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1. Introduction

The concept of statistical manifolds is currently a new and attractive topic in differen-
tial geometry. It has many application areas such as neural networks, machine learning,
artificial intelligence, and black holes [1–4]. A statistical structure on a Riemannian manifold
was initially defined by S. Amari [5] in 1985, as follows:

A Riemannian manifold (M̃, g̃) with a Riemannian metric g̃ and the Levi–Civita
connection ∇̃0 is called a statistical manifold if there exists a pair of torsion-free affine
connections (∇̃, ∇̃∗), such that the following relation is satisfied for any tangent vector
fields X, Y and Z on M̃

g̃(X, ∇̃∗ZY) = Zg̃(X, Y)− g̃(∇̃ZX, Y), (1)

where
∇̃0 =

1
2
(∇̃+ ∇̃∗). (2)

There exist qualified papers dealing with statistical manifolds and their submanifolds
admitting various differentiable structures. In this sense, the geometry of hypersurfaces of
statistical manifolds was presented by H. Furuhata in Refs. [6,7]. Statistical manifolds admitting
contact structures or complex structures and their submanifolds were investigated in Refs. [8,9].
Statistical manifolds involving Riemannian submersions were also studied in Refs. [10,11].
In degenerate cases, lightlike hypersurfaces of statistical manifolds were introduced by the first
author and M. M. Tripathi [12]. In addition, statistical lightlike hypersurfaces were studied by
V. Jain, A. P. Singh, and R. Kumar in Ref. [13].

Besides these facts, many sharp inequalities on submanifolds in various ambient
spaces are obtained from isometric immersions. The main inequalities on submanifolds of
real space forms were initially established by B.-Y. Chen [14–17]. Later, these inequalities
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have drawn the attention of many authors due to their interesting characterizations for the
theory of submanifolds. Moreover, some inequalities involving curvature-like tensors were
studied by M. M. Tripathi [18] and Chen-like inequalities and their characterizations were
presented in submanifolds of statistical manifolds in Refs. [19–22].

In this paper, first of all, by examining the commonly known important submanifold
types such as totally geodesic, totally umbilical, and minimal lightlike hypersurfaces with
respect to the Levi–Civita connection, some relations are obtained. Then, various results are
found by computing the curvature tensor fields such as the statistical sectional curvature,
statistical screen Ricci curvature, and statistical screen scalar curvature. Finally, with the
help of these curvature relations, various inequalities are established for hypersurfaces of
statistical manifolds. The equality cases are also discussed.

2. Preliminaries

Let (M̃, g̃) be an (m + 2)-dimensional Lorentzian manifold and (M, g) be a hypersur-
face of (M̃, g̃) with the induced metric g from g̃. If g is degenerate, then M is called a
lightlike (null or degenerate) hypersurface. For a lightlike hypersurface (M, g) of (M̃, g̃),
there exists a non-zero vector field ξ on M such that

g(ξ, X) = 0, (3)

for all X ∈ Γ(TM). Here the vector field ξ is called a null vector [23–25]. The radical or the
null space Rad Tx M at each point x ∈ M is defined as

Rad Tx M = {ξ ∈ Tx M : gx(ξ, X) = 0, ∀X ∈ Γ(TM)}. (4)

The dimension of Rad Tx M is called the nullity degree of g. We recall that the nullity
degree of g for a lightlike hypersurface is equal to 1. Since g is degenerate and any null
vector being orthogonal to itself, the normal space Tx M⊥ is a null subspace. In addition,
we have

Rad Tx M = Tx M⊥. (5)

The complementary vector bundle S(TM) of Rad TM in TM is called the screen
bundle of M. We note that any screen bundle is non-degenerate. Therefore, we can write
the following decomposition:

TM = Rad TM ⊥ S(TM). (6)

Here⊥ denotes the orthogonal-direct sum. The complementary vector bundle S(TM)⊥

of S(TM) in TM̃ is called the screen transversal bundle. Since Rad TM is a lightlike sub-
bundle of S(TM)⊥, there exists a unique local section N of S(TM)⊥ such that we have

g̃(N, N) = 0, g̃(ξ, N) = 1. (7)

Note that N is transversal to M and {ξ, N} is a local frame field of S(TM)⊥. Thus,
there exists a line subbundle ltr(TM) of TM̃. This set is called the lightlike transversal
bundle, locally spanned by N [23,24].

Let ∇̃0 be the Levi–Civita connection of M̃. The Gauss and Weingarten formulas
are given

∇̃0
XY = ∇0

XY + B0(X, Y)N, (8)

∇̃0
X N = −A0

N X + τ0(X)N (9)

for any X, Y ∈ Γ(TM). Here ∇0 is the induced linear connection on TM, B0 is the second
fundamental form on TM, A0

N is the shape operator on TM, and τ0 is a 1-form on TM.
A lightlike hypersurface M is called totally geodesic if B0 = 0. If there exists a λ ∈ R

at every point of M such that
B0(X, Y) = λg(X, Y),
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for all X, Y ∈ Γ(TM) then M is called totally umbilical [23].
Let {E1, . . . , Em, ξ} be a local orthonormal basis of Γ(TM), where {E1, . . . , Em} is a

local orthonormal basis of Γ(S(TM)). Then M is called minimal if [23]

1
m

trace(B0) =
1
m

m

∑
i=1

B0(Ei, Ei) = 0. (10)

3. Lightlike Hypersurfaces of a Statistical Manifold

Let (M̃, g̃) be a Lorentzian manifold. If there exists a torsion free connection ∇̃
satisfying the following:

(∇̃X g̃)(Y, Z) = (∇̃Y g̃)(X, Z) (11)

for all X, Y, Z ∈ Γ(TM̃) then (g̃, ∇̃) is called a statistical structure. So, (M̃, g̃, ∇̃) is a statisti-
cal manifold [6].

For a statistical manifold (M̃, g̃, ∇̃), the dual of ∇̃, denoted by ∇̃∗, is defined by the
following identity:

g̃(X, ∇̃∗ZY) = Zg̃(X, Y)− g̃(∇̃ZX, Y). (12)

It is easy to check that ∇̃∗ is torsion free. If ∇̃0 is the Levi–Civita connection of g̃, then
we can write

∇̃0 =
1
2
(∇̃+ ∇̃∗). (13)

Let (M, g) be a lightlike hypersurface of a statistical manifold (M̃, g̃, ∇̃). From (6) and (7),
the Gauss and Weingarten formulas with respect to dual connections can be expressed

∇̃XY = ∇XY + B(X, Y)N, (14)

∇̃X N = −A∗N X + τ∗(X)N (15)

and

∇̃∗XY = ∇∗XY + B∗(X, Y)N,

∇̃∗X N = −AN X + τ(X)N (16)

for all X, Y ∈ Γ(TM), N ∈ Γ(ltr TM), where ∇XY, ∇∗XY, AN X, A∗N X ∈ Γ(TM). Here,
∇, ∇∗ are called the induced connections on M, B and B∗ are called the second funda-
mental forms, AN and A∗N are called the Weingarten mappings with respect to ∇̃ and ∇̃∗,
respectively. Using (7) in (14) and (15), we have

B(X, Y) = g̃(∇̃XY, ξ), τ∗(X) = g̃(∇̃X N, ξ) (17)

and

B∗(X, Y) = g̃(∇̃∗XY, ξ), τ(X) = g̃(∇̃∗X N, ξ). (18)

From the Gauss and Weingarten formulas, it is clear that both the induced connections
∇ and ∇∗ are symmetric. In addition, both the second fundamental forms’ B and B∗ are
symmetric and bilinear, called the imbedding curvature tensors of the submanifold for ∇̃
and ∇̃, respectively. We note that a lightlike hypersurface of a statistical manifold does not
need to be a statistical manifold with respect to ∇ and ∇∗ [12].

Let P denotes the projection morphism of Γ(TM) on Γ(S(TM)) with respect to the
decomposition (6). For any X, Y ∈ Γ(TM) and ξ ∈ Γ(Rad TM) we can write

∇XPY = ∇XPY + h(X, PY), (19)

∇Xξ = −Aξ X +∇t
Xξ. (20)



Mathematics 2022, 10, 2290 4 of 18

Here, ∇XPY and Aξ X belong to Γ(S(TM)), ∇ and ∇t
are linear connections on

Γ(S(TM)) and Γ(Rad TM), respectively. The tensor fields h and A are called the screen
second fundamental form and the screen shape operator of S(TM) respectively. If we define

C(X, PY) = g(h(X, PY), N), (21)

ε(X) = g(∇t
Xξ, N), X, Y ∈ Γ(TM), (22)

then we can easily prove that

ε(X) = −τ(X). (23)

Therefore, we can write from (19), (20) and (23) that

∇XPY = ∇XPY + C(X, PY)ξ, (24)

∇Xξ = −Aξ X− τ(X)ξ (25)

for all X, Y ∈ Γ(TM). Here C(X, PY) is called the local screen fundamental form of S(TM).
Similarly, the relations of induced dual objects on S(TM) with respect to∇ are given by

∇∗XPY = ∇∗XPY + C∗(X, PY)ξ, (26)

∇∗Xξ = −A∗ξ X− τ∗(X)ξ, X, Y ∈ Γ(TM). (27)

Using (25), (27) and Gauss–Weingarten formulas, the relationship between induced
geometric objects are given by

B(X, ξ) + B∗(X, ξ) = 0, g(AN X + A∗N X, N) = 0, (28)

C(X, PY) = g(AN X, PY), C∗(X, PY) = g(A∗N X, PY). (29)

As a result of (28), we obtain that the second fundamental forms B and B∗ are not
degenerate. Additionally, due to ∇̃ and ∇̃∗ are dual connections, we obtain

B(X, Y) = g(A∗ξ X, Y) + B∗(X, ξ)g̃(Y, N), (30)

B∗(X, Y) = g(Aξ X, Y) + B(X, ξ)g̃(Y, N). (31)

Putting X = ξ in (30), (31) and using the fact that Aξ , A∗ξ are S(TM)-valued tensor
fields, we get

A∗ξ ξ + Aξξ = 0. (32)

Definition 1. A hypersurface M is a screen locally conformal lightlike hypersurface of a statistical
manifold (M̃, g̃, ∇̃) if there exist non-vanishing smooth functions ϕ and ϕ∗ on M such that

AN = ϕ A∗ξ , A∗N = ϕ∗ Aξ . (33)

In particular, M is called screen homothetic if ϕ and ϕ∗ are non-zero constants.

Definition 2. Any hypersurface of a statistical manifold (M̃, g̃, ∇̃) is called [26,27]:

1. totally geodesic with respect to ∇̃ if B = 0;
2. totally geodesic with respect to ∇̃∗ if B∗ = 0;
3. totally tangentially umbilical with respect to ∇̃ if there exists a smooth function k such that

B(X, Y) = kg(X, Y) for all X, Y ∈ Γ(TM);
4. totally tangentially umbilical with respect to ∇̃∗ if there exists a smooth function k∗ such that

B∗(X, Y) = k∗g(X, Y), for any X, Y ∈ Γ(TM);



Mathematics 2022, 10, 2290 5 of 18

5. totally normally umbilical with respect to ∇̃ if there exists a smooth function k such that
A∗N X = kX for any X, Y ∈ Γ(TM);

6. totally normally umbilical with respect to ∇̃∗ if there exists a smooth function k∗ such that
AN X = k∗X for all X, Y ∈ Γ(TM), where k∗ is smooth function.

From (6) and (7), we can consider a local quasi-orthonormal field {E1, . . . , Em, ξ, N}
of frames of M̃ along M where {E1, . . . , Em} is an orthonormal basis of Γ(S(TM)). Then,
the mean curvature H with respect to ∇̃ is defined by

H =
1
m

m

∑
i=1

B(Ei, Ei). (34)

The hypersurface M is called minimal with respect to ∇̃ if H = 0 at every point of M.
Now, we will give some examples of lightlike hypersurfaces of statistical manifolds:

Example 1. Let (R4
1, g̃) be a 4-dimensional semi-Euclidean space with signature (−,+,+,+) of

the canonical basis (∂1, . . . , ∂4). Consider a hypersurface M in (R4
1, g̃) defined by

{(u, v + w, u, v− w) : u, v, w ∈ R}.

Then it is easy to check that M is a lightlike hypersurface such that

Rad (TM) = Span{ξ = ∂1 + ∂3}, ltr(TM) = Span{N = −1
2
(∂1 − ∂3)},

S(TM) = Span{W1 = ∂2 + ∂4, W2 = ∂2 − ∂4}.

By direct calculations we obtain M as a totally geodesic lightlike hypersurface with respect to
the Levi–Civita connection.

Now let us define an affine connection ∇̃ as follows:

∇̃W1W1 = ∇̃W2W2 = ξ and ∇̃W1W2 = ∇̃W2W1 = 0.

Using (13) we obtain

∇̃∗W1
W1 = ∇̃∗W2

W2 = −ξ and ∇̃∗W1
W2 = ∇̃∗W2

W1 = 0.

Using (4), (12) and the above calculations, one can choose

∇̃Xξ = ∇̃ξ X = ∇̃∗Xξ = ∇̃∗ξ X = 0 and ∇̃X N = ∇̃N X = ∇̃∗X N = ∇̃∗N X = 0,

for any X ∈ Γ(TM).
Therefore ∇̃ and ∇̃∗ are dual connections. Here one can easily see that these connections are

torsion free and ∇̃g̃ 6= 0. Hence, from the definition statistical manifold, we see that (R4
1, g̃, ∇̃, ∇̃∗)

is a statistical manifold and M is totally geodesic with respect to ∇̃ and ∇̃∗.

Example 2. Let us consider a lightlike M in R4
1 defined by {(t, t cos u, t sin u, w) : t, w ∈ R, u ∈

[0, 2π]}. Then we have

Rad (TM) = Span{ξ = ∂1 + cos u∂2 + sin u∂3},

ltr(TM) = Span{N =
1
2
(−∂1 + cos u∂2 + sin u∂3)},

S(TM) = Span{W1 = −t sin u∂2 + t cos u∂3, W2 = ∂4}.
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By straightforward computation we have

∇̃0
W1

W1 = −t cos u∂2 − t sin u∂3,

∇̃0
W1

N = −1
2

sin u∂2 +
1
2

cos u∂3,

∇̃0
ξW1 = ∇̃0

W1
ξ = − sin u∂2 + cos u∂3,

∇̃0
W1

W2 = ∇̃0
W2

W1 = ∇̃0
W2

W2 = ∇̃0
W2

N = ∇̃0
W2

ξ = 0.

Let us define an affine connection ∇̃ as follows:

∇̃W1W1 = −2t cos u∂2 − 2t sin u∂3,

∇̃W2W2 =
2
t

∂1, ∇̃W1W2 = ∇̃W2W1 = 0,

∇̃W1 ξ = −2 sin u∂2 + 2 cos u∂3, ∇̃W2 ξ == 0.

Then we obtain

∇̃∗W1
W1 = 0, ∇̃∗W2

W2 = −2
t

∂1,

∇̃∗W1
W2 = ∇̃∗W2

W1 = 0,

∇̃∗W1
ξ = ∇̃W2 ξ = 0.

Therefore, ∇̃ and ∇̃∗ are dual connections and (R4
1, g̃, ∇̃, ∇̃∗) is a statistical Lorentzian

manifold. It is clear that

B(X, Y) = −2
t

g(X, Y),

for any X, Y ∈ Γ(TM). Thus, we say that M is totally tangentially umbilical with respect to ∇̃
and k = − 2

t .

Further examples such as totally normally umbilical, minimal, and screen conformal
lightlike hypersurfaces of a statistical manifold could be derived.

The following results are well known for lightlike hypersurfaces of statistical manifolds.

Proposition 1 ([12]). Let (M, g) be a lightlike hypersurface of a statistical manifold (M̃, g̃, ∇̃).
Then the following assertions are equivalent:

1. M is totally geodesic with respect to ∇̃ and ∇̃∗.
2. Aξ X = A∗ξ X = 0 for all X ∈ Γ(TM).
3. ∇X g +∇∗X g = 0 for all X ∈ Γ(TM).
4. ∇Xξ +∇∗Xξ ∈ Γ(Rad TM) for all X ∈ Γ(TM).

Theorem 1 ([12]). Let (M, g) be a lightlike hypersurface of (M̃, g̃, ∇̃). Then, M is totally tangen-
tially umbilical with respect to ∇̃ and ∇̃∗ if and only if there exists a smooth function ρ such that
the following equation satisfies

A∗ξ X + Aξ X = ρX (35)

for all X ∈ Γ(TM).

Proposition 2 ([12]). Let (M, g) be a lightlike hypersurface of (M̃, g̃, ∇̃). If M is totally normally
umbilical with respect to ∇̃ and ∇̃∗. Then we have

C(X, PY) + C∗(X, PY) = 0 (36)
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for all X, Y ∈ Γ(TM).

Proposition 3 ([12]). Let (M, g) be a lightlike hypersurface of (M̃, g̃, ∇̃). Then, M is screen
locally conformal if and only if

C(X, Y) + C∗(X, Y) = ρ(B(X, Y) + B∗(X, Y)), X, Y ∈ Γ(S(TM)),

where ρ is non-vanishing smooth functions on M.

Theorem 2. Let (M, g) be a lightlike hypersurface of (M̃, g̃, ∇̃). Then M is totally geodesic with
respect to the Levi–Civita connection ∇̃0 if and only if B = −B∗.

Theorem 3. Let (M, g) be a screen homothetic lightlike hypersurface of (M̃, g̃, ∇̃). Then M is
totally normally umbilical if and only if M is totally geodesic with respect to the Levi–Civita
connection ∇̃0.

Proof. Suppose that M is totally normally umbilical. From Proposition 2 we have
C = −C∗. If we consider this fact and M is screen homothetic in Theorem 2, we see that
M is totally geodesic with respect to the Levi–Civita connection ∇̃0. The converse part of
proof could be given similarly.

Theorem 4. Let (M, g) be a lightlike hypersurface of (M̃, g̃, ∇̃). If M is totally umbilical with
respect to ∇̃0 then the following relation satisfies:

A∗ξ X = −Aξ X (37)

for any X ∈ Γ(S(TM)).

Proof. From (8) and (13), we can write B0 = 1
2 (B + B∗). Using the fact that M is totally

umbilical with respect to ∇̃0, there exists a smooth function λ such that B0(X, Y) = λg(X, Y)
for any X, Y ∈ Γ(TM). Now if we choose X and Y as orthonormal, then we have

B(X, X) = 2λ− B∗(X, X), and B(X, Y) = −B∗(X, Y). (38)

From (30), (31) and (38), we obtain

B(X, Y) = g(A∗ξ X, Y) + B(X, ξ)

and

B∗(X, Y) = g(Aξ X, Y)− B(X, ξ)

which imply (37).

Corollary 1. Let (M, g) be a lightlike hypersurface of (M̃, g̃, ∇̃). If M is totally umbilical with
respect to ∇̃0 then M can not be totally tangentially umbilical with respect to ∇̃ and ∇̃∗.

Proof. Assume that M is totally tangentially umbilical with respect to ∇̃ and ∇̃∗. From
Theorems 1 and 4, we get ρ = 0, which is a contradiction. Thus, M can not be totally
tangentially umbilical with respect to ∇̃ and ∇̃∗.

Corollary 2. Let (M, g) be totally umbilical with respect to ∇̃0. Then we have the following state-
ments:

1. M is totally tangentially umbilical with respect to ∇̃ if and only if B∗ = 0;
2. M is totally tangentially umbilical with respect to ∇̃∗ if and only if B = 0.
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Corollary 3. Let (M, g) be a screen conformal lightlike hypersurface of (M̃, g̃, ∇̃). If M is totally
umbilical with respect to ∇̃0, then the following relation holds:

AN = − ϕ

ϕ∗
A∗N . (39)

Proposition 4. Let (M, g) be minimal with respect to the Levi–Civita connection ∇̃0 and the set
{E1, . . . , Em} be an orthonormal basis of Γ(S(TM)). Then we have the following relation:

trace A∗ξ + trace Aξ +
n

∑
i=1

(B(Ei, ξ) + B∗(Ei, ξ)) = 0. (40)

Proof. If (M, g) is minimal with respect to ∇̃0, then we have

n

∑
i=1

B0(Ei, Ei) =
1
2

n

∑
i=1

(B(Ei, Ei) + B∗(Ei, Ei)) = 0,

which shows that

n

∑
i=1

(B(Ei, Ei) + B∗(Ei, Ei)) = 0. (41)

The proof is straightforward from (30), (31) and (41).

4. Main Curvature Relations

Let (M, g) be a lightlike hypersurface of a statistical manifold (M̃, g̃, ∇̃). Denote the
curvature tensors with respect to ∇̃ and ∇̃∗ by R̃ and R̃∗, respectively. Using the Gauss
and Weingarten formulas for ∇̃ and ∇̃∗, we obtain

R̃(X, Y)Z = R(X, Y)Z− B(Y, Z)A∗N X + B(X, Z)A∗NY

+(B(Y, Z)τ∗(X)− B(X, Z)τ∗(Y))N

+((∇XB)(Y, Z)− (∇YB)(X, Z))N, (42)

and

R̃∗(X, Y)Z = R∗(X, Y)Z− B∗(Y, Z)AN X + B∗(X, Z)ANY

+(B∗(Y, Z)τ(X)− B∗(X, Z)τ(Y))N

+((∇∗XB∗)(Y, Z)− (∇∗YB∗)(X, Z))N, (43)

where R and R∗ are the curvature tensor with respect to ∇ and ∇∗, respectively.
The statistical manifold (M̃, g̃) is called of constant curvature c if the following relation

satisfies for any X, Y, Z ∈ Γ(TM) [13]

R̃(X, Y)Z = c{g(Y, Z)X− g(X, Z)Y}. (44)

Let Π = span{X, Y} be a two dimensional non-degenerate plane of Tx M at x ∈ M.
The statistical sectional curvature of Π with respect to ∇̃ and ∇̃∗ is defined respectively by
Ref. [13]

κ(Π) ≡ κ(X, Y) =
g(R(X, Y)Y, X)

g(X, X)g(Y, Y)− g(X, Y)2 (45)

and

κ∗(Π) ≡ κ∗(X, Y) =
g(R∗(X, Y)Y, X)

g(X, X)g(Y, Y)− g(X, Y)2 . (46)



Mathematics 2022, 10, 2290 9 of 18

Suppose that ξ is a null vector of Tx M. A plane Π of Tx M is a null plane if it contains ξ
and X such that g(ξ, X) = 0 and g(X, X) 6= 0. Then, the statistical null sectional curvatures
are given respectively by

κnull(Π) ≡ κnull(X, ξ) =
g(R(X, ξ)ξ, X)

g(X, X)
(47)

and

κ∗null(Π) ≡ κ∗null(X, ξ) =
g(R∗(X, ξ)ξ, X)

g(X, X)
. (48)

From the above equations and the Gauss–Weingarten formulas for M and S(TM), one
can obtain the following proposition:

Proposition 5. Let (M, g) be a lightlike hypersurface of (M̃, g̃, ∇̃). Then we have the following
equalities for any X, Y, Z, W ∈ Γ(TM):

g̃(R̃(X, Y)Z, PW) = g(R(X, Y)Z, PW)− B(Y, Z)C∗(X, PW)

+B(X, Z)C∗(Y, PW), (49)

g̃(R̃∗(X, Y)Z, PW) = g(R∗(X, Y)Z, PW)− B∗(Y, Z)C(X, PW)

+B∗(X, Z)C(Y, PW), (50)

g̃(R̃(X, Y)Z, ξ) = B(Y, Z)τ∗(X)− B(X, Z)τ∗(Y)

+(∇XB)(Y, Z)− (∇YB)(X, Z), (51)

g̃(R̃∗(X, Y)Z, ξ) = B∗(Y, Z)τ(X)− B∗(X, Z)τ(Y)

+(∇∗XB∗)(Y, Z)− (∇∗YB∗)(X, Z), (52)

g̃(R̃(X, Y)Z, N) = g(R(X, Y)Z, N)− B(Y, Z)g(A∗N X, N)

+B(X, Z)g(A∗NY, N), (53)

g̃(R̃∗(X, Y)Z, N) = g(R∗(X, Y)Z, N)− B∗(Y, Z)g(AN X, N)

+B∗(X, Z)g(ANY, N), (54)

g̃(R̃(X, Y)ξ, N) = g(R(X, Y)ξ, N)− B(Y, ξ)g(A∗N X, N)

+B(X, ξ)g(A∗NY, N), (55)

g̃(R̃∗(X, Y)ξ, N) = g(R∗(X, Y)ξ, N)− B∗(Y, ξ)g(AN X, N)

+B∗(X, ξ)g(ANY, N), (56)

where

g̃(R(X, Y)ξ, N) = C(Y, Aξ X)− C(X, AξY)− 2dτ(X, Y) (57)

and

g(R∗(X, Y)ξ, N) = C∗(Y, A∗ξ X)− C∗(X, A∗ξ Y)− 2dτ(X, Y). (58)

Proposition 6. Let (M, g) be a lightlike hypersurface of a statistical Lorentzian space form M̃(c).
Then we have

(∇XB)(Y, Z)− (∇YB)(X, Z) = B(Y, Z)τ∗(X)− B(X, Z)τ∗(Y) (59)

for any X, Y, Z ∈ Γ(TM)

Proof. From (44) it follows that

g̃(R̃(X, Y)Z, ξ) = 0. (60)

We obtain the claim of proposition by using the above relation in (51).
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With similar arguments as in the proof of Lemma 1.8 in Ref. [28], we have the following
lemma for the semi-Riemannian case:

Lemma 1. For any statistical manifold M̃, the following identities hold for any tangent vector
fields X, Y, Z on TM̃.

1. R̃(X, Y)Z = −R̃(Y, X)Z and R̃∗(X, Y)Z = −R̃∗(Y, X)Z.
2. g̃(R̃(X, Y)Z, W) = −g̃(R̃∗(X, Y)W, Z).
3. R̃(X, Y)Z + R̃(Y, Z)X + R̃(Z, X)Y = 0.

We note that if (M̃, g̃, ∇̃) is of a constant curvature c with respect to ∇̃, then it is also
of a constant curvature c with respect to ∇̃∗.

Proposition 7. Let (M, g) be a lightlike hypersurface of M̃(c). Then we have for any unit vector
X ∈ Γ(S(TM)) that

κ∗null(X, ξ) = B(X, ξ)C(ξ, X). (61)

Here κ∗null denotes the null sectional curvature with respect to ∇∗.

Proof. Using (60) and the (ii) statement of Lemma 1, we get g̃(R̃∗(X, Y)ξ, Z) = 0. Using
this fact in (50), we obtain

g(R∗(X, Y)ξ, Z) = B∗(Y, ξ)C(X, Z)− B∗(X, ξ)C(Y, Z). (62)

Putting Y = ξ and X = Z in (62), it follows that

κ∗null(X, ξ) = B∗(ξ, ξ)C(X, X)− B∗(X, ξ)C(ξ, X). (63)

From (28) and (63) we write

κ∗null(X, ξ) = B(X, ξ)C(ξ, X)− B(ξ, ξ)C(X, X). (64)

If we put X = Y = ξ in (30) and (31), we see that B(ξ, ξ) = 0. Hence we obtain the
Equation (61) from (64).

Corollary 4. Let (M, g) be a screen homothetic lightlike hypersurface of M̃(c). Then κ∗null and ϕ
have the same signs.

Proof. Since (M, g) be a screen homothetic lightlike hypersurface, we get from Proposition 7
that

κ∗null(X, ξ) = ϕ[B(X, ξ)]2 (65)

for any unit vector X ∈ Γ(S(TM)). This identity shows that the sign of κ∗null and ϕ have
the same signs.

Following the terminology used in Ref. [29], it is said to be any two vector field V and
W are conjugate if B(V, W) = 0 [23].

Corollary 5. Let (M, g) be a screen homothetic lightlike hypersurface of M̃(c). Then the null sec-
tional curvature κ∗null(X, ξ) vanishes for any X ∈ Γ(S(TM)) if and only if X and ξ are conjugate.

Now we recall the following result of V. Jain, A. P. Singh and R. Kumar (cf. Theorem 3.7
in Ref. [13]) as follows:

Theorem 5. Let (M, g) be a statistical lightlike hypersurface of an indefinite statistical manifold.
Then the following statements are equivalent:
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1. Rad TM is a Killing distribution;
2. Rad TM is a parallel distribution with respect to ∇;
3. Aξ vanishes on Γ(TM) for any ξ ∈ Rad TM.

From Proposition 7 and Theorem 5, we get the following result:

Corollary 6. Let (M, g) be a screen homothetic statistical lightlike hypersurface of
(M̃, g̃, ∇̃, ∇̃∗). The null sectional curvature κ∗null vanishes if and only if ξ is a Killing vector field.

Proposition 8. Let (M, g) be a lightlike hypersurface of M̃(c). If M is totally geodesic with
respect to ∇̃0 then we have

g(R(X, Y)Z, W) + g(R∗(X, Y)W, Z) = B(Y, Z)C∗(X, W)− B(X, Z)C∗(Y, W)

−B(Y, W)C(X, Z) + B(X, W)C(Y, Z) (66)

for any X, Y, Z, W ∈ Γ(S(TM)).

Proof. Using Theorem 2 and the statement ii) of Lemma 1 in (49) and (50), the proof of
proposition is straightforward.

Corollary 7. Let (M, g) be a screen conformal lightlike hypersurface of M̃(c). If M is totally
geodesic with respect to ∇̃0 then

κ(X, Y) = κ∗(X, Y) (67)

for any two linearly independent vector fields X, Y ∈ Γ(S(TM)).

Proof. From the definition of the Riemannian curvature tensor we write

R∗(X, Y)W = −R∗(Y, X)W (68)

for any X, Y, W ∈ Γ(S(TM)). Hence, putting Z = Y and X = W in (66) and by choosing X
and Y are unit vector field in Γ(S(TM)), we derive

κ(X, Y)− κ∗(X, Y) = B(Y, Y)C∗(X, X)− B(X, Y)C∗(Y, X)

−B(Y, X)C(X, Y) + B(X, X)C(Y, Y). (69)

Since M is totally geodesic we have C∗ = −C and M is screen homothetic, we can
write C = ϕB. Using these facts in (69), we get

κ(X, Y)− κ∗(X, Y) = ϕB(X, X)B(Y, Y)− ϕB(Y, Y)B(X, X) = 0,

which is the claim of corollary.

Proposition 9. Let (M, g) be a lightlike hypersurface of a statistical manifold (M̃, g̃, ∇̃). If M is
totally geodesic with respect to ∇̃0 then we have

g̃(R̃∗(X, Y)ξ, N) = g(R∗(X, Y)ξ, N)− g(R(X, Y)ξ, N) (70)

for any X, Y ∈ Γ(S(TM)).

Proof. Since M̃ is a Lorentzian space form, we have from (44) that g̃(R̃(X, Y)ξ, N) = 0 for
any X, Y ∈ Γ(S(TM)). Considering this fact in (55), we derive

g(R(X, Y)ξ, N) = B(Y, ξ)g(A∗N X, N)− B(X, ξ)g(A∗NY, N).
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Since M is totally geodesic, we have B = B∗ and hence, from (28), we obtain
A∗N = −AN . Therefore, we write

g(R(X, Y)ξ, N) = −B(Y, ξ)g(AN X, N) + B(X, ξ)g(ANY, N). (71)

Considering the right hand sides of (56) and (71), we obtain (70).

Corollary 8. Let (M, g) be a screen conformal lightlike hypersurface of (M̃, g̃, ∇̃). If M is totally
geodesic with respect to ∇̃0 then we have

g̃(R̃∗(X, Y)ξ, N) = 0 (72)

for any X, Y ∈ Γ(S(TM)).

Proof. By using (57) and (58) in (70), the proof is straightforward.

Proposition 10. Let (M, g) be a totally umbilical with respect to ∇̃0. If M is screen conformal
then for any orthonormal vector pair (X, Y) in Γ(S(TM)), we have

κ̃(X, Y) = κ(X, Y) + ϕ∗
(
−2λB(Y, Y) + B(X, X)B(Y, Y)− [B(X, Y)]2

)
(73)

and

κ̃∗(X, Y) = κ∗(X, Y) + ϕ
(
−2λB(X, X) + B(X, X)B(Y, Y)− [B(X, Y)]2

)
. (74)

Proof. Using the fact that M is screen conformal in (49), we derive

κ̃(X, Y) = κ(X, Y)− ϕ∗B(Y, Y)B∗(X, X) + ϕ∗B(X, Y)B∗(Y, X)

for any orthonormal vector pair (X, Y) in Γ(S(TM)). Since M is totally umbilical with
respect to ∇̃0, we derive from (38) that

κ̃(X, Y) = κ(X, Y)− ϕ∗B(Y, Y)((2λ− B(X, X))− ϕ∗[B(X, Y)]2,

which implies (73). The proof of (74) could be shown in a similar way.

5. Some Main Inequalities

Let (M, g) be a (m + 1)-dimensional lightlike statistical hypersurface of a statistical
manifold (M̃, g̃, ∇̃, ∇̃∗). We assume that {E1, . . . , Em, ξ} is the basis of Γ(TM), where
{E1, . . . , Em} is an orthonormal basis of Γ(S(TM)). We set πk = Span{E1, . . . , Ek} as a
k-dimensional non-degenerate sub-plane section. We denote the sectional curvature of the
plane section spanned by Ei and Ej for any i 6= j ∈ {1, . . . , m} by κij.

For k = m, πm = Span{E1, . . . , Em} = Γ(S(TM)). In this case, the statistical screen
Ricci curvature is given by

RicS(TM)(E1) =
m

∑
j=2

κ1j = κ12 + · · ·+ κ1m

and the statistical screen scalar curvature is given by

σS(TM)(p) =
m

∑
i,j=1

κij.
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From (49), one can easily derive the following relation:

σS(TM)(p) = σ̃S(TM)(p) +
m

∑
i,j=1

[BiiC∗jj − BijC∗ji]

= σ̃S(TM)(p) +
m

∑
i,j=1

BiiC∗jj −
1
2

m

∑
i,j=1

(Bij + C∗ji)
2

+
1
2

m

∑
i,j=1

[(Bij)
2 + (C∗ij)

2], (75)

where Bij = B(Ei, Ej), C∗ij = C∗(Ei, Ej), and

σ̃S(TM)(p) =
m

∑
i,j=1

κ̃ij.

We can rewrite the last term of (75) as Ref. [30]

m

∑
i,j=1

[(Bij)
2 + (C∗ij)

2] =
1
2
[

m

∑
i,j=1

(Bij + C∗ij)
2 +

m

∑
i,j=1

(Bij − C∗ij)
2]. (76)

Then, (75) and (76) give us

σS(TM)(p) = σ̃S(TM)(p) +
m

∑
i,j=1

[BiiC∗jj − BijC∗ji]

= σ̃S(TM)(p) +
m

∑
i,j=1

BiiC∗jj −
1
2

m

∑
i,j=1

(Bij + C∗ji)
2

+
1
4
[

m

∑
i,j=1

(Bij + C∗ij)
2 +

m

∑
i,j=1

(Bij − C∗ij)
2]

= σ̃S(TM)(p) +
m

∑
i,j=1

BiiC∗jj −
1
4

m

∑
i,j=1

(Bij + C∗ji)
2

+
1
4

m

∑
i,j=1

(Bij − C∗ij)
2. (77)

Hence, we obtain

σS(TM)(p) = σ̃S(TM)(p) + mH(trace(A∗N))−
1
4

m

∑
i,j=1

(Bij + C∗ji)
2

+
1
4

m

∑
i,j=1

(Bij − C∗ij)
2. (78)

Thus, we have the following results:

Theorem 6. Let (M, g) be a (m + 1)-dimensional lightlike hypersurface of (M̃, g̃, ∇̃). Then

σS(TM)(p) ≤ σ̃S(TM)(p) + mH(trace(A∗N)) +
1
4

m

∑
i,j=1

(Bij − C∗ij)
2. (79)

The equality holds for all p ∈ M if and only if either M is a screen homothetic with ϕ∗ = −1
or M is a totally geodesic with respect to ∇̃ and ∇̃∗.
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Proof. From (78), we clearly have the inequality (79). The equality case of this inequality
holds for all p ∈ M if and only if we have

m

∑
i,j=1

(Bij + C∗ji) = 0,

which implies that Bij = −C∗ji for all i, j ∈ {1, . . . , m} or Bij = C∗ji = 0. These show that M is

a screen homothetic with ϕ∗ = −1 or M is a totally geodesic with respect to ∇̃ and ∇̃∗.

Theorem 7. Let (M, g) be a (m + 1)-dimensional lightlike hypersurface of (M̃, g̃, ∇̃). Then

σS(TM)(p) ≥ σ̃S(TM)(p) + mH(trace(A∗N))−
1
4

m

∑
i,j=1

(Bij + C∗ij)
2. (80)

The equality holds for all p ∈ M if and only if either M is a screen homothetic with ϕ∗ = 1 or
M is a totally geodesic with respect to ∇̃ and ∇̃∗.

Proof. From (78), the proof of (80) is straightforward. The equality case of this inequality
holds for all p ∈ M if and only if we have

m

∑
i,j=1

(Bij − C∗ji) = 0,

which implies that Bij = C∗ji for all i, j ∈ {1, . . . , m} or Bij = C∗ji = 0. These relations show

that M is a screen homothetic with ϕ∗ = 1 or M is a totally geodesic with respect to ∇̃ and
∇̃∗.

Remark 1. Note that both the equality cases of (79) and (80) hold at p ∈ M if and only if p is a
totally geodesic point with respect to ∇̃ and ∇̃∗.

Now we give the following lemma for later uses:

Lemma 2. For an (m + 1)-dimensional lightlike statistical hypersurface M of a Lorentzian statis-
tical space form M̃(c), we have

g(R(X, Y)X, PW) = c{g(Y, Z)g(X, PW)− g(X, Z)g(Y, PW)}
+B(Y, Z)C∗(X, PW)− B(X, Z)C∗(Y, PW) (81)

for any X, Y, X, W ∈ Γ(TM).

Proof. From (44) and (49), the proof of lemma is straightforward.

Considering Lemma 2 in Theorem 6 and Theorem 7, we get the following results:

Corollary 9. Let M be an (m + 1)-dimensional lightlike hypersurface of M̃(c). Then

σS(TM)(p) ≤ m(m− 1)c + mH(trace(A∗N)) +
1
4

m

∑
i,j=1

(Bij − C∗ij)
2. (82)

The equality holds for all p ∈ M if and only if either M is a screen homothetic with ϕ∗ = −1
or M is a totally geodesic with respect to ∇̃ and ∇̃∗.
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Corollary 10. Let M be an (m + 1)-dimensional lightlike hypersurface of M̃(c). Then

σS(TM)(p) ≥ m(m− 1)c + mH(trace(A∗N))−
1
4

m

∑
i,j=1

(Bij + C∗ij)
2. (83)

The equality holds for all p ∈ M if and only if either M is a screen homothetic with ϕ∗ = 1 or
M is a totally geodesic with respect to ∇̃ and ∇̃∗.

For the next inequalities, we rewrite the second term of (77) as Ref. [30]

m

∑
i,j=1

BiiC∗jj =
1
2

{
[

m

∑
i,j=1

(Bii + C∗jj)]
2 − (

m

∑
i=1

Bii)
2 − (

m

∑
j=1

C∗ij)
2

}
. (84)

On combining (77) and (84), we derive the following results:

Theorem 8. Let (M, g) be an (m + 1)-dimensional lightlike hypersurface of (M̃, g̃, ∇̃). Then

σS(TM)(p) ≤ σ̃S(TM)(p) +
1
2
[(trace(Ã))2 − (trace(A∗N))

2]

−1
4

m

∑
i,j=1

(Bij + C∗ji)
2 +

1
4

m

∑
i,j=1

(Bij − C∗ij)
2,

where

Ã =


B11 + C∗11 . . . B1m + C∗m1
B21 + C∗12 . . . B2m + C∗m2

...
...

...
Bm1 + C∗1m . . . Bmm + C∗mm

. (85)

The equality holds for every point p ∈ M if and only if M is minimal.

Corollary 11. Let M be an (m + 1)-dimensional lightlike hypersurface of M̃(c). Then

σS(TM)(p) ≤ m(m− 1)c +
1
2
[(trace(Ã))2 − (trace(A∗N))

2]

−1
4

m

∑
i,j=1

(Bij + C∗ji)
2 +

1
4

m

∑
i,j=1

(Bij − C∗ij)
2,

where Ã is given by (85). The equality holds for every point p ∈ M if and only if M is minimal.

Finally, we give some inequalities on totally umbilical lightlike hypersurfaces with
respect to the their Levi–Civita connections:

Theorem 9. Let (M, g) be an (m + 1)-dimensional screen homothetic lightlike hypersurface of a
statistical manifold (M̃, g̃, ∇̃). Suppose that (M, g) is totally umbilical with respect to ∇̃0. For any
unit vector field X in Γ(S(TM)), we have

RicS(TM)(X) ≥ R̃icS(TM)(X) + ϕ∗mH(2λ− B(X, X))− 2λϕ∗B(X, X). (86)

The equality case of (86) holds for all X ∈ Γ(S(TM)) if and only if M is totally umbilical
with respect to ∇̃∗.

Proof. From Proposition 10, we have

κ̃(E1, Ej) = κ(Ei, Ej) + ϕ∗
(
−2λBjj + B11Bjj −

[
B1j
]2). (87)
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If we take trace in (87) then we get

m

∑
j=2

κ̃(E1, Ej) =
m

∑
j=2

κ(Ei, Ej) + ϕ∗
m

∑
j=2

(
−2λBjj + B11Bjj −

[
B1j
]2).

Therefore, we obtain

R̃icS(TM)(E1) = RicS(TM)(E1)− 2λϕ∗
(

m

∑
j=1

Bjj − B11

)

+ϕ∗B11

(
m

∑
j=1

Bjj − B11

)
− ϕ∗

m

∑
j=2

[
B1j
]2. (88)

Putting X = E1, the proof of (86) is straightforward from (34) and (88).
The equality case of (89) holds for all unit vector fields X in Γ(S(TM)) if and only if

B(X, Ej) = 0 for all j ∈ {1, . . . , m}. Thus, using the fact that B is bilinear we get B(X, Y) = 0
for any X, Y ∈ Γ(S(TM)). From the (ii) statement of Corollary 2 we get M as totally
umbilical with respect to ∇̃∗.

With a similar arguments as Theorem 9, we obtain the following theorem:

Theorem 10. Let (M, g) be an (m + 1)-dimensional screen homothetic lightlike hypersurface of
(M̃, g̃, ∇̃). Suppose that (M, g) is totally umbilical with respect to ∇̃0. For any unit vector field X
in Γ(S(TM)), we have

Ric∗S(TM)(X) ≥ R̃ic
∗
S(TM)(X) + ϕB(X, X)[2(m− 2)λ− B(X, X)−mH]. (89)

The equality case of (89) holds for all X ∈ Γ(S(TM)) if and only if M is totally umbilical
with respect to ∇̃∗.

Theorem 11. Let (M, g) be an (m + 1)-dimensional screen homothetic lightlike hypersurface of
(M̃, g̃, ∇̃). Suppose that (M, g) is totally umbilical with respect to ∇̃0. For all p ∈ M we have

σS(TM)(p) ≥ σ̃S(TM)(p) + ϕ∗mH(2λm− 2λ−mH) (90)

with the equality holds if and only if M is totally umbilical with respect to ∇̃∗.

Proof. Taking trace in (88) we get

σS(TM)(p) = σ̃S(TM)(p) + ϕ∗mH(2λm− 2λ−mH) + ϕ∗
n

∑
i,j=1

[
Bij
]2, (91)

which implies (90). From (91), the equality case of (90) satisfies if and only if Bij = 0 for all
i, j ∈ {1, . . . , m}. From the (ii) statement of Corollary 2 we get M is totally umbilical with
respect to ∇̃∗.

6. Future Works

In the last section, we obtained Chen-like inequalities of a lightlike hypersurface of
statistical manifolds and Lorentzian statistical space forms including screen scalar and
mean curvatures. We also considered equality cases. Many similar results can be seen in
Refs. [31–34]. We can use these results for future projects, and give some characterizations
of a lightlike hypersurface on a statistical manifold. The results stated here motivate
further studies to obtain similar relationships for many kinds of invariants of similar nature
for several statistical submersions. In particular, by introducing the curvature invariant
δ(m1, . . . , mk) on lightlike hypersurfaces of a statistical manifold, we can obtain similar
relationships for lightlike hypersurfaces and the equality cases can be discussed.
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