggestion networks into the tracking, and
SiamFC is a Siamese network-based algorithm, similar to the proposed algorithm in this
paper. the proposed algorithm is similar.

In these six video sequences, there are many different challenges, including deforma-
tion (Bird1, MotorRolling, Skiing), occlusion (Soccer, Tiger), out-of-field (Bird1, Soccer), and
background clutter (Footballl, MotorRolling). SiamFC and the proposed algorithm can
re-find the target after its occlusion disappears, while other trackers are unable to locate the
target again due to untrustworthy samples introduced during model updates. CF2 and
CREST drift rapidly in scenes where the target is out of view, and SiamFC and CF2 are
unable to adapt to the challenge of scale changes in Bird1 and MotorRolling sequences. As
the tracking task progresses, CREST, CF2, and SiamFC all lose targets one-by-one as the
tracking drifts. In contrast, the algorithm proposed in this paper can adapt well to these
challenges due to the introduction of a lightweight target-aware attention learning network
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and an attention learning loss function to learn the channel weight information of the target.
As in these scenarios in Figure 9, the performance of the proposed algorithm is significantly
better than other trackers.
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Figure 8. Comparison of 11 attribute challenge results.
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4.3. TC-128 Dataset Experiments

In this paper, the proposed method is evaluated on the Temple-Color (TC-128) dataset
containing 128 videos. The evaluation method follows the guidelines in the OTB dataset
and uses the accuracy plots in the one-time evaluation method (OPE) to compare the
different trackers.

(1) Quantitative evaluation on TC-128 dataset: The proposed algorithm is compared
quantitatively with 10 other trackers, including ECO [33], CREST [28], HCFTstar [34],
CF2 [27], CACEF [35], KCF [23], DSST [25], LOT [36], and CSK [37].

As shown in Figure 10, the proposed algorithm is in the top two positions among
all trackers in terms of accuracy and success rate. Compared with the CF2 algorithm
based on deep learning, the proposed algorithm achieves a higher success rate of 5.0%
on TC-128, probably because CF2 uses unprocessed pre-trained deep features, while the
proposed algorithm learns the most effective target channel weights through the designed
lightweight target-aware attention learning network, so that the features better represent
the appearance of the target. Moreover, the success rate of the proposed algorithm on
TC-128 is 1.2% higher than that of CREST which learns linear regression on a single-layer
convolutional network. It can also be seen that the CREST algorithm, which uses only one
layer of depth features for target modeling, outperforms the CF2 algorithm, which uses
multiple layers of depth features, which illustrates the great advantage of linear regression
modeling on the network. The tracking robustness of the proposed algorithm is greater
than that of the tracker CACF, which introduces contextual information. It can also be
seen from the figure that trackers that use manual features to model targets such as KCF
have significantly lower performance than other trackers that use depth features. The
ECO algorithm combines color features and depth features to represent the target, and
is sensitive to the color features of the target, so the performance on the TC-128 dataset
designed for color features is better than the algorithm proposed in this paper. (2) Challenge
analysis of TC-128 dataset: In this section, the success rate of the tracker associated with
the work in this paper is tested on the TC-128 dataset for 11 challenging videos, including
scale variation (SV), low-resolution (LR), occlusion (OC), distortion (DF), motion blur
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(MB), fast motion (FM), in-plane rotation (IR), out-of-plane rotation (IR), out-of-field (OV),
background clutter (BC), illumination variation (IV).

0s Success plots of OPE 0o Precision plots of OPE
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Figure 10. Success and precision rates on the TC-128 dataset.

Figure 11 shows the results of the proposed algorithm and other state-of-the-art track-
ers under 11 attribute challenges, and it is clear that the proposed algorithm outperforms
the other trackers in overall performance. Thanks to the channel weight learning effect
of the lightweight target-aware attention learning network, the proposed algorithm out-
performs other trackers in the case of background clutter, motion blur, and deformation.
ECO outperforms the proposed algorithm in deformation challenge scenarios due to the
use of multi-feature fusion, but the proposed algorithm outperforms other trackers in
several challenge scenarios with background clutter, motion blur, and out-of-field. In these
scenarios, the targets often experience severe appearance changes or complex background
disturbances, so the compared tracker experience tracking failures, while these compared
tracker use sample update models that may contain noise, which prevents the tracker
from obtaining an accurate model of the target appearance and leads to tracking failures.
In contrast to these trackers, the lightweight target-aware attention learning network is
introduced in this work to improve the modeling capability of depth features, allowing the
tracker to adapt to target tracking tasks in complex scenes.

4.4. UAV123 Dataset Experiment

To further illustrate the performance of the proposed algorithm, the performance of
the proposed algorithm is evaluated on the UAV (UAV123) dataset in this paper. Compared
with typical visual object tracking datasets including OTB and TC-128, the UAV123 dataset
provides low-altitude aerial video for target tracking. UAV123 is also one of the largest
target tracking datasets, which contains 123 video sequences with over 110,000 images and
an average sequence length of 915 frames. The UAV123 dataset has become increasingly
popular due to real-life applications that are becoming increasingly popular, such as
navigation, wildlife monitoring, crowd surveillance, etc. An algorithm that strikes a
good balance between accuracy and real-time speed would be more practical for tracking
these targets.

As shown in Figure 12, the proposed algorithm is tested on the UAV123 dataset in
this paper to compare with 10 other trackers, including SRDCF [26], CREST [28], CF2 [27],
SiamRPN [10], DSST [25], Struck [38], ECO [33], TADT [39], KCF [23], and CSK [37]. Thanks
to the lightweight target-aware attention learning network introduced in the Siamese
network framework, the proposed algorithm is higher than the TADT algorithm in terms of
accuracy and success rate. Moreover, the success rate of the proposed algorithm on UAV123
is 5.8% higher than that of CREST which learns linear regression on a single convolutional
layer. The performance of the CREST algorithm using only one layer of depth features
outperforms that of CF2 and SRDCF using multiple layers of depth features. Trackers using
manual features, such as DSST and KCF, have significantly lower performance than other
trackers using depth features.
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Figure 11. Comparison of 11 attribute challenge results.
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Figure 12. Success and precision rates on the UAV-123 dataset.

4.5. VOT2016 Dataset Experiment

The VOT dataset is a very popular dataset in the field of target tracking, and it uses two
metrics, accuracy and robustness, to evaluate the performance of the trackers, as well as the
average overlap metric (EAO) to rank the tracker. In this paper, the proposed algorithm is
compared with other trackers on the VOT2016 dataset for experiments, and the compared
trackers include SiamRPN++ [40], SiamRPN [10], TADT [39], DeepSRDCEF [41], MDNet [42],
SRDCEF [26], HCF [27], DAT [43], and KCF [23]. The results of these tracker are obtained
from the official results, and Figure 11 show the results of all tracker’ ranking results.

As can be seen from Figure 13, thanks to the proposed lightweight target-aware
attention learning network and the weight learning approach of the attention learning
loss function, the proposed algorithm ranks third among all the compared trackers and
performs better than the TADT algorithm that uses the regression loss function and the
scale loss function for feature layer filtering. The performance of the proposed algorithm is
weaker than that of SiamRPN and SiamRPN++ tracker, which also shows that SiamRPN
introduces a region suggestion network to provide an accurate suggested target area and
a classification regression mechanism to determine the target location and obtain a more
accurate target scale through regression calculation. SiamRPN++ algorithm, on the other
hand, introduces a deeper neural network to extract target features based on the SiamRPN
algorithm, so it performs far ahead of the other tracker, which also shows that deep neural
networks are more powerful in feature representation.

Table 2 shows some more detailed information comparing all the tracker, including the
average overlap (EAO), overlap (Overlap), and failure (Failures), and the top three metrics
on individual results are marked in red, green, and blue, respectively. As can be seen from
the table, the proposed algorithm performs well overall in all three metrics, which reflects
the ability of the proposed attention learning loss function and lightweight goal-aware
attention learning network to learn reliable target features. The last column of the table
shows the failure rate of the algorithm tracking, and it can be seen that the proposed
algorithm ranks fourth place, which is not very far from the second-place SiamRPN and
the third-place TADT, and there is still room for improvement.
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Figure 13. EAO score ranking of the compared trackers VOT2016 dataset.

Table 2. Overall performance on VOT2016 dataset, the top three trackers are marked with red, green
and blue, respectively.

Tracker EAO Overlap Failures
Ours 0.306 0.546 20.180
SiamRPN++ 0.479 06356 11.586
SiamRPN 20.138

TADT 0.300 0.546

DeepSRDCF 0.275 0.522 20.346
MDNet 0.257 0.538 21.081
SRDCF 0.245 0.525 28.316
HCF 0.219 0.436 23.856
DAT 0.216 0.458 28.353
KCF 0.153 0.469 52.031

4.6. LaSOT Dataset Experiment

To further demonstrate the effectiveness of our method, the performance of the pro-
posed algorithm is evaluated on the LaSOT dataset in this work. Compared with the
above tracking dataset, LaSot dataset has a larger salce and more complex challenges for
the tracker during the tracking process. LaSOT considers the connection between visual
appearance and natural language, not only labeling the bounding box but also adding rich
natural language descriptions. It contains 1400 video sequences with an average sequence
length of 2500 frames and the test dataset contains 280 video sequences, with 4 videos
per category.

As shown in Figure 14, our method achieved the third place in precision and success
rate. Compared with the tracking algorithms based on the correlation filter, our method also
obtains a good performance. However, the performance of our method is not competitive
enough with the state-of-art tracking methods on the LaSOT dataset. The reason for this
phenomenon is that our algorithm is not able to solve the challenge of target disappearance
reproduction during long-term tracking.
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Figure 14. Success and precision plots of OPE on LaSOT dataset.

4.7. Discussions

The Siamese network tracker based on pre-trained depth features has achieved good
performance in recent years. The pretrained depth features are trained in advance on
large-scale datasets, and therefore contain feature information of a large number of objects.
However, for a tracking video, the object being tracked is always the same, so the pre-
trained features contain some redundant features. To remove redundant and interfering
information from pre-trained features and learn more accurate target information, this work
presents a novel tracking method with the proposed lightweight target-aware attention
learning network. This lightweight target-aware attention learning network uses reliable
information that the ground truth of the target is given in the first frame of each video
to train the weights of the network online and obtains gradient value information by
backpropagation to determine the effect of different feature channels in the target feature
layer on the target, and remodel the channel of the template feature by weighting this
contribution. Then the compact and effective deep feature is obtained, which can better
distinguish the object from the background. The network is the single-convolutional layer
network which is relatively easy to implement and compared to complex convolutional
neural networks, there are fewer parameters in the network. It is worth improving that
although our method can refine the target features, it does not have the ability to deal with
target failure, so its performance is constrained by the target disappearance reproduction
challenge in long-term tracking.

5. Conclusions

In this paper, a novel Siamese network-based target tracking method is proposed to
address the problem that different feature channels often have different importance for the
target representation, which enhances the feature tracking target by designing a lightweight
target-aware attention learning network and using a redesigned attention learning loss
learning function to learn the most effective feature channel weights for the target using
the Adam optimization method representation. This lightweight target-aware attention
learning network uses reliable information from the first frame of each video sequence
to train the weights of the network online, and obtains gradient value information by
back propagation to determine the contribution of different feature channels in the target
feature layer to model the target, and re-models the target by weighting this contribution
to the channels of the template features. The network is relatively easy to implement
and the small number of parameters facilitates fast computation. Finally, the proposed
algorithm is evaluated on OTB, TC-128, UAV123, VOT2016, and LaSOT datasets, and
both quantitative and qualitative analyses show that the method achieves satisfactory
performance, demonstrating the effectiveness of the proposed lightweight target-aware
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attention learning network and attention learning loss function in a Siamese network
framework-based tracker.
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