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Abstract: Although proposed more than half a century ago, the Nelder–Mead simplex search al-
gorithm is still widely used. Four numeric constants define the operations and behavior of the
algorithm. The algorithm with the original constant values performs fine on most low-dimensional,
but poorly on high-dimensional, problems. Therefore, to improve its behavior in high dimensions,
several adaptive schemas setting the constants according to the problem dimension were proposed
in the past. In this work, we present a novel adaptive schema obtained by a meta-optimization
procedure. We describe a schema candidate with eight parameters subject to meta-optimization and
define an objective function evaluating the candidate’s performance. The schema is optimized on
up to 100-dimensional problems using the Parallel Simulated Annealing with Differential Evolution
global method. The obtained global minimum represents the proposed schema. We compare the
performance of the optimized schema with the existing adaptive schemas. The data profiles on the
Gao–Han modified quadratic, Moré–Garbow–Hilstrom, and CUTEr (Constrained and Unconstrained
Testing Environment, revisited) benchmark problem sets show that the obtained schema outperforms
the existing adaptive schemas in terms of accuracy and convergence speed.

Keywords: meta-optimization; Nelder–Mead algorithm; adaptive parameter schema; high-dimensional
optimization problems

MSC: 65K05; 90C56

1. Introduction

Today, we can find optimization algorithms in almost every field of science and tech-
nology. A number of optimization algorithms exist, invented to fulfill various requirements
regarding convergence rate, precision, robustness, and more. One of them (the Nelder–
Mead simplex algorithm [1]), although more than half a century old, is still extensively
used for solving a wide range of continuous optimization problems. The algorithm’s
popularity is due to its simplicity and reasonably good performance observed in practical
optimization cases.

Despite its popularity, the algorithm has proven convergence issues. McKinnon [2]
presented a family of two-dimensional functions that cause the Nelder–Mead Algorithm
(NMA) to converge to a non-stationary point. Galántai [3] provided a sufficient condi-
tion for repeated inside contractions in two dimensions, causing non-convergence. A
relatively poor theoretical background on algorithm convergence is available for up to
two-dimensional problems. Lagarias et al. [4] proved various limited convergence results
for two-dimensional strictly convex objective functions. Further, Lagarias et al. [5] proved
convergence for a restricted NMA, a version of the NMA without expansion steps, on
two-dimensional strictly convex C2 functions with bounded level sets.

Many modifications of the original NMA were proposed to avoid the algorithm’s
known deficiencies and provide convergence. Kelley [6] proposed an oriented restart
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in case of detected stagnation. Tseng’s [7] and Nazareth and Tseng’s [8] versions of the
algorithm guarantee convergence with a sufficient descent approach. Price et al. [9] used
simplex reshaping to achieve convergence on C1 functions, again satisfying sufficient
descent conditions. Bűrmen et al. [10], on the other hand, introduced a grid-restrained
version of the NMA, thus making the algorithm a pattern search method. The approach
was generalized to a successive approximation of the objective function by Bűrmen and
Tuma [11].

However, convergence analysis of the unmodified, original NMA stays a hard math-
ematical problem. No theoretical background is available above two dimensions. Torc-
zon [12] discovered that the NMA fails because search direction and downhill gradient
become orthogonal when the problem dimension is large enough. Wright [13] reported that
several scholars observed how the NMA deteriorates with dimensionality but without any
explanation. Further, Han and Neumann [14] showed that the NMA makes less and less
progress per iteration with an increasing problem dimension. Gao and Han [15] suggested
that poor performance in high dimensions is due to an increasing fraction of reflection steps.

Researchers addressed the poor performance of the original NMA in high dimen-
sions in two ways. First, they proposed various algorithm modifications to improve the
convergence rate in high-dimensional parameter spaces. Fajfar et al. [16] used genetic
programming to evolve a direct search procedure using reflection, expansion, and contrac-
tion steps. Musafer’s [17] modification adjusts simplex size and direction by performing
different NMA steps on various axial combinations. Fajfar et al. [18] proposed random
centroid perturbation for improving the search direction, to name a few.

The second approach deals with NMA parameters and does not modify the algorithm
itself in any way. Gao and Han [15] proposed the first schema of dimension-dependent
NMA parameters to maintain the algorithm’s descent property in high dimensions. Kumar
and Suri [19] suggested another schema obtained from parameter sensitivity analysis on
five test functions. Mehta [20], on the other hand, observed that two schemas based on
Chebyshev spaced points outperform Gao–Han’s and Kumar–Suri’s schemas.

This paper presents the global minimum of the meta-optimization of the NMA adap-
tive parameter schema. We used the Parallel Simulated Annealing with Differential Evo-
lution (PSADE) robust global optimization method [21] running on a cluster of personal
computers as the meta-optimization method. The subjects of meta-optimization are eight
coefficients whose values define an individual adaptive parameter Schema Candidate
(SC). The schema’s mathematical formulation is set in advance and does not evolve during
the procedure. We run the NMA using the SC on several test functions and evaluate the
SC in each iteration of the meta-optimization. The global minimum represents the best
adaptive parameter schema corresponding to the predefined mathematical formulation of
the schema and used objective function. We compare the performance of the NMA using
the optimized schema with the NMA using the existing schemas on modified quadratic,
i.e., Gao–Han (GH) [15], Moré–Garbow–Hilstrom (MGH) [22], and Constrained and Un-
constrained Testing Environment, revisited (CUTEr) [23], sets of benchmark problems.
Since the proposed adaptive parameter schema results from a meta-optimization proce-
dure, we do not provide a mathematical background explaining the schema’s performance.
However, the proposed schema outperforms all the other schemas and thus, to the best of
our knowledge, currently represents the best dimension adaptive parameter schema for
the NMA.

2. Adaptive Parameter Schemas for NMA

Each mathematical symbol used in Sections 2 and 3 is explained at first use. However,
for clarification, all the symbols are also listed in the Abbreviations section at the end of
the paper.

The original NMA [1,4] is well known, therefore we provide only a brief introduction.
The NMA is an unconstrained minimization algorithm operating on an objective function
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f of np variables handling (np + 1) points Pi, i.e., simplex vertices, with objective function
values f (Pi), i = 0, 1 . . . np. In one iteration of the NMA, the following steps are performed:

• Order and relabel simplex vertices to satisfy f (P0) ≤ f (P1) ≤ . . . ≤ f (Pnp). Calculate

the centroid point P = 1
np

∑
np−1
i=0 Pi excluding the highest objective function value

point.
• Reflect Pnp over P to obtain the reflected point Pr = P + α(P− Pnp), α > 0.
• If f (Pr) < f (P0), expand Pr to obtain the expanded point

Pe = P + β
α (Pr − P) = P + β(P− Pnp), β > α.

If f (Pe) < f (Pr), replace Pnp with Pe and end the iteration.
• If f (Pr) < f (Pnp−1), replace Pnp with Pr and end the iteration.
• If f (Pr) < f (Pnp), contract Pr towards P to obtain the contracted point

Prc = P + γ
α (Pr − P) = P + γ(P− Pnp), γ < α.

If f (Prc) < f (Pnp), replace Pnp with Prc and end the iteration.
• If f (Pr) ≥ f (Pnp), contract Pnp towards P to obtain the contracted point

Pnc = P + γ(Pnp − P) = P− γ(P− Pnp).
If f (Pnc) < f (Pnp), replace Pnp with Pnc and end the iteration.

• Shrink the entire simplex towards P0, Pi := P0 + δ(Pi − P0), δ < 1, i = 1, 2, . . . np.

NMA iterations are repeated until convergence is achieved. Algorithm behavior
depends on α (reflection), β (expansion), γ (contraction), and δ (shrink) parameter values.
The NMA default values are

α = 1, β = 2, γ =
1
2

, δ =
1
2

. (1)

Adaptive parameter schemas define NMA parameter values as functions of the num-
ber of variables np. The existing schemas (Gao–Han Schema (GHS) [15], Kumar–Suri
Schema (KSS) [19], Chebyshev Crude Schema (CCS) [20], and Chebyshev Refined Schema
(CRS) [20]) considered in this paper are

GHS: α = 1, β = 1 + 2
np

, γ = 3
4 − 1

2np
, δ = 1− 1

np

KSS: α = 1 + 3
5np

, β = 6
5 , γ = 19

20 − 3
np
− 3

n2
p
, δ = 1− 1

np

CCS: α = 1 + cos (np−1−np%2)π
2np

, β = 1 + cos (np−3−np%2)π
2np

,

γ = 1 + cos (np+3+np%2)π
2np

, δ = 1 + cos (np+1+np%2)π
2np

CRS: α = 1 + cos (nc−1)π
2nc

, β = 1 + cos (nc−3)π
2nc

,

γ = 1 + cos (nc+5)π
2nc

, δ = 1 + cos (nc+3)π
2nc

, nc = 2(9 + b np−1
5 c)

(2)

where % denotes modulo operation, and bc the floor function.
In general, the initial simplex vertices Pi are random. In this paper, however, to assure

repeatability of the results, the initial simplex is generated from the starting point x0 using
Pfeffer’s method [15]. The first vertex is starting point P0 = x0. The remaining vertices are
generated by varying the ith component Pi = x0 + εiei. ei is the ith component unit vector,
and εi is given by

εi =

{
0.05 x0ei x0ei 6= 0
0.00025 x0ei = 0

, i = 1, 2 . . . np . (3)

The starting point x0 is [1, 1 . . . 1]T for GH benchmarks [15], and as given in [22] for
MGH benchmarks.
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A Nelder–Mead run terminates when the simplex becomes too flat or shrinks below a
certain size. In this paper, we use tolerances Tolf for simplex flatness and TolX for simplex
size. A Nelder–Mead run stops when both criteria (4) are met:

np
max
i=1
| f (Pi)− f (P0)| < Tolf

np−1
max
j=0

np
max
i=1
|Pij − P0j| < TolX, (4)

where Pi = [Pi0, Pi1, . . . Pi(np−1)]
T is the ith vertex of the simplex.

3. Optimization of the Adaptive Parameter Schema

The default (1) and adaptive parameter schema functions (2) shown in Figure 1 have
in general similar behavior. By choosing appropriate values c0p and c1p, an individual
parameter c from a particular schema could be closely fitted with function c = c0p +

c1p
n .

Figure 1. Parameter schema functions for the original Nelder–Mead Algorithm (NMA), Gao–Han
Schema (GHS), Kumar–Suri Schema (KSS), Chebyshev Crude Schema (CCS), and Chebyshev Refined
Schema (CRS).

At this point, a question arises: can a better adaptive parameter schema of the formu-
lation (5) be obtained by choosing the right values for c0α, c1α, c0β, c1β, etc.? Do such values
exist, and what are they? A meta-optimization procedure could provide some answers.

α = c0α +
c1α

np
, β = c0β +

c1β

np
, γ = c0γ +

c1γ

np
, δ = c0δ +

c1δ

np
(5)

Let us first define the meta-optimization procedure. As in any optimization, we need
optimization parameters, an objective function, and an optimization method. Optimization
parameters (c0α . . . c1δ) follow from the mathematical formulation describing an SC (5).
Therefore, we have an eight-dimensional meta-optimization parameter space.

The meta-optimization objective function measures the weighted difference in data
profiles [24] between the best reference schema and an SC. For a mathematical formulation
of the objective function, some definitions are needed. A data profile function of a schema s
over a set of benchmark problems P

dsP (κ) =
|p ∈ P : tps

np+1 ≤ κ|
|P| (6)

defines the fraction of problems in a set P that schema s solves in κ simplex gradient esti-
mates. s is a schema from the set of schemas S (s ∈ S = {NMA, GHS, KSS, CCS, CRS, SC}).
| · | denotes cardinality of a set. tps is the number of objective function evaluations needed
by schema s to achieve convergence on problem p, and np is the problem dimension. Since
one simplex gradient estimate corresponds to np + 1 objective function evaluations, fraction
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tps
np+1 is the number of simplex gradient estimates required for convergence. Convergence
is achieved when

f (x) ≤ fL + τ( f (x0)− fL) , (7)

where x is an evaluated point in np-dimensional parameter space, and fL is the lowest
objective function value reached by any of the schemas s ∈ S in κmax simplex gradient
estimates. Tolerance τ specifies accuracy level. Moré and Wild [24] use tolerance values
10−1, 10−3, 10−5, and 10−7. We set convergence condition tolerance τ to 10−7 as Mehta did
in his work [20]. If a particular schema s fails to satisfy condition (7) for problem p, then tps
is set to infinity.

The final meta-optimization objective function h(SC) evaluates a particular SC defined
by eight meta-optimization parameters c0α . . . c1δ with

h(SC) = ∑
P∈X

κmax

∑
κ=1


(max

r∈R
drP (κ)− dSCP (κ))×





wP+ max
r∈R

drP (κ) > dSCP (κ)

wP− max
r∈R

drP (κ) ≤ dSCP (κ)


 . (8)

The GH and MGH benchmark problems are treated separately, X ∈ {GH, MGH}.
For every number of simplex gradient estimates κ, the data profile of the SC is compared
with the best of the reference profiles, r ∈ R = S − {SC}. The difference is weighted with
wP+ when the best reference is better, and wP− otherwise. Weights wP+ and wP− define
a trade-off between under- and over-achieving the optimization goal (which in turn is
the best schema’s performance). Usually, under-achieving is penalized more than over-
achieving is rewarded. In our case, the weight values were set to wGH+ = wMGH+ = 10,
and wGH− = wMGH− = 1.

Finally, we have to choose an optimization method to perform our meta-optimization
procedure. We are searching for a global minimum in eight-dimensional parameter space.
Therefore, a global optimization method with proven convergence can do the job. We
chose PSADE [21], a parallel version of [25] since it is available in the PyOPUS Python
package [26]. Among others, the PyOPUS package includes optimization algorithms (origi-
nal NMA included), parallel processing support, and benchmark problems (GH, MGH, and
CUTEr problems included), all the ingredients needed in our meta-optimization procedure.
It can be found in the Python Package Index (PyPI) software repository. The PSADE method
exhibited good performance on global benchmark functions as well as on real optimization
problems [27–29]. Further, PSADE is an asynchronous global method achieving speedups
up to the number of slave computational cores when run in parallel. We ran PSADE on
a cluster of 25 personal computers. Instead of PSADE, one of a plethora of newer global
methods, e.g., [30–33], could be used. However, besides faster convergence, we do not
expect significantly better results.

A meta-optimization search for a better NMA parameter schema requires signifi-
cant computational power. An individual SC, represented by eight meta-optimization
parameter values c0α . . . c1δ, has to be evaluated against reference parameter schemas in
every meta-optimization iteration. One SC evaluation requires as many Nelder–Mead runs
as there are problems included in the objective function evaluation. In general, a single
Nelder–Mead run stops when the termination criteria are achieved, e.g., when the simplex
becomes flat or shrinks below the tolerance. However, additional improvement is possible
if the procedure runs further. When driven beyond tolerances, a non-convergent SC may
become convergent, although rather slow. Gao and Han [15], Kumar and Suri [19], and
Mehta [20] all set an absolute limit to the number of objective function evaluations to 106,
i.e., 9900–90,909 simplex gradient estimates. However, in their results, 1000–2000 estimates
are needed on average for the NMA using an adaptive parameter schema to converge. They
set termination tolerances Tolf, TolX in range 10−10–10−4. Therefore, after some preliminary
tests, we set κmax to 5000. More would be better. And—after some preliminary experimen-
tal optimization runs—we established that around 106 meta-optimization iterations are
required to achieve convergence in an unconstrained eight-dimensional parameter space
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using the robust PSADE global optimization method [21]. Again, the more, the better. Thus,
the total number of required objective function evaluations can be estimated as the number
of simplex gradient estimates per benchmark problem times the number of simplex vertices
summed over all benchmark problems times the number of meta-optimization iterations.
For GH and MGH benchmarks altogether, this is over 1013 evaluations.

Therefore, brute force is not very promising. Instead, we tuned the meta-optimization
parameters by conducting a series of shorter meta-optimization runs. We varied parameter
space constraints, NMA termination tolerances Tolf and TolX, the gradient estimates limit
κmax per Nelder–Mead run, meta-optimization iteration limit, and we also experimented
with the objective function definition at the beginning. By observing the results, we grad-
ually eliminated parts that were not essential, e.g., setting NMA termination tolerances
Tolf and TolX too low can significantly extend the meta-optimization procedure without
producing a significantly better result. The final meta-optimization parameter values are
as follows: the parameter space is a discrete eight-dimensional box with 0.01 grid and
constraints set to [c0α, c1α, c0β, c1β, c0γ, c1γ, c0δ, c1δ]

T ∈ [[0.80, 1.20], [0.20, 0.60], [0.85, 1.25],
[0.35, 0.75], [0.65, 1.05], [−0.50,−0.10], [0.05, 0.45], [−0.40, 0.00]]T. NMA termination tol-
erances are set to Tolf = TolX = 10−4. The simplex gradient estimates limit was set to
κmax = 5000, enough to catch degenerated SCs. The final objective function formulation is
given in (8). Meta-optimization iteration limit was set to 106.

The final meta-optimized parameter values, i.e., the global minimum of (8), are

c0α = 1.02, c1α = 0.31, c0β = 1.06, c1β = 0.53,
c0γ = 0.82, c1γ = −0.27, c0δ = 0.28, c1δ = −0.19 .

(9)

This is the global minimum when (5) is used as the adaptive parameter schema. We
chose (5) as the adaptive parameter schema because of its similarity to the existing schemas.

4. Evaluation of the Optimized Schema with Discussion

In this section, we present and discuss the properties of the optimized schema (9).
We analyze its performance and compare it with the other schemas, (1) and (2). Since the
schema is a result of the meta-optimization procedure, we do not deal with the issue of
why the schema performs well. A mathematical evaluation of an arbitrary schema is given
with the objective function definition (8). However, an analytical solution to the defined
meta-optimization problem exceeds the scope of this paper.

The optimized parameter schema (9) is compared with the original NMA (1) and
the existing adaptive parameter schemas (2), GHS, KSS, CCS, and CRS, in Figure 2. We
can observe that the optimized schema follows the same pattern as the other schemas.
However, the optimized schema approaches its high-dimensional value faster which is the
consequence of smaller |c1p/c0p| ratios. Otherwise, the optimized schema curves do not
significantly deviate from the others. Shrink parameter δ is an exception. While δ in all the
other adaptive schemas approaches 1, the optimized schema’s high-dimensional δ value is
c0δ = 0.28 which is far lower, even than 0.5 of the original NMA. On the other hand, the
shrink parameter turns out to be insignificant for GH and MGH benchmarks. The fraction
of shrink steps is at most 0.5% for Penalty I and Penalty II problems. However, the fraction
of shrink steps in the optimized schema is 0.0% for all GH and MGH benchmarks.
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To evaluate the obtained schema further, we compare it in terms of accuracy and
speed. Note that the meta-optimization objective function (8) in combination with NMA
termination tolerances rewards speed. Therefore, accuracy was not a subject of meta-
optimization.

Table 1 shows accuracy results for a GH modified quadratic function (10) up to
problem dimension np = 100. Parameter ε ≥ 0 defines condition number of matrix D,
and σ ≥ 0 specifies deviation from quadratic form. The minimum value of (10) is zero
(minx∈Rnp f (x) = 0) for any ε, σ, or np. An individual Nelder–Mead run was stopped after
κmax = 25,000 simplex gradient estimates, that is, after Neval = 25, 000(np + 1) objective func-
tion evaluations. We applied no tolerance-based termination criteria, i.e., Tolf = TolX = 0.
The table shows the lowest achieved objective function values. A schema is considered
to be accurate if the achieved minimum value is correct to at least six decimal places, i.e.,
when f (x) < 5 × 10−7. The accurate schema values are shown in bold. If a schema does
not converge according to condition (7) for τ = 10−7, the value is shown in italics.

f (x) = xTDx + σ(xTBx)2

D = diag[(1 + ε), (1 + ε)2, . . . (1 + ε)np ], B = UTU, U =

[
1 ··· 1

...
...
1

]
(10)

Given 25,000 simplex gradient estimates, the optimized schema is accurate and conver-
gent for all 40 GH benchmark problems, as all the existing schemas also are. As expected,
the original NMA encounters accuracy and convergence problems in high dimensions.

Accuracy results for MGH benchmark problems [22] are shown in Table 2. The same
rules (25,000 simplex gradient estimates, Tolf = TolX = 0, etc.) apply. Minima of the
used MGH functions are all zero with the exception of Penalty I and Penalty II functions.
For np = 10, the corresponding minima are 7.0876515. . . ×10−5 and 0.00029366054. . .,
respectively. Thus, the six digit accuracy criteria are given by fPenalty I(x) < 7.087655
×10−5, and fPenalty II(x) < 0.0002936615.

Table 1. Accuracy of the original NMA, the existing adaptive schemas (GHS, KSS, CCS, CRS), and
the optimized schema on Gao–Han (GH) modified quadratic benchmark problems.

np f (x)NMA f (x)GHS f (x)KSS f (x)CCS f (x)CRS f (x)opt.

ε = 0.0 10 3.5 × 10−323 0.0 0.0 3.5 × 10−323 0.0 0.0
σ = 0.0 20 2 × 10−322 0.0 0.0 0.0 0.0 10−323

30 1.14 × 10−11 0.0 0.0 0.0 0.0 0.0
40 2.03 × 10−4 0.0 0.0 0.0 0.0 0.0
50 5.54 × 10−4 0.0 0.0 0.0 0.0 0.0
60 1.38 × 10−5 0.0 0.0 5 × 10−324 0.0 5 × 10−324

70 5.76 × 10−5 0.0 0.0 0.0 0.0 0.0
80 4.87 × 10−6 5 × 10−323 0.0 0.0 0.0 0.0
90 2.75 × 10−6 1.4 × 10−322 0.0 5 × 10−324 0.0 0.0

100 3.19 × 10−6 6 × 10−323 0.0 2 × 10−323 0.0 0.0

ε = 0.05 10 0.0 0.0 0.0 0.0 0.0 0.0
σ = 0.0 20 6.23 × 10−322 0.0 0.0 0.0 5 × 10−324 0.0

30 5.31 × 10−3 0.0 0.0 0.0 0.0 5 × 10−324

40 1.32 × 10−2 0.0 0.0 0.0 0.0 0.0
50 1.62 × 10−1 0.0 0.0 0.0 0.0 0.0
60 12.7 0.0 0.0 0.0 0.0 0.0
70 8.24 2 × 10−323 0.0 0.0 0.0 0.0
80 32.2 1.24 × 10−322 0.0 5 × 10−324 0.0 0.0
90 3.77 5.4 × 10−323 5 × 10−324 5 × 10−324 0.0 0.0

100 278 6 × 10−323 0.0 10−323 0.0 0.0
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Table 1. Cont.

np f (x)NMA f (x)GHS f (x)KSS f (x)CCS f (x)CRS f (x)opt.

ε = 0.0 10 0.0 0.0 0.0 0.0 0.0 0.0
σ = 0.0001 20 2.05 × 10−3 0.0 0.0 0.0 0.0 0.0

30 1.91 × 10−5 0.0 0.0 0.0 0.0 0.0
40 16.7 0.0 0.0 0.0 0.0 0.0
50 2.63 0.0 0.0 0.0 0.0 0.0
60 10.9 0.0 0.0 10−323 0.0 0.0
70 276 5 × 10−324 0.0 0.0 0.0 0.0
80 292 8 × 10−323 0.0 0.0 0.0 0.0
90 11.7 6 × 10−323 5 × 10−324 5 × 10−324 0.0 0.0

100 48.7 7.4 × 10−323 0.0 10−323 0.0 0.0

ε = 0.05 10 1.5 × 10−323 0.0 0.0 0.0 0.0 0.0
σ = 0.0001 20 1.93 × 10−4 0.0 0.0 0.0 5 × 10−324 5 × 10−324

30 1.12 × 10−2 0.0 0.0 0.0 0.0 5 × 10−324

40 7.31 × 10−1 0.0 0.0 0.0 0.0 0.0
50 37.2 0.0 0.0 0.0 0.0 5 × 10−324

60 179 0.0 0.0 0.0 0.0 0.0
70 18.7 3 × 10−323 0.0 0.0 0.0 0.0
80 16.4 7.4 × 10−323 0.0 5 × 10−324 0.0 0.0
90 1480 1.3 × 10−322 1.5 × 10−323 0.0 0.0 0.0

100 3802 5 × 10−323 0.0 10−323 0.0 0.0

accurate 7/40 40/40 40/40 40/40 40/40 40/40

Again, with 25,000 simplex gradient estimates available, the optimized schema is
accurate and convergent for all MGH benchmarks, except for four trigonometric functions,
where the result is approaching the minimum, although not reaching it. We can observe
similar behavior for the other schemas as well. Furthermore, for trigonometric function
benchmarks, the schemas achieved relatively small objective function value reduction,
which is reflected in relation τ

f (x0)
fL
� 1. Consequently, fL � τ( f (x0) − fL), and con-

vergence condition (7) degenerates into f (x) . fL. Strictly following the convergence
condition, only schemas reaching the lowest value fL are considered convergent. Neverthe-
less, the optimized schema managed to produce the lowest objective function value in all
trigonometric function benchmarks, except one.

Convergence speed of the obtained schema (9) is compared to the other schemas (1)
and (2) using data profiles (6) and (7) [24]. Figure 3 shows data profiles for GH and MGH
benchmark sets separately and combined. The profiles are calculated at τ = 10−7 with
κmax = 25,000 simplex gradient estimates and without tolerance-based algorithm termina-
tion (Tolf = TolX = 0). The graphs are shown for up to 15,000 simplex gradient estimates.

Graphs in Figure 3 reveal a slight advantage in terms of speed for the optimized schema
over the existing adaptive parameter schemas. The schemas perform similarly when only
GH benchmarks are considered. Although the optimized schema can be declared as the
fastest (solves the highest percentage of problems at almost any given κ), the remaining
schemas quickly follow. All the adaptive schemas solve 100% of GH problems after
approximately 2500 simplex gradient estimates. The CCS is the first to achieve this goal
at ~2100 simplex gradient estimates. The original NMA, on the other hand, manages to
be competitive with the adaptive schemas for the first 10% of problems. With the lower-
dimensional problems solved, it starts to lag, finally solving less than 30% of GH problems.
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Table 2. Accuracy of the original NMA, the existing adaptive schemas (GHS, KSS, CCS, CRS), and
the optimized schema on Moré–Garbow–Hilstrom (MGH) benchmark problems.

Function np f (x)NMA f (x)GHS f (x)KSS f (x)CCS f (x)CRS f (x)opt.

Extended 12 2.91 × 10−28 2.35 × 10−29 1.73 × 10−28 4.64 × 10−29 5.18 × 10−29 6.88 × 10−29

Rosenbrock 18 20.0 6.97 × 10−29 6.51 × 10−29 1.44 × 10−28 5.66 × 10−28 1.35 × 10−28

24 12.5 1.72 × 10−28 2.58 × 10−28 1.86 × 10−28 3.72 × 10−28 6.21 × 10−28

30 34.5 4.09 × 10−28 6.70 × 10−28 7.28 × 10−28 3.70 × 10−27 2.76 × 10−28

36 49.1 8.72 × 10−28 6.64 × 10−28 6.81 × 10−28 4.77 × 10−28 1.11 × 10−27

Extended 12 8.34 × 10−55 3.33 × 10−57 7.09 × 10−55 3.09 × 10−57 1.07 × 10−59 1.18 × 10−58

Powell 24 1.33 × 10−9 1.83 × 10−54 3.45 × 10−56 5.37 × 10−56 1.67 × 10−53 3.39 × 10−53

singular 40 1.69 × 10−6 1.06 × 10−50 2.34 × 10−52 1.46 × 10−52 5.22 × 10−52 2.33 × 10−53

60 4.16 × 10−4 9.71 × 10−6 3.43 × 10−50 2.88 × 10−52 1.28 × 10−37 1.16 × 10−46

Penalty I 10 7.57 × 10−5 7.09 × 10−5 7.09 × 10−5 7.60 × 10−5 7.09 × 10−5 7.09 × 10−5

Penalty II 10 2.98 × 10−4 2.94 × 10−4 2.94 × 10−4 2.98 × 10−4 2.95 × 10−4 2.94 × 10−4

Variably 12 4.77 3.72 × 10−30 1.47 × 10−29 3.64 × 10−29 2.30 × 10−29 1.78 × 10−29

dimensioned 18 4.22 8.96 × 10−30 2.06 × 10−29 1.52 × 10−29 4.74 × 10−29 4.25 × 10−29

24 11.5 8.22 × 10−29 8.37 × 10−29 7.52 × 10−29 9.23 × 10−29 2.27 × 10−28

30 40.5 8.08 × 10−29 1.08 × 10−28 1.06 × 10−28 3.38 × 10−28 4.49 × 10−28

36 60.1 4.21 × 10−28 1.46 × 10−28 8.82 × 10−29 8.35 × 10−28 7.60 × 10−28

Trigonometric 10 2.80 × 10−5 2.80 × 10−5 2.80 × 10−5 2.80 × 10−5 2.80 × 10−5 2.80 × 10−5

20 1.35 × 10−6 1.35 × 10−6 6.03 × 10−6 6.86 × 10−6 1.35 × 10−6 1.35 × 10−6

30 2.20 × 10−5 9.90 × 10−7 9.90 × 10−7 5.65 × 10−6 9.90 × 10−7 5.98 × 10−7

40 1.41 × 10−5 1.55 × 10−6 3.95 × 10−6 1.68 × 10−7 5.58 × 10−7 1.55 × 10−6

50 2.52 × 10−5 2.24 × 10−7 3.41 × 10−6 9.23 × 10−7 1.11 × 10−6 2.24 × 10−7

60 3.87 × 10−5 8.68 × 10−7 7.57 × 10−7 7.57 × 10−7 1.27 × 10−6 4.62 × 10−7

Discrete 10 6.85 × 10−32 3.03 × 10−33 8.36 × 10−32 2.20 × 10−31 3.07 × 10−32 1.59 × 10−32

boundary 20 4.69 × 10−30 7.24 × 10−32 2.51 × 10−32 2.39 × 10−32 1.05 × 10−31 3.92 × 10−32

value 30 9.87 × 10−6 1.10 × 10−31 1.43 × 10−31 1.19 × 10−31 2.02 × 10−31 9.29 × 10−32

40 6.46 × 10−6 4.58 × 10−31 3.55 × 10−31 1.37 × 10−31 4.76 × 10−31 3.45 × 10−31

50 5.72 × 10−6 6.02 × 10−31 5.70 × 10−31 2.84 × 10−31 5.35 × 10−31 4.35 × 10−31

60 3.19 × 10−6 2.46 × 10−30 8.09 × 10−31 6.64 × 10−31 1.11 × 10−30 7.39 × 10−31

Discrete 10 1.91 × 10−31 4.24 × 10−33 1.44 × 10−32 2.27 × 10−31 2.56 × 10−32 3.08 × 10−33

integral 20 7.69 × 10−30 4.62 × 10−32 2.90 × 10−32 6.27 × 10−32 3.40 × 10−32 2.37 × 10−32

equation 30 7.11 × 10−4 2.22 × 10−31 2.50 × 10−31 3.45 × 10−31 8.55 × 10−32 2.50 × 10−31

40 3.63 × 10−4 3.82 × 10−31 3.07 × 10−31 3.21 × 10−31 4.25 × 10−31 3.04 × 10−31

50 3.05 × 10−3 8.51 × 10−31 1.34 × 10−30 5.95 × 10−31 1.47 × 10−30 7.34 × 10−31

60 4.46 × 10−4 2.24 × 10−30 1.30 × 10−30 1.59 × 10−30 9.74 × 10−31 6.12 × 10−31

Broyden 10 3.99 × 10−30 3.12 × 10−30 7.31 × 10−30 3.28 × 10−29 2.92 × 10−30 2.92 × 10−30

tridiagonal 20 3.20 × 10−26 1.63 × 10−29 3.34 × 10−29 6.15 × 10−29 2.45 × 10−29 3.15 × 10−29

30 4.70 × 10−26 1.68 × 10−28 1.19 × 10−28 9.66 × 10−29 6.50 × 10−29 8.18 × 10−29

40 9.11 × 10−14 2.24 × 10−28 6.73 × 10−28 3.70 × 10−28 2.45 × 10−28 2.24 × 10−28

50 2.67 × 10−13 5.82 × 10−28 6.98 × 10−28 4.61 × 10−28 6.86 × 10−28 4.54 × 10−28

60 3.78 × 10−11 9.12 × 10−28 1.69 × 10−27 1.01 × 10−27 1.34 × 10−27 1.10 × 10−27

Broyden 10 4.18 × 10−28 4.61 × 10−30 4.81 × 10−30 6.82 × 10−29 7.43 × 10−30 2.36 × 10−30

banded 20 1.85 × 10−26 2.63 × 10−29 6.04 × 10−29 7.47 × 10−29 1.60 × 10−28 4.77 × 10−29

30 12.2 2.25 × 10−28 1.34 × 10−28 2.08 × 10−28 3.15 × 10−28 2.89 × 10−28

40 2.02 × 10−6 3.48 × 10−28 7.41 × 10−28 9.32 × 10−28 1.34 × 10−28 3.25 × 10−28

50 9.33 × 10−5 6.08 × 10−28 1.38 × 10−27 6.78 × 10−28 5.98 × 10−28 1.04 × 10−27

60 5.13 × 10−6 2.93 × 10−27 3.44 × 10−27 4.09 × 10−27 7.98 × 10−28 7.59 × 10−28

accurate 15/46 40/46 40/46 39/46 39/46 42/46
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Figure 3. Data profiles for GH and MGH benchmark sets, separated and combined. No tolerance-
based algorithm termination was applied (Tolf = TolX = 0).

The advantage of the optimized schema becomes notable when observing the MGH
benchmark set. At ~1600 simplex gradient estimates, the optimized schema solves more
than 90% of the problems while the remaining adaptive schemas solve up to 83%, and the
original NMA merely 50% of the problems. It is clearly the fastest schema and has the
highest final percentage of solved problems (98%). Other adaptive schemas solve up to
93%, and the original NMA solves 59% of the problems.

The optimized schema remains the fastest when all GH and MGH benchmark prob-
lems are considered. Its advantage over the existing adaptive schemas is 6% at 1000, 5% at
2000, and 3% at 3000 simplex gradient estimates. The original NMA manages to keep up
for less than 20% of the problems at ~150 simplex gradient estimates. The final percentage
of solved problems is 99% for the optimized schema, up to 97% for the remaining adaptive
schemas, and 44% for the original NMA.

In Figure 4, the same measurement of convergence speed is repeated with tolerance
based algorithm termination set to Tolf = TolX = 10−4. The profiles are once more
calculated for τ = 10−7. The maximum number of simplex gradient estimates κmax = 25,000
does not play any role in this experiment because none of the individual Nelder–Mead
runs ever uses the entire budget of available simplex gradient estimates. The algorithm is
always terminated earlier by the tolerance-based criterion. The graphs are shown for up to
8000 simplex gradient estimates. No further progress is made beyond that point.

With tolerance-based termination enabled, the optimized schema performs even better
than the other schemas. When we consider only GH benchmarks, the schemas again
perform similarly, although, in general, the optimized schema is still slightly faster. The
CCS is the first that solves 100% of GH problems in ~2100 estimates. Other adaptive
schemas quickly follow. The only notable alteration can be observed for the original NMA
which now performs worse and solves less than 20% of GH problems. The original NMA
manages to converge in an additional ~10% of GH problems when it is allowed to run
beyond the tolerance-based stopping criterion.

The advantage of the optimized schema becomes apparent in MGH data profiles. The
KSS, CCS, and CRS keep pace for up to ~370 simplex gradient estimates where ~70% of
the MGH problems are solved. The GHS starts to lag at ~240 estimates with ~40% of the
problems solved. It catches up at 3000 estimates, finally solving 70% of the MGH problems.
KSS, the best of the existing adaptive schemas, ends at 71%. The optimized schema is clearly
better with 80% of the problems solved in 730 estimates, ending with 82% at 1660 estimates.
The original NMA again performs worse compared to the run without tolerance-based
termination, ending with 23% of solved problems.
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Figure 4. Data profiles for GH and MGH benchmark sets, separated and combined. Tolerance
based algorithm termination was applied (Tolf = TolX = 10−4).
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For all-inclusive GH and MGH benchmark data profiles, the optimized schema starts
to stand out from the rest of the existing adaptive schemas at ~60% of solved problems,
achieved within ~300 simplex gradient estimates. The optimized schema reaches its final
result, i.e., 90% of solved problems, in 2400 estimates. Its advantage over the best existing
adaptive schema, i.e., KSS, is 6%. The KSS comes to 84% in 7020 estimates. As expected,
the original NMA ends at a modest 21% of solved problems within 1200 estimates.

Figure 5 shows our last convergence speed measurement on GH, MGH, and CUTEr
benchmark problems, 169 problems in total. The data profiles are shown for the CUTEr
benchmark set, and GH, MGH, and CUTEr benchmark sets combined. They are calculated
at convergence condition tolerance τ = 10−7 with κmax = 25,000 simplex gradient estimates
limit. Cases without the tolerance-based algorithm termination (Tolf = TolX = 0), and
with it (Tolf = TolX = 10−4), are shown. When the tolerance-based criterion is applied,
the Nelder–Mead runs are always terminated before the limit of κmax simplex gradient
estimates is reached.

Data profiles in Figure 5 confirm our previous observations. Although not meta-
optimized on CUTEr benchmark problems, the optimized schema solves the highest
percentage of the problems in all shown cases at any given κ. It makes a difference of 4 to
6% compared to the first follower at ~400 simplex gradient estimates when tolerance-based
algorithm termination is applied, and at ~1100 estimates when it is not. The optimized
schema reaches or comes close to its final result in ~4000 estimates. It solves 91 to 97% of
problems, GHS 84 to 93%, CRS 84 to 93%, KSS 86 to 91%, CCS 81 to 88%, and the original
NMA manages 13 to 36%.

Besides the 40 GH and 46 MGH benchmarks, the following problems are included in
data profiles in Figure 5: BrownAlmostLinear with dimensions np = {20, 30, 40, 50, 70, 100}
from MGH set, HilbertQuadratic with dimensions np = {10, 30, 60, 90}, OrenPower [34]
with dimensions np = {30, 50, 60, 70, 80, 90, 100}, and ARWHEAD_100, DQDRTIC_50,
DQDRTIC_100, SPARSINE_50, SPARSINE_100, CHNROSNB_25, CHNROSNB_50, SCO-
SINE_10, LIARWHD_100, FLETCHBV_100, DIXON3DQ_100, OSCIGRAD_25,
OSCIGRAD_100, NONCVXUN_10, NONCVXUN_100, PENALTY1_50, PENALTY1_100,
SINQUAD_50, SINQUAD_100, FLETCBV3_100, PENALTY2_100, TOINTGSS_50, TOINT-
GSS_100, ARGLINC_50, EXTROSNB_100, COSINE_100, TRIDIA_50, TRIDIA_100,
NONDQUAR_100, QUARTC_25, QUARTC_100, FREUROTH_100, WATSON_31, ERRIN-
ROS_25, ERRINROS_50, NONDIA_20, NONDIA_30, NONDIA_50, NONDIA_90,
NONDIA_100, MANCINO_20, MANCINO_30, DQRTIC_100, ENGVAL1_50,
ENGVAL1_100, HILBERTA_10, FLETCBV2_100, TQUARTIC_10, EDENSCH_36,
ARGLINA_50, ARGLINA_100, BOX_100, POWELLSG_36, POWELLSG_40, POWELLSG_60,
POWELLSG_80, POWELLSG_100, POWER_75, POWER_100, HILBERTB_50, ARGLINB_50,
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MOREBV_50, BDQRTIC_100, SCURLY10_100, VAREIGVL_49, VAREIGVL_99 from CUTEr
benchmark problem set.
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Figure 5. Data profiles for Constrained and Unconstrained Testing Environment, revisited (CUTEr)
benchmark set and GH, MGH, and CUTEr benchmark sets combined, without (Tolf = TolX = 0) and
with tolerance-based algorithm termination applied (Tolf = TolX = 10−4).

Speed of convergence of a particular adaptive parameter schema is mirrored in the
simplex’s best value descent during an individual Nelder–Mead run. The descent rate can
be expressed by cos θ, where θ is an angle between the search direction d and the gradient
of the objective function ∇ f (x):

cos θ =
dT∇ f (x)
|d| |∇ f (x)| . (11)

Search direction d is locally descending when cos θ < 0. The fastest descent is achieved
at cos θ = −1. According to the NMA definition, the search direction is d = c(Pnp − P),
where c is the reflection (α), expansion (β), or contraction (γ) NMA parameter. The descent
rate in a non-shrinking NMA iteration is therefore calculated as

cos θ =
(Pnp − P)T∇ f (Pnp)

|Pnp − P| |∇ f (Pnp)|
. (12)

The simplex’s best value descents and corresponding descent rates for np = 100-
dimensional GH benchmark problems are shown in Figure 6. The figure shows that all the
existing schemas as well as the optimized adaptive schema manage to maintain some level
of descent during the entire Nelder–Mead run. A higher descent rate, i.e., more negative
cos θ, ensures faster objective function descent and fulfillment of the termination criteria.
The optimized schema is the fastest or near fastest in all shown cases except for the ε = 0.0,
σ = 0.0001 case. This is partly reflected in the poorer descent rate of the optimized schema
for that particular case.

The tolerance boundary intersections shown in Figure 6 are tps values from (6). Data
profiles in Figures 3–5 summarize tolerance boundary intersections over the entire bench-
mark problem set.

The absence of a sufficient descent rate is fatal for the original NMA. The original
NMA manages some slow descent only in the ε = 0.0, σ = 0.0 case. In all remaining cases,
cos θ approaches 0◦. Search direction d becomes orthogonal to the negative gradient which
was first observed by Torczon [12]. As a consequence, the original NMA stops descending
and does not achieve the convergence boundary.
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Speed of convergence of a particular adaptive parameter schema is mirrored in
simplex’s best value descent during an individual Nelder–Mead run. The descent rate
can be expressed by cos θ, where θ is an angle between the search direction d and the
gradient of the objective function ∇ f (x):

cos θ =
dT∇ f (x)
|d| |∇ f (x)| . (11)

Search direction d is locally descending when cos θ < 0. The fastest descent is achieved
at cos θ = −1. According to NMA definition, the search direction is d = c(Pnp − P),
where c is the reflection (α), expansion (β), or contraction (γ) NMA parameter. The
descent rate in a non-shrinking NMA iteration is therefore calculated as

cos θ =
(Pnp − P)T∇ f (Pnp)

|Pnp − P| |∇ f (Pnp)|
. (12)

Simplex’s best value descents and corresponding descent rates for np = 100-dimensional332

GH benchmark problems are shown in Figure 6. The figure shows that all the existing333

schemas as well as the optimized adaptive schema manage to maintain some level of334

descent during the entire Nelder–Mead run. A higher descent rate, i.e., more negative335

cos θ, ensures faster objective function descent and fulfillment of the termination criteria.336

The optimized schema is the fastest or near fastest in all shown cases except for the337

ε = 0.0, σ = 0.0001 case. This is partly reflected in the poorer descent rate of the338

optimized schema for that particular case.339

0 400 800
10−8

10−3

102

κ

f (P0)

ε = 0
σ = 0

0 1500 3000
10−7

10−2

103

κ

f (P0)

ε = 0.05
σ = 0

0 1500 3000
10−8

100

108

κ

f (P0)

ε = 0.0
σ = 0.0001

0 1500 3000
10−8

100

108

κ

f (P0)

ε = 0.05
σ = 0.0001

0 400 800
−1

−0.5

0

κ

cos θ

0 1500 3000
−1

−0.5

0

κ

cos θ

0 1500 3000
−1

−0.5

0

κ

cos θ

0 1500 3000
−1

−0.5

0

κ

cos θ

NMA GHS KSS CCS CRS opt. tol.

Figure 6. Best objective function values ( f (P0)) and corresponding descent rates (cos θ) during
Nelder–Mead run for np = 100-dimensional GH benchmarks. Tolerance-based algorithm termina-
tion applied (Tolf = TolX = 10−4). Black line represents convergence boundary (7) for τ = 10−7.

The tolerance boundary intersections shown in Figure 6 are tps values from (6).340

Data profiles in Figures 3, 4, and 5 summarize tolerance boundary intersections over the341

entire benchmark problem set.342

Figure 6. Best objective function values ( f (P0)) and corresponding descent rates (cos θ) during
Nelder–Mead run for np = 100-dimensional GH benchmarks. Tolerance-based algorithm termination
applied (Tolf = TolX = 10−4). Black line represents convergence boundary (7) for τ = 10−7.

In [4], the authors prove that NMA does not perform shrink iteration when the
objective function is strictly convex. Furthermore, for a uniformly convex objective function,
the descent rate is provided by expansion and contraction iterations [15], although the
effect diminishes with problem dimension np. In other words, to maintain a sufficient
descent rate, an adequate share of expansion and contraction iterations is needed. Note
that a uniformly convex function is also strictly convex. Since the modified quadratic
function (10) is uniformly convex, the above applies to the GH benchmark set. The share of
non-reflection iterations, i.e., expansion and contraction iterations combined, is shown in
Figure 7. In general, it declines with the problem dimension for all schemas and (ε,σ) pairs.
Nevertheless, all the adaptive parameter schemas manage to keep the share above 5%,
which provides a sufficient descent rate. The CCS stands out with its lowest non-reflection
share above 35%, yet, such a high share is not reflected in better performance. The non-
reflection share alone, therefore, does not guarantee high convergence speed. The lowest
non-reflection share of the optimized schema is 12% at np = 100 in the ε = 0.0, σ = 0.0001
case. The original NMA’s share is, on the other hand, never greater than 26% (which in
turn is achieved for lower-dimensional problems). With problem dimension increase, it
quickly drops as low as to 0.56% in the worst case, which confirms the poor performance
and convergence problems of the original NMA schema (1).
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5. Conclusions

Adaptive parameter schemas address poor NMA performance on high-dimensional
problems. We used a meta-optimization procedure to find a novel adaptive parameter
schema presented in this paper. Although the meta-optimization problem seems simple,
brute force optimization is not feasible due to the immense computing power required.
To set up the problem, we defined a mathematical formulation of the adaptive parameter
schema and an objective function evaluating a schema’s performance. We tuned the meta-
optimization parameters in a series of shorter meta-optimization runs. The final settings
constrain the meta-optimization parameter space, define a single NMA run termination
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criteria to evaluate an SC’s performance, limit the number of NMA iterations to catch non-
convergent SCs, and limit the number of meta-optimization iterations. We used PSADE, a
robust global parallel asynchronous method.

The performance of the proposed adaptive parameter schema is discussed and com-
pared with the existing schemas. The share of non-reflection iterations and the descent
rate do not show any significant deviation of the proposed schema from the existing ones.
However, data profiles on GH modified quadratic, MGH, and CUTEr benchmark problems
show that the proposed schema outperforms the existing ones in both accuracy and conver-
gence speed. We performed the evaluation with and without tolerance-based termination
of the NMA.

The proposed schema is a result of a meta-optimization procedure. We evaluate its
performance but, on the other hand, provide no mathematical explanation for why the
schema performs so well. The proposed schema is the global minimum determined by the
schema’s mathematical formulation and meta-optimization objective function definition.
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Abbreviations
The following abbreviations are used in this manuscript:

NMA Nelder–Mead Algorithm
PSADE Parallel Simulated Annealing with Differential Evolution
SC Schema Candidate
GH Gao–Han
MGH Moré–Garbow–Hilstrom
CUTEr Constrained and Unconstrained Testing Environment, revisited
GHS Gao–Han Schema
KSS Kumar–Suri Schema
CCS Chebyshev Crude Schema
CRS Chebyshev Refined Schema
PyPI Python Package Index
f objective function
np number of optimized variables or problem dimension
Pi, P ith simplex vertex and centroid of simplex vertices
Pr, Pe reflected point and expanded point
Prc, Pnc reflected point and worst point contracted towards centroid
α, β, γ, δ NMA reflection, expansion, contraction, and shrink parameters
nc CRS constant calculated from np
x0, x starting point, an arbitrary point in np-dimensional parameter space
εi, ei ith component Pfeffer’s constant and unit vector
Tolf, TolX simplex flatness and size tolerances
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Pij jth component of ith simplex vertex
c0α, c1α, c0β, c1β, etc. meta-optimization variables defining an SC
p, P single benchmark problem and set of benchmark problems
s, S single parameter schema and set of all parameter schemas
r,R reference parameter schema and set of all reference parameter schemas
X set of sets of GH and MGH benchmark problems
κ number of simplex gradient estimates
κmax κ available for schema evaluation per single p
tps number of objective function evaluations needed on problem p by schema s

to satisfy (7)
dsP (κ) share of problems from set P solved by schema s in κ simplex gradient

estimates
fL lowest objective function value reached in κmax simplex gradient estimates

by any of the schemas s ∈ S on a particular problem
τ convergence condition tolerance
wP+

weight used in meta-optimization objective function when at least one of
the reference schemas outperforms the evaluated SC on set of benchmark
problems P

wP− weight used in meta-optimization objective function when the evaluated SC
outperforms all the reference schemas on set of benchmark problems P

References
1. Nelder, J.A.; Mead R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [CrossRef]
2. McKinnon, K.I.M. Convergence of the Nelder-Mead simplex method to a non-stationary point. J. Optim. 1998, 9, 148–158.
3. Galántai, A. A convergence analysis of the Nelder-Mead simplex method. Acta Polytech. Hungarica 2021, 18, 93–105. [CrossRef]
4. Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence properties of the Nelder-Mead simplex method in low

dimensions. J. Optim. 1998, 9, 112–147. [CrossRef]
5. Lagarias, J.C.; Poonen, B.; Wright, M.H. Convergence of the restricted Nelder-Mead algorithm in two dimensions. J. Optim. 2012,

22, 501–532. [CrossRef]
6. Kelley, C.T. Detection and remediation of stagnation in the Nelder-Mead algorithm using a sufficient decrease condition. J. Optim.

1999, 10, 43–55. [CrossRef]
7. Tseng, P. Fortified-descent simplicial search method: A general approach. J. Optim. 1999, 10, 269–288. [CrossRef]
8. Nazareth, L.; Tseng, P. Gilding the lily: A variant of the Nelder-Mead algorithm based on golden-section search. Comput.

Optim. Appl. 2002, 22, 133–144. [CrossRef]
9. Price, C.J.; Coope, I.D.; Byatt, D. A convergent variant of the Nelder-Mead algorithm. J. Optim. Theory. Appl. 2002, 113, 5–19.

[CrossRef]
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29. Rojec, Ž.; Bűrmen, Á.; Fajfar, I. Analog circuit topology synthesis by means of evolutionary computation. Eng. Appl. Artif. Intell.

2019, 80, 48–65. [CrossRef]
30. Zamani, H.; Nadimi-Shahraki, M.H.; Gandomi, A.H. CCSA: Conscious Neighborhood-based Crow Search Algorithm for Solving

Global Optimization Problems. Appl. Soft Comput. 2019, 85, 105583. [CrossRef]
31. Zamani, H.; Nadimi-Shahraki, M.H.; Gandomi, A.H. QANA: Quantum-based avian navigation optimizer algorithm. Eng. Appl.

Artif. Intell. 2021, 104, 104314. [CrossRef]
32. Nadimi-Shahraki, M.H.; Zamani, H. DMDE: Diversity-maintained multi-trial vector differential evolution algorithm for non-

decomposition large-scale global optimization. Expert Syst. Appl. 2022, 98, 116895. [CrossRef]
33. Zamani, H.; Nadimi-Shahraki, M.H.; Gandomi, A.H. Starling murmuration optimizer: A novel bio-inspired algorithm for global

and engineering optimization. Comput. Methods Appl. Mech. Engrg. 2022, 392, 114616. [CrossRef]
34. Shanno, D.F.; Phua, K. Matrix conditioning and nonlinear optimization. Math. Program. 1978, 14, 149–160. [CrossRef]

http://dx.doi.org/10.1145/355934.355936
http://dx.doi.org/10.1145/962437.962439
http://dx.doi.org/10.1137/080724083
http://dx.doi.org/10.1007/s10898-008-9307-9
http://fides.fe.uni-lj.si/pyopus
http://dx.doi.org/10.1016/S1773-2247(14)50083-4
http://dx.doi.org/10.1016/j.engappai.2019.01.012
http://dx.doi.org/10.1016/j.asoc.2019.105583
http://dx.doi.org/10.1016/j.engappai.2021.104314
http://dx.doi.org/10.1016/j.eswa.2022.116895
http://dx.doi.org/10.1016/j.eswa.2022.116895
http://dx.doi.org/10.1016/j.cma.2022.114616

	Introduction
	Adaptive Parameter Schemas for NMA
	Optimization of the Adaptive Parameter Schema
	Evaluation of the Optimized Schema with Discussion
	Conclusions
	References

