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Abstract: Many of the new fuzzy structures with complete MV-algebras as value sets, such as
hesitant, intuitionistic, neutrosophic, or fuzzy soft sets, can be transformed into one type of fuzzy
set with values in special complete algebras, called AMV-algebras. The category of complete AMV-
algebras is isomorphic to the category of special pairs (R,R∗) of complete commutative semirings
and the corresponding fuzzy sets are called (R,R∗)-fuzzy sets. We use this theory to define (R,R∗)-
fuzzy relations, lower and upper approximations of (R,R∗)-fuzzy sets by (R,R∗)-relations, and
rough (R,R∗)-fuzzy sets, and we show that these notions can be universally applied to any fuzzy
type structure that is transformable to (R,R∗)-fuzzy sets. As an example, we also show how this
general theory can be used to determine the upper and lower approximations of a color segment
corresponding to a particular color.
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1. Introduction

Rough set theory and fuzzy set theory represent two different approaches to the issue
of vague, imprecise, inconsistent, and uncertain knowledge. The basic principle of fuzzy
set theory for solving these problems is the possibility that the object has a given property
to a certain degree. In contrast, rough set theory provides an opportunity to approximate
concepts in the presence of incomplete information. It is therefore understandable that a
new theory named fuzzy rough sets emerged very soon, which made it possible to combine
both approaches. The foundations of this common theory were first presented in [1,2] and
were further extended and applied in many other papers.

Over time, various generalizations and modifications of fuzzy sets have become in-
creasingly common, such as intuitionistic fuzzy sets [3], hesitant fuzzy sets [4], neutrosophic
fuzzy sets or fuzzy soft sets [5], Pythagorean fuzzy sets [6], and many others. As expected,
soon after the introduction of these fuzzy structures, new variants of rough set theory made
it possible to approximate the concepts expressed using these new fuzzy structures. For
example, intuitionistic fuzzy rough sets [7,8], soft rough fuzzy sets [9], hesitant fuzzy rough
sets [10] or rough neutrosophic sets [11], and many other variants of these hybrid structures.
Given the way these hybrid structures were created, it is not surprising that in many cases
there are several variants that define these structures. To illustrate it, let us give at least an
example of different definitions of soft fuzzy rough sets in [9,12].

Another typical feature of these hybrid structures is that many similar properties of
these new hybrid structures are individually proven for each new hybrid system, despite
the fact that for many hybrid structures there are common proofs of these properties.

In our previous paper [13], we tried to unify the constructions of certain classes of new
fuzzy structures, namely fuzzy structures with the complete MV-algebra as a set of values.
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The key assumption of all these constructions was the fact that they all relate to standard
L-fuzzy sets, i.e., mappings X → L. Although many of the new L-fuzzy structures are
traditionally called L-fuzzy sets, where L is the lattice of the given type, these structures are,
in fact, M(L)-fuzzy sets, where M is a functor from the category of lattices L to (sometimes)
another category of lattices. For example, if L is the complete MV-algebra and if we
consider L-fuzzy soft sets in space (X, K), where X is the basic set and K is the set of criteria,
a L-fuzzy soft set is a mapping X → M(L), where M(L) = {(E, ψ) ∶ E ⊆ K, ψ ∈ LK} ⊆ LK

(see [13]).
The transformation of the new L-fuzzy structure F into the MF(L)-fuzzy sets pre-

sented in [13] was based on the use of pairs (R,R∗) of commutative idempotent semirings
with the same underlying set R and with the self-inverse isomorphism ¬ ∶ R → R∗. The
advantage of this construction of the ordered structure MF(L) is, among other things, that
the pair (R,R∗) explicitly defines pairs of some dual constructions, standardly used in the
theory of L-fuzzy sets. Examples of such constructions are the upper and lower approxima-
tions of L-fuzzy set defined by the L-fuzzy relations, the upper and lower F-transforms of
L-fuzzy sets defined by fuzzy partitions, or upper and lower monads defined by power set
operators. In these cases, one type of the pair of transformations is defined by semiringR
and the other by semiringR∗. This creates a precondition for a better understanding of the
relationship between the values MF(L) of the new fuzzy structures F and these constructs.

On the other hand, the ordered structure defined by the pair (R,R∗) of semirings is
relatively confusing and difficult to compare with other ordered structures used in fuzzy
set theory. Therefore, in the first part of this paper, we will focus on the simplification of the
ordered structure defined by the pair (R,R∗) of semirings and on its equivalent definition
in the form of a standard algebraic system with axioms. This modified ordered structure
will be called the almost MV-algebra (or simply, AMV-algebra), and we will show that the
AMV-algebras are equivalently defined by the dual pairs of semirings. The corresponding
fuzzy sets will be called AMV-fuzzy sets. Therefore, we can say that any AMV-fuzzy set is
also defined by the dual pair of semirings. This will make it easier to compare this structure
with other lattices used in fuzzy set theory. Namely, we present an example showing that
this AMV-algebra is not, in general, the MV-algebra. In the paper, we use both equivalent
definitions to work with AMV-fuzzy sets.

In the next part of the paper, we focus on another construction that is commonly used
in L-fuzzy sets, namely the issue of rough L-fuzzy sets. The main goal of this paper is to
show how the theory of AMV-fuzzy sets can be used to unify the rough set theory for
various L-fuzzy structures, currently used mainly in applications.

The contributions of the paper are the following:
• we present how to use AMV-fuzzy sets to define the general notion of a AMV-fuzzy

relation and how this notion can be transformed to variants of fuzzy relations in new
fuzzy structures;

• we define the notion of the upper and lower approximations of AMV-fuzzy sets
defined by AMV-fuzzy relations and we present properties of these approximations;

and that brings the following advantages:
• the notion of rough AMV-fuzzy sets can be universally applied to any fuzzy structure

that is transformable to AMV-fuzzy sets;
• the properties of rough AMV-fuzzy sets can be directly transferred to the analogous

properties of these new rough fuzzy structures without new proofs;
• using dual semiring structures (R,R∗), new types of AMV-fuzzy sets and their rough

sets can be introduced. The properties of these new rough structures will copy the
properties of the general AMV-rough sets.
The structure of this paper is as follows. In Section 2, we recall some basic definitions

and properties related to dual pairs of semirings (R,R∗), the definition of the AMV-algebra
and its basic properties, the notion of the AMV-fuzzy set in a set X, and the definitions of
basic operations with AMV-fuzzy sets. Most of these notions were first published in our
previous paper [13] as properties of dual pairs of semirings (R,R∗).



Mathematics 2022, 10, 2274 3 of 31

In Section 3, we present several examples of dual pairs of semirings. Although some of
these examples were presented in our previous paper [13], we recall the basic definitions of
these examples because they will be used later in the paper. We also present some examples
of new fuzzy structures that can be transformed into AMV-fuzzy sets.

In Section 4, we deal with rough AMV-fuzzy sets defined by AMV-fuzzy relations.
We introduce the notions of lower and upper approximations of AMV-fuzzy sets defined by
(R,R∗)-fuzzy relations, and we present some basic properties of these constructions. We
investigate some relationships between fuzzy relations of some fuzzy structures and AMV-
fuzzy relation and show how to transform rough sets of some fuzzy structures into rough
AMV-fuzzy sets. We also present several relationships among dual pairs of semirings
associated with existing fuzzy structures and investigate relationships between two types of
categories with approximations as objects on the one hand and two types of AMV-relations
as objects on the other hand. We prove that all these categories are isomorphic, which
makes it possible to significantly simplify the research of these approximations in arbitrary
fuzzy structures that are transformable into AMV-fuzzy sets.

In Section 5, we present two examples of applications of rough AMV-fuzzy sets,
namely, we show how the variants of rough fuzzy soft sets and rough intuitionistic fuzzy
sets defined by rough AMV-fuzzy sets can be used to determine the lower and upper
approximations of the color segment corresponding to a particular color in a color image.

2. Methods and Basic Structures

In this section, we introduce the basic definitions and properties of a new lattice
structure, called AMV-algebra and we show that these structures can be equivalently
defined by dual pairs of semirings, introduced in [13]. This structure represents the main
tool that enables unifying the theory of some of the new fuzzy structures, including
intuitionistic, hesitant, neutrosophic, or soft fuzzy sets with values in a complete MV-
algebra, including their mutual combinations. We also introduce the notion of AMV-fuzzy
sets and basic operations with these fuzzy sets.

The basic algebraic structure we use in this paper, the complete AMV-algebra, is
defined by the following definition.

Definition 1. The complete AMV-algebra is the algebra (R,+,×,¬, 0, 1) of type (2, 2, 1, 0, 0)
defined by

1. (R,+, 0) is the complete idempotent commutative monoid, the sum of elements from S ⊆ R is
denoted by ∑r∈S r,

2. (R,×, 1) is a commutative monoid,
3. ¬ ∶ R → R is the involution mapping,¬0 = 1,
4. (∀x, yi ∈ R, i ∈ I), x ×∑i yi = ∑i(x × yi),
5. (∀x ∈ R), x × 0 = 0,
6. If for x, y ∈ R, we set x +∗ y ∶= ¬(¬x +¬y), x ×∗ y ∶= ¬(¬x ×¬y), then for x, y, z, yi ∈ R,

(a) (x +∗ y = y)⇔ (x + y = x),
(b) x ×∗∑i yi = ∑i(x ×∗ yi),
(c) x + (y +∗ z) = (x + y)+∗ (x + z).

In the following lemma, we present the basic properties of the complete AMV-algebra.

Lemma 1. Let R = (R,+,×,¬, 0, 1) be the complete AMV-algebra. Then R has the following
properties.

1. The relation ≤ defined by
x, y ∈ R, x ≤ y⇔ x + y = y

is an order relation on R,
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2. (R,≤) is the complete lattice, where for arbitrary S ⊆ R,

sup S =⋁S = ∑
x∈S

x, inf S =⋀S =
∗

∑
x∈S

x,

where ∑∗x∈S s is the sum of elements with respect to +∗.
3. (R,≤,×,¬) is the complete Girard monoid.

Remark 1. Whenever we talk about the AMV-algebra (R,+,×,¬, 0, 1), by the symbols ≤,∨,∧ we
will understand the ordering relation and lattice operations defined in the Lemma 1.

Let us consider the following two examples, where in the first example we show that
complete MV-algebras are AMV-algebras, and in the other example we show that the
opposite implication is not true, i.e., the AMV-algebra is not the MV-algebra, in general.

Example 1. Let (L,⊗,¬, 1) be the complete MV-algebra (see, e.g., [14]). Recall that the following
operations can be defined in any MV-algebra for elements x, y, z ∈ L:

x⊕ y ∶= ¬(¬x⊗¬y), x ∨ y ∶= (x⊕¬y)⊗ y, x ∧ y ∶= (x⊗¬y)⊕ y, 0 ∶= ¬1. (1)

An MV-algebra is called complete if (L,∨,∧, 0, 1) is a complete lattice.
Let the operation + on L be defined by x + y = x ∨ y. Then L = (L,+,⊗,¬, 0, 1) is the complete

AMV-algebra.

Example 2. Recall (see, e.g., [15]) that an abelian lattice ordered group (l-group, in short) is a
commutative group (G, .) with distributive lattice operations ∨,∧ which are compatible with the
group multiplication, that is, the following identities hold for elements from G:

a ⋅ (b ∧ c) = a⋅b ∧ a⋅c, a⋅(b ∨ c) = a⋅b ∨ a⋅c,

(a ∨ b)−1 = a−1 ∧ b−1, (a ∧ b)−1 = a−1 ∨ b−1,

a ∨ (b ∧ c) = (a ∨ b)∧ (a ∨ c), a ∧ (b ∨ c) = (a ∧ b)∨ (a ∧ c).

Let 0 and ∞ be new elements added to G and let the order relation on G be extended to
the order relation on G ∪ {0,∞} such that 0 < g < ∞, for arbitrary g ∈ G. Let the structure
G = (G ∪ {0,∞},+,×,¬, 0) be defined by

+ a 0 ∞
b a ∨ b b ∞
0 a 0 ∞
∞ ∞ ∞ ∞

× a 0 ∞
b a.b 0 ∞
0 0 0 0
∞ ∞ 0 ∞

¬g = g−1,¬0 =∞,¬∞ = 0.

Then G = (G ∪ {0,∞},+,×,¬, 0) is the complete AMV-algebra, but (G ∪ {0,∞},×,¬, 1) is
not the corresponding MV-algebra. In fact, according to (1), if G is the MV-algebra, the ordering
in G should be such that a ∨ b = (a⊕¬b)× b, where a⊕ b = ¬(¬a ×¬b). If a < b in ordering in the
l-group G, we have b = a ∨ b = (a⊕¬b)⊗ b = a, a contradiction. Therefore, G is not MV-algebra.

The basic structure with which we will work with is the AMV-fuzzy set. Although
this notion has not yet been used, implicitly it occurs very often, especially in connection
with new fuzzy structures, such as intuitionistic, neutrosophic, or fuzzy soft sets, which are
currently objects of considerable interest. In our previous paper [13] we proved that these
MV-valued structures are the so-called (R,R∗)-fuzzy sets. In the next part, we show that
(R,R∗)-fuzzy sets are equivalent to AMV-fuzzy sets.

Definition 2. LetR = (R,+,×,¬, 0, 1) be the AMV-algebra. Let X be a set.

1. A mapping s ∶ X → R is called theR-fuzzy set in X.
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2. Operations withR-fuzzy sets are defined by

(a) The intersection s ⊓ t is defined by (s ⊓ t)(x) = s(x)∧ t(x), x ∈ X,
(b) The union s ⊔ t is defined by (s ⊔ t)(x) = s(x)∨ t(x), x ∈ X,
(c) The complement ¬s is defined by (¬s)(x) = ¬(s(x)),
(d) The external multiplication ⋆ by elements of R is defined by

(a ⋆ s)(x) = a × s(x),
(e) The order relation ≤ between s, t is defined by s ≤ t⇔ (∀x ∈ X)s(x) ≤ t(x).

In the following proposition, some basic properties of operations with AMV-fuzzy
sets are summarized.

Proposition 1. LetR = (R,+,×,¬, 0, 1) be the AMV-algebra. Let X be a set and s, t, w beR-fuzzy
sets. Then the following statements are valid.

1. s ⊓ s = s, s ⊔ s = s,
2. s ⊓ t ≤ s, s ≤ s ⊔ t,
3. s ⊓ t ≤ s ⊔ t,
4. s ⊓ (t ⊔w) = (s ⊓ t)⊔ (s ⊓w),
5. s ⊔ (t ⊓w) = (s ⊔ t)⊓ (s ⊔w),
6. a ⋆ (t ⊔w) = (a ⋆ t)⊔ (a ⋆w),
7. a ⋆ (t ⊓w) = (a ⋆ t)⊓ (a ⋆w),
8. ¬(s ⊔ t) = ¬s ⊓¬t, ¬(s ⊓ t) = ¬s ⊔¬t,
9. s ≤ t⇒ s ⊔w ≤ t ⊔w, s ⊓w ≤ t ⊓w,
10. s ⊑ (t ⊓ t′) = (s ⊑ t)+∗ (s ⊑ t′).

Proof. The proof is a simple transcription of the properties ofR from Definition 1 and will
be omitted.

As we mentioned in the introduction, the AMV-algebra can be equivalently defined
using a pair of commutative idempotent semirings, among which there is an involutive
isomorphism. As redundant as this definition may seem, it becomes especially useful in
situations where each of these semirings defines a different type of operations that are dual
in some way. Typical examples of such constructions are, for example, upper and lower
approximations of fuzzy sets using fuzzy relations or lower and upper F-transforms. Since
the main results of this paper relate to a pair of such transformations, namely rough AMV-
fuzzy sets, we will use this variant of the definition of the AMV-algebra in the following
text. In the next part, we recall the definition of the dual pair of semirings (R,R∗) and we
show that AMV-fuzzy sets and (R,R∗)-fuzzy sets are identical structures, and for both
these structures we use the name AMV-fuzzy sets only.

To recall the definition of dual pairs of semirings, we repeat the definition of the
commutative idempotent semiring.

Definition 3 ([16,17]). An idempotent complete commutative semiring R = (R,+,×, 0, 1) (or,
shortly, a semiring) is an algebraic structure with the following properties:

• (R,+, 0) is a complete idempotent commutative monoid,
• (R,×, 1) is a commutative monoid,
• x ×∑i∈I yi = ∑i∈I(x × yi) holds for all x, yi ∈ R,
• 0× x = 0 holds for all x ∈ R.

A semiring R is called ordered semiring, if there exists an order relation ≤ on R such
that the following conditions hold for all a, b, c ∈ R:

a ≥ 0, a ≤ b⇒ (a + c ≤ b + c, a × c ≤ b × c).

The notion of a semiring homomorphism is defined as a standard homomorphism
between algebraic structures.
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We introduce the simplified version of the dual pair of semirings (R,R∗) which was
introduced in [13].

Definition 4. Let R = (R,+,×, 0, 1) and R∗ = (R,+∗,×∗, 0∗, 1∗) be complete idempotent com-
mutative semirings with the same underlying set R. The pair (R,R∗) is called the dual pair of
semirings if there exists a semiring isomorphism ¬ ∶R→R∗ and the following statements hold:

1. ¬ ∶R→R∗ is the involutive isomorphism,
2. ∀a ∈ R, S ⊆ R a ×∗ (∑b∈S b) = ∑b∈S(a ×∗ b),
3. ∀a ∈ R, S ⊆ R a + (∑∗b∈S b) = ∑∗b∈S(a + b), where ∑∗ is the addition operation inR∗,
4. ∀a, b ∈ R, a + b = a⇔ a +∗ b = b.

Using the isomorphism ¬, it is easy to see that the following dual statements also hold
for arbitrary dual pair of semirings (R,R∗):

2’. ∀a, ∈ R, S ⊆ R, a ×∑∗b∈S b = ∑∗b∈S(a × b),
3’. ∀a, ∈ R, S ⊆ R, a +∗∑b∈S b = ∑b∈S(a +∗ b).

Remark 2. Whenever in the next part of the paper we talk about a dual pair of semirings (R,R∗),
we always understand the pair of semirings with operations from Definition 4. If necessary, instead
of ∑ and ∑∗ we use ∑R and ∑R

∗

, respectively.

We prove that a dual pair of semirings (R,R∗) defines the unique AMV-algebra and,
conversely, any AMV-algebra defines the unique dual pair of semirings (R,R∗). To do
this, we need to define the category of AMV-algebras and the category of dual pairs of
semirings.

Definition 5. The category APSem of dual pairs of semirings is defined by

1. Objects ((R,R∗),¬R) are dual pairs (R,R∗) of semirings with involutive isomorphism
¬R ∶R→R∗,

2. Morphisms ((R,R∗),¬R)→ ((S ,S∗),¬S) are mappings between underlying sets ϕ ∶ R →
S, such that

(a) ϕ ∶R→ S and ϕ ∶R∗ → S∗ are homomorphisms of semirings.
(b) The identity ¬S .ϕ = ϕ.¬R holds.
(c) The compositions of the morphisms are the standard compositions of the mappings.

Definition 6. The category RAlg of complete AMV-algebras is defined by

1. Objects are AMV-algebrasR = (R,+,×,¬, 0, 1),
2. Morphisms ψ ∶ (R,+,×,¬, 0, 1) → (S,+1,×1,¬1, 01, 11) are mappings ψ ∶ R → S such that

for all x, y ∈ R,

(a) ψ(x + y) = ψ(x)+1 ψ(y),
(b) ψ(x × y) = ψ(x)×1 ψ(y),
(c) ψ(¬x) = ¬1(ψ(x)),
(d) ψ(0) = 01, ψ(1) = 11.

The relationship between RAlg and APSem is described in the following theorem.

Theorem 1. The categories APSem and RAlg are isomorphic.

Proof. We define the functor F ∶ RAlg → APSem. LetA = (R,+,×,¬, 0, 1) be object of RAlg.
We set F(A) = ((R,R∗),¬), whereR = (R,+,×, 0, 1),R∗ = (R,+∗,×∗, 1, 0), and operations
+∗,×∗ are defined by

x +∗ y = ¬(¬x +¬y), x ×∗ y = ¬(¬x ×¬y).
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It is easy to see that ((R,R∗),¬) is the object of APSem and if ψ is a morphism of
RAlg, then ψ = F(ψ) is also a morphism in APSem. The functor F−1 ∶ APSem → RAlg is
defined so that for an object (R,R∗),¬) we set F−1((R,R∗),¬) = (R,+,×,¬, 0, 1) and for a
morphism ϕ in APSem we set F−1(ϕ) = ϕ. It is easy to see that F−1 is the functor and F
and F−1 are mutually inverse.

Remark 3. From Theorem 1 it follows that if A is a AMV-algebra, the A-fuzzy set can be
equivalently called the (R,R∗)-fuzzy set, where F(A) = ((R,R∗),¬). We use this terminology
of (R,R∗)-fuzzy sets in the remainder of the paper. The power set of (R,R∗)-fuzzy sets will be
denoted by (R,R∗)X .

3. Examples of Dual Pairs of Semirings

In this section, we present several examples of dual pairs of semirings. Because
we use two of these examples in the application section, we repeat them, although they
were published in [13]. All these examples are used to demonstrate the possibility to
transform many new MV-valued fuzzy structures to (R,R∗)-fuzzy sets, including their
basic operations. In addition, we show that by using appropriate (R,R∗)-fuzzy sets, we
can also derive another new type of fuzzy structure.

Examples 3–5 (which we recall from [13] and which will be used later) illustrate how
the power sets of MV-valued intuitionistic, neutrosophic, or fuzzy soft sets in a set X
can be isomorphically transformed into power sets of (R,R∗)-fuzzy sets, including basic
operations with these structures. This makes it possible to create a basis for the unified
theory for these types of fuzzy structures, and it is not necessary to define and prove the
properties of individual constructions within these new fuzzy structures. In Example 6,
using the neutrosophic fuzzy soft sets, introduced in [18], we show how the power sets of
hybrid combinations of these new fuzzy structures can also be transformed into power sets
of (R,R∗)-fuzzy sets in a set X. The last two examples are devoted to new types of fuzzy
sets, based on extensional fuzzy sets, or fuzzy sets with values in extensions of abelian
lattice-ordered groups.

On the other hand, as we briefly mentioned in the introduction, for some new fuzzy
structures, the operations with these structures are defined in several variants, or in a
non-standard way in comparison with classical fuzzy sets. An example can be hesitant
fuzzy sets, where ∩ and ∪ operations are defined so that the set of hesitant fuzzy sets is not
a distributive lattice (see, e.g., [4]). This greatly complicates operations with these structures
and also complicates applications. Because the power set (R,R∗)X is a distributive lattice
with respect to operations ⊓ and ⊔, the power set of the hesitant fuzzy sets cannot be
isomorphically transformed to (R,R∗)X without changing the definition of ∪ and ∩ of the
hesitant fuzzy sets.

Example 3 ([13]).

1. The semiringR1 = (R1,+1,×1, 01, 11) is defined by

(a) R1 = {(α, β) ∈ L2 ∶ ¬α ≥ β} ⊆ L2,
(b) (α, β)+1 (α1, β1) ∶= (α ∨ α1, β ∧ β1),
(c) (α, β)×1 (α1, β1) ∶= (α⊗ α1, β⊕ β1),
(d) 01 = (0L, 1L), 11 = (1L, 0L),

2. The semiringR∗1 = (R,+∗,×∗, 0∗, 1∗) is defined by

(a) (α, β)+∗1 (α1, β1) ∶= (α ∧ α1, β ∨ β1),
(b) (α, β)×∗1 (α1, β1) ∶= (α⊕ α1, β⊗ β1),
(c) 0∗1 = (1L, 0L), 1∗1 = (0L, 1L),

Let ¬1 ∶R1 →R∗1 be defined by

(α, β) ∈ R1, ¬1(α, β) = (β, α).
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Then (R1,R∗1 ) is the dual pair of semirings, ¬1 is the self-inverse semiring isomorphism and the
algebraic system (J(X),∩,∪,¬,≤) of all intuitionistic L-fuzzy sets is isomorphic to (RX

1 ,⊓,⊔,¬,≤).

Example 4 ([13]).

1. Let K be the fixed set of criteria. The semiringR2 = (R2,+2,×2, 02, 12) is defined by

(a) R2 = {(E, ψ) ∶ E ⊆ K, ψ ∈ LK} ⊆ LK, where (E, ψ) ∈ LK is defined by

k ∈ K, (E, ψ)(k) =
⎧⎪⎪⎨⎪⎪⎩

ψ(k), k ∈ E,
0L, k /∈ E

.

(b) (E, ϕ), (F, ψ) ∈ R2, (E, ϕ)+2 (F, ψ) ∶= (E ∩ F, ϕ ∨ψ), where ϕ ∨ψ is the supremum
in LK,

(c) (E, ϕ), (F, ψ) ∈ R2, (E, ϕ)×2 F, ψ) = (E ∩ F, ϕ ×ψ), where ϕ ×ψ ∈ LK is defined by
ϕ ×ψ(k) = ϕ(k)⊗ψ(k),

(d) 02 = (K, 0L), 12 = (K, 1L), where α(k) = α for arbitrarily k ∈ K, α ∈ L.

2. The semiringR∗2 = (R2,+∗2 ,×∗2 , 0∗2 , 1∗2 ) is defined by

(a) (E, ϕ), (F, ψ) ∈ R2, (E, ϕ)+∗2 (F, ψ) ∶= (E∩ F, ϕ∧ψ), where ϕ∧ψ is the infimum in
LK,

(b) (E, ϕ), (F, ψ) ∈ R2, (E, ϕ) ×∗2 (F, ψ) = (E ∩ F, ϕ ⊕ ψ), where ⊕ in LK is defined
component-wise.

(c) 0∗2 = (K, 1L), 1∗2 = (K, 0L), where α(k) = α for arbitrary k ∈ K, α ∈ L.

Let ¬2 ∶R2 →R∗2 be defined by

(E, ψ) ∈ R2, ¬2(E, ψ) = (E,¬ψ),

where ¬ψ is defined componentwise. Then (R2,R∗2 ) is the dual pair of semirings, ¬2 is the self-
inverse semiring isomorphism and the algebraic system (S(X),∩,∪,¬,≤) of all L-fuzzy soft sets in
X is isomorphic to (RX

2 ,⊓,⊔,¬,≤).

Example 5 ([13]).

1. The semiringR3 = (R3,+3,×3, 03, 13) is defined by

(a) R3 = L3,
(b) (α, β, γ)+3 (α1, β1, γ1) ∶= (α ∨ α1, β ∧ β1, γ ∧ γ1),
(c) (α, β, γ)×3 (α1, β1, γ1) ∶= (α⊗ α1, β ∧ β1, γ⊕ γ1),
(d) 03 = (0L, 1L, 1L), 13 = (1L, 1L, 0L).

2. The semiringR∗3 = (R3,+∗3 ,×∗3 , 0∗3 , 1∗3 ) is defined by

(a) (α, β, γ)+∗3 (α1, β1, γ1) ∶= (α ∧ α1, β ∨ β1, γ ∨ γ1),
(b) (α, β, γ)×∗3 (α1, β1, γ1) ∶= (α⊕ α1, β ∨ β1, γ⊗ γ1),
(c) 0∗3 = (1L, 0L, 0L), 1∗3 = (0L, 0L, 1L).

Let ¬3 ∶R3 →R∗3 be defined by

(α, β, γ) ∈ R3, ¬3(α, β, γ) = (γ,¬β, α).

Then (R3,R∗3 ) is the dual pair of semirings, ¬3 is the self-inverse semiring isomorphism
and the algebraic system (N(X),∩,∪,¬,≤) of all neutrosophic L-fuzzy sets in X is isomorphic to
(RX

3 ,⊓,⊔,¬,≤).

Example 6. Recall the definition of the neutrosophic L-fuzzy soft set ([18]). Let K be the fixed set
of criteria, and let X be a set. Using the notation of Examples 4 and 5, the neutrosophic L-fuzzy soft
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set in a set X is a pair (E, s), where E ⊆ K and s ∶ K → RX
3 is such that s(k) = 0R3

, if k ∈ K ∖ E,
where 0R3

∶ X →R2 is a constant function with the value 0R3 . We set

R4 =RK
3 , R∗4 = (R∗3 )K,

and let the semiring operations inR4 andR∗4 be defined point-wise from the operations inR3 and
R∗3 , respectively.

Let the mapping ¬4 ∶R4 →R∗4 be defined by

f ∈R4, k ∈ K, ¬4( f )(k) = ¬3( f (k)).

It is easy to see that (R4,R∗4 ) is the dual pair of semirings and ¬4 is the self-inverse isomor-
phism. We show that there exists an isomorphism between the algebraic structure (NS(X),∪,∩,¬,≤)
of all neutrosophic L-fuzzy soft sets in a set X with operations ∪,∩,¬ defined in [19] and algebraic
structure (RX

4 ,⊔,⊓,¬,≤).
In fact, let us define the map Γ ∶ NS(X)→RX

4 = (RK
3 )X by

(E, s) ∈ NS(X), x ∈ X, k ∈ K, Γ(E, s)(x)(k) =
⎧⎪⎪⎨⎪⎪⎩

s(k)(x) ∈R3, k ∈ E,
0R3 , k ∈ K ∖ E.

Γ is the surjective map. In fact, for f ∈RX
4 , we set

x ∈ X, Ex = {k ∈ K ∶ f (x)(k) ≠ 0R3},

E = ⋃
x∈X

Ex, s ∶ K →RX
3 ,

k ∈ K, x ∈ X, s(k)(x) =
⎧⎪⎪⎨⎪⎪⎩

f (x)(k), k ∈ Ex,
0R3 , k ∈ K ∖ Ex.

It follows that Γ(E, s) = f and it is easy to see that Γ is the isomorphism and the algebraic system
(NS(X),∩,∪,¬,≤) of all neutrosophic L-fuzzy soft sets in X is isomorphic to (RX

4 ,⊓,⊔,¬,≤).

The following example of dual pair of semirings will be used in the next section to
demonstrate examples of (R,R∗)-fuzzy relations.

Example 7. Let L be the complete MV-algebra and let Ω be a set with the fuzzy equivalence
relation δ ∶ Ω ×Ω → L. An L-fuzzy set f ∈ LΩ is called δ-extensional if

∀x, y ∈ X, f (x)⊗ δ(x, y) ≤ f (y).

For arbitrary g ∈ LΩ, the extensional hull g of g is defined by g(x) = ⋁t∈Ω g(t)⊗ δ(t, x). Let
us consider the following structures.

1. LetR5 = (R5,+5,×5, 05, 15) be defined by

(a) R5 = { f ∈ LΩ ∶ f is δ-extensional},
(b) f , g ∈ R5, f +5 g = f ∨ g, where ∨ is the supremum in LΩ,
(c) f , g ∈ R5, f ×5 g = f ⊗ g, where ⊗ is defined point-wise,
(d) 05(x) = 0L, 15(x) = 1L, for arbitrary x ∈ Ω.

2. LetR∗5 = (R5,+∗5 ,×∗5 , 0∗5 , 1∗5 ) be defined by

(a) f , g ∈ R5, f +∗5 g = f ∧ g,
(b) f , g ∈ R5, f ×∗5 g = ( f ⊕ g), where f ⊕ g is defined point-wise,
(c) 0∗5 = 15, 1∗5 = 05.

Let ¬5 ∶R5 →R∗5 be defined by

f ∈ R5, ¬5( f ) = ¬ f , defined point-wise.
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Then, (R5,R∗5 ) is the dual pair of semirings and ¬5 is the self-inverse isomorphism. It should
be observed that this example is correct because the negation ¬ f of an extensional L-fuzzy set is also
extensional, as follows from the inequality

¬ f (y)→ ¬ f (x) = f (x)→ f (y) ≥ δ(x, y).

Example 8. Let G be the AMV-algebra of Example 2. Using this example and Theorem 1, we can
introduce the dual pair (G,G∗) of semirings. The corresponding (G,G∗)-fuzzy sets can be called
l-group-valued fuzzy sets. One of the features of these l-group-valued fuzzy sets is that elements
from {g ∈ G ∶ g ≥ 1G} are membership degrees describing property "to be in F" and elements from
{g ∈ G ∶ g ≤ 1G}- are membership degrees of the property "not to be in F". In that case, the element
1G is in the special position, which corresponds to the element 0.5 in [0, 1]-fuzzy sets. This is in
contrast to classical L-fuzzy sets, where the values of L can simultaneously describe the membership
degrees of both properties.

The relationship between dual pairs (R,R∗) of semirings and algebraic systems
(RX,⊓,⊔,¬ ≤) of (R,R∗)-fuzzy sets can be described by a functor between the category
APSem defined in Definition 5 and the following category of (R,R∗)-fuzzy sets.

Definition 7. The category ASSem of algebraic systems of AMV-fuzzy sets is defined by

1. Objects are all algebraic systems (R,R∗)X = (RX ,⊔,⊓,¬,≤) of (R,R∗)-fuzzy sets in a set
X.

2. Morphisms from (R,R∗)X to (S,S∗)Y are mappings RX → SY which are standard homo-
morphisms of algebraic systems.

3. The composition of morphisms is the standard composition of mappings.

The following proposition describes the relationship between dual pairs of semirings
and algebraic systems of AMV-fuzzy sets.

Proposition 2. Let Setop be the dual category of the category Set of sets. There exists the functor

F ∶ APSem × Setop → ASSem.

Proof. Let ((R,R∗),¬, X) be an object of the product category APSem × Setop. We set
H((R,R∗),¬, X) = (R,R∗)X ∈ ASSem and for a morphism (ϕ, u) ∶ ((R,R∗),¬R, X) →
((S ,S∗),¬S, Y) in this product category, we define H(ϕ, u) ∶ (R,R∗)X → (S,S∗)Y by

f ∈ RX , y ∈ Y, H(ϕ, u)( f )(y) = ϕ. f .u(y).

Then H(ϕ, u) is the morphism in the category ASSem. In fact, let f , g ∈ RX and y ∈ Y.
We have

H(ϕ, u)( f ⊔R g)(y) = ϕ⋅( f ⊔R g)⋅u(y) = ϕ( f ⋅u(y)+R g⋅u(y)) =
ϕ⋅ f ⋅u(y)+S ϕ⋅ f ⋅u(y) = (H(ϕ, u)( f )⊔S H(ϕ, u)(g))(y),

H(ϕ, u)( f ⊓R g)(y) = ϕ⋅( f ⊓R g)⋅u(y) = ϕ( f ⋅u(y)+∗R g⋅u(y)) =
ϕ⋅ f ⋅u(y)+∗S ϕ⋅ f ⋅u(y) = (H(ϕ, u)( f )⊓S H(ϕ, u)(g))(y),

H(ϕ, u)(¬R f )(y) = ϕ⋅(¬R f )⋅u(y) = ϕ(¬R( f ⋅u(y))) = ¬S(ϕ⋅ f ⋅u(y)) = ¬RH(ϕ, u)( f )(y).

From Proposition 2, it follows that any morphism ϕ ∶ ((R,R∗),¬R) → ((S,S∗),¬S)
between objects of APSem can be extended to the morphism (R,R∗)X → (S ,S∗)Y between
the corresponding algebraic systems of these dual pairs. Examples of morphisms from the
category APSem that are based on examples from this section are presented below.
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Example 9. Let (L∨, L∧) = F(L), where L is the AMV-algebra of Example 1.

1. The morphism ϕ1 ∶ ((L∨, L∧),¬)→ ((R1,R∗1 ),¬1) is defined by

α ∈ L, ϕ(α) = (α,¬α) ∈ R1.

2. The morphism ϕ2 ∶ ((L∨, L∧),¬)→ ((R2,R∗2 ),¬2) is defined by

α ∈ L, ϕ2(α) = (K, α) ∈ R2,

where α ∈ LK is the constant function with the value α.
3. The morphism ϕ3 ∶ ((R1,R∗1 ),¬1)→ ((R4,R∗4 ),¬4) is defined by

(α, β) ∈ R1, ϕ3(α, β) = (α, 0L, β) ∈ R4.

In fuzzy set theory, the category L(X) of L-fuzzy sets in a set X is well known, where
morphisms u ∶ f → g between two fuzzy sets f , g ∈ LX are defined as mappings u ∶ X → X,
such that g.u(x) ≥ f (x) for all x ∈ X. Analogically, we can define the category $(X) of
(R,R∗)-fuzzy sets in a set X. Therefore, LX is not only the set of all fuzzy sets in X, it is
also a category.

Definition 8. Let X be a set, and (R,R∗) be an dual pair of semirings. The category (R,R∗)X of
(R,R∗)-fuzzy sets in a set X is defined by

1. Objects are (R,R∗)-fuzzy sets in X, i.e., mappings f ∶ X → R.
2. The morphisms from an object f to the object g are mappings u ∶ X → X, such that

f (x) ≤ g.u(x),

where ≤ is the order relation defined in the Lemma 1.
3. The composition of morphisms is the composition of mappings.

For illustration, we present some examples of functors between categories (R,R∗)X

for various dual pairs of semirings.

Example 10. Let X be a set. The following functors exist among the corresponding categories.

(R3,R∗3 )X (R2,R∗2 )X

(R2,R∗2 )X <
F (L∨, L∧)X

J∨ M
∧

G
>

<
N

(R1,R∗1 )X .

P
∧

We show how these functors are defined.
(1) Let f , g ∶ X → R3 be objects of (R3,R∗3 )X and let u ∶ f → g be a morphism in this category.

For x ∈ X, let f (x) = ( f1, f2, f3), g(u(x)) = (g1, g2, g3). The functor J is defined by

x ∈ X, J( f )(x) = f1 ⊕¬ f2 ⊕¬ f3.

Because for arbitrary x ∈ X, f (x) ≤3 g.u(x), we obtain J( f )(x) = f1 ⊕¬ f2 ⊕¬ f3 ≤ g1 ⊕
¬g2 ⊕¬g3 = J(g)(x) and it follows that J(u) = u is also the morphism in (L∨, L∧)X . Therefore, J
is a functor.

(2) Let f , g ∶ X → R1 be objects of (L∨, L∧)X and let u ∶ f → g be a morphism in this category.
The functor M is defined by

x ∈ X, M( f )(x) = ( f (x), 0L,¬ f (x)), M(u) = u.
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Because for arbitrary x ∈ X, f (x) ≤ gu(x), we obtain M( f )(x) ≤3 M(g)(u(x) and it follows
that M(u) = u is also the morphism in (R3,R∗3 )X . Therefore, M is a functor.

(3) Let f , g ∶ X → L be objects of (L∨, L∧)X and let u ∶ f → g be a morphism in this category.
The functor G is defined by

x ∈ X, G( f )(x) = ( f (x),¬ f (x)) ∈ R1, G(u) = u.

Because for arbitrary x ∈ X, f (x) ≤L g.u(x), we obtain ( f (x),¬ f (x)) ≤1 (g(u(x)),¬g(u(x)))
and it follows that G(u) = u is also the morphism in (R1,R∗1 )X . Therefore, G is a functor.

(4) Let f , g ∶ X → L be objects of (L∨, L∧)X and let u ∶ f → g be a morphism in this category.
The functor F is defined by

x ∈ X, F( f )(x) = (K, f (x)), J(u) = u,

where f (x) ∶ K → L is the constant function with the value f (x) for all k ∈ K. Because for arbitrary
x ∈ X, f (x) ≤L g.u(x), we obtain (K, f (x)) ≤2 (K, g(u(x))) and it follows that F(u) = u is also
the morphism in (R2,R∗2 )X . Therefore, F is a functor.

(5) Let f , g ∶ X → R1 be objects of (R1,R∗1 )X and let u ∶ f → g be a morphism in this category.
For x ∈ X, we set f (x) = (αx, βx), g(u(x)) = (α′x, β′x) ∈ R1. The functor N is defined by

x ∈ X, N( f )(x) = αx ⊕¬βx, H(u) = u.

Because for arbitrary x ∈ X, (αx, βx) ≤1 (α′x, β′x), we obtain αx ⊕¬βx ≤L α′x ⊕¬β′x and it
follows that H(u) = u is also the morphism in (L∨, L∧)X . Therefore, N is a functor.

(6) Let f , g ∶ X → R1 be objects of (R1,R∗1 )X and let u ∶ f → g be a morphism in this category.
For x ∈ X, we set f (x) = (αx, βx), g(u(x)) = (α′x, β′x) ∈ R1. Let k1, k2 ∈ K be fixed elements. The
functor P is defined by

x ∈ X, P( f )(x) = (Ex, sx), Ex = {k1, k2} ⊆ K, sx ∶ K → L,

sx(k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

αx, k = k1,
¬βx, k = k2,
0L, k ∈ K ∖ {k1, k2}.

Let P(g.u)(x) = (E′x, s′x). Because for arbitrary x ∈ X, (αx, βx) ≤1 (α′x, β′x), we obtain
(Ex, ss) ≤3 (E′x, s′x) and it follows that P(u) = u is also the morphism in (R3,R∗3 )X . Therefore, P
is a functor.

4. Rough (R,R∗)-Fuzzy Sets

As we mentioned in the introduction, our goal in this paper is to define the theory of
rough fuzzy structures, which could be applied to the new MV-fuzzy structures in such a
way that these applications will respect the existing rough fuzzy sets in these structures.
For this goal, we use results from the previous part, namely the fact that important parts of
new fuzzy structures can be expressed as the (R,R∗)-fuzzy sets.

In this section, we define the theory of rough (R,R∗)-fuzzy sets and use that theory
to unify the theory of rough fuzzy structures of new fuzzy sets which can be expressed
as (R,R∗)-fuzzy sets for some dual pairs of semirings. Similar to classical fuzzy rough
sets, this rough (R,R∗)-fuzzy set theory will be based on the notion of the (R,R∗)-fuzzy
binary relation.

4.1. (R,R∗)-Fuzzy Relations

We start this section with the definition of (R,R∗)-fuzzy relations and we present
some basic properties of these relations. Recall that we use the notation and operations from
Definitions 4 and 2. Recall that by (R,R∗) we understand the semiringsR = (R,+,×, 0R, 1R)
andR∗ = (R,+∗,×∗, 0∗R, 1∗R).
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Definition 9. Let (R,R∗) be the dual pair of semirings with the self-inverse isomorphism ¬ and
let X be a set.

1. By the (R,R∗)-fuzzy relation in a set X we understand a (R,R∗)-fuzzy set T ∶ X ×X → R
in the Cartesian product X ×X.

2. An (R,R∗)-fuzzy relation T in X is called a

(a) reflexive, if for arbitrary x ∈ X, T(x, x) = 1R,
(b) symmetric, if for arbitrary x, y ∈ X, T(x, y) = T(y, x),
(c) transitive, if for arbitrary x, y, z ∈ X, T(x, y)× T(y, z) ≤ T(x, z),
(d) equivalence if it is reflexive, transitive, and symmetric.

Similarly to classical fuzzy relations, we can define operations for the (R,R∗)-fuzzy
relations.

Definition 10. Let S, T be (R,R∗)-fuzzy relations in a set X.

1. The composition of S and T is the (R,R∗)-fuzzy relation T ○S(x, z) = ∑y∈X S(x, y)×T(y, z)
for arbitrary x, z ∈ X.

2. The dual composition of S and T is defined by T ○∗ S(x, z) = ∑∗y∈X S(x, y)×∗ T(y, z).
3. The negation ¬T of T is defined by (¬T)(x, y) ∶= ¬(T(x, y)).
4. S ⪯ T iff ∀x, y ∈ X, S(x, y) ≤ T(x, y) and S ⪯∗ T iff ∀x, y ∈ X, S(x, y) ≤∗ T(x, y) hold,

where ≤ is defined in Lemma 1 and x ≤∗ y⇔ y ≤ x.

Some basic properties of these operations are mentioned in the following lemma.

Lemma 2. Let T,{Si ∶ i ∈ I} be (R,R∗)-fuzzy relations in X. The following statements hold.

1. T ○ (⊔i∈I Si) = ⊔i∈I(T ○ Si), T ○∗ (⊓i∈I Si) = ⊓i∈I(T ○∗ Si)
2. T ○ S = ¬(¬T ○∗ ¬S), T ○∗ S = ¬(¬T ○ ¬S)
3. S ⪯ S′ ⇒ T ○ S ⪯ T ○ S′, T ○∗ S ⪯ T ○∗ S′

The proof follows directly from the properties of operations in the dual pair of semir-
ings, and will be omitted.

Because our main goal is to show the possibility of using the theory of (R,R∗)-fuzzy
rough sets in other fuzzy structures, (R,R∗)-fuzzy relations should comprise the existing
fuzzy relations in these new fuzzy structures. It should be mentioned that, for some
fuzzy structures, there exist several variants of definitions of relations. An example of
this situation can be fuzzy soft sets, where there are several variants of the definition of
fuzzy soft relations. For example, see Definition 3.1 in [20], where the fuzzy soft relation is
defined between two fuzzy soft sets, and Definition 6 in [21], where the fuzzy soft relation
is defined between two fuzzy soft spaces (K, X) and (K, Y).

For an illustration of relationships between L-fuzzy relations in new fuzzy structures
and (R,R∗)-fuzzy relations, we show that (R2,R∗2 )-fuzzy relations in a set X are isomor-
phic to L-fuzzy soft relations in a soft space (K, X) defined in [21], and (R1,R∗1 )-fuzzy
relations are identical to intuitionistic L-fuzzy relations with composition defined in [22,23].

Proposition 3.

1. Let (S(X ×X),⊠) be the monoid of all L-fuzzy soft relations in a set X with the composition
⊠ of fuzzy soft set relations defined in [21], and let (RX×X

2 , ○) be the monoid of all (R2,R∗2 )-
fuzzy relations in X with composition ○. Then these monoids are isomorphic, i.e.,

(S(X ×X),⊠) ≅ (RX×X
2 , ○).
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2. Let (J (X ×X),⊠) be the monoid of all intuitionistic L fuzzy relations in a set X with the
composition ⊠ of intuitionistic relations defined in [22], and let (RX×X

1 , ○) be the monoid of
all (R1,R∗1 )-fuzzy relations in X with the composition ○. Then we have

(J (X ×X),⊠) = (RX×X
1 , ○).

Proof. (1) If (K, X) is a fuzzy soft space, then a fuzzy soft relation in (K, X) (in the variant
according to [21]; Definition 6) is a fuzzy soft set (E, T) in a set X × X, that is, E ⊆ K,
T ∶ K → LX×X and (E, T) ∶ X ×X → LK is defined by

k ∈ K, (x, x′) ∈ X ×X, (E, T)(x, x′)(k) =
⎧⎪⎪⎨⎪⎪⎩

T(k)(x, x′), k ∈ E,
0L, k ∈ K ∖ E.

We define a mapping Ψ ∶ S(X ×X)→ RX×X
2 such that for (E, T) ∈ S(X ×X), Ψ(E, T) ∶=

T , where T ∶ X ×X → R2 is defined by

(x, x′) ∈ X ×X, T (x, x′) ∶= (E, ψxx′) ∈ R2, (2)

ψxx′ ∶ K → L, ψxx′(k) ∶= T(k)(x, x′), (3)

(E, ψxx′)(k) =
⎧⎪⎪⎨⎪⎪⎩

ψxx′(k), k ∈ E,
0L, k ∈ K ∖ E.

(4)

It follows that (E, T)(x, x′)(k) = Ψ(E, T)(x, x′)(k). In contrast, let T ∈ RX×X
2 and let

T (x, x′) = (Exx′ , τxx′) ∈ R2 for arbitrary (x, x′) ∈ X × X. We set E = ⋃(x,x′)∈X×X Exx′ and
define the mapping S ∶ K → LX×X by

k ∈ K, (x, x′) ∈ X ×X, S(k)(x, x′) =
⎧⎪⎪⎨⎪⎪⎩

τxx′(k), k ∈ Exx′

0L, k ∈ K ∖ Exx′ .

Then (E, S) ∈ S(X ×X) and we have (E, S)(x, x′)(k) = (E, τxx′)(k) = T (x, x′)(k). Therefore,
we can put Ψ−1(T ) = (E, S) and it is clear that Ψ ∶ S(X ×X)→ RX×X

2 is the bijection. Finally,
we show that

Ψ((E, T)⊠ (F, S)) = Ψ(E, T) ○Ψ(F, S).

Let Ψ(E, T) = T , Ψ(F, S) = S, where, according to the previous part of the proof,
S(x, x′) = (E, ψxx′),T (y, y′) = (F, τyy′) satisfies the corresponding conditions (2), (3), and
(4), i.e., ψxx′ = S(k)(x, x′) and τyy′(k) = T(k)(y, y′). The composition ⊠ of L-fuzzy soft
relations is defined by (E, T)⊠ (F, S) = (E ∩ F, T ◇ S), where

k ∈ K, x, z ∈ X, T ◇ S(k)(x, x′) = ⋁
y∈X

S(k)(x, y)⊗ T(k)(y, z),

(E ∩ F, T ◇ S)(x, x′)(k) =
⎧⎪⎪⎨⎪⎪⎩

T ◇ S(k)(x, x′), k ∈ E ∩ F,
0L, k ∈ K ∖ E ∩ F.

For arbitrarily x, z ∈ X, k ∈ K, according to Definition 10, we obtain

Ψ(E, T) ○Ψ(F, S)(x, z)(k) = T ○S(x, z)(k) =

(
R2

∑
y∈X
S(x, y)×2 T (y, z))(k) = (

R2

∑
y∈X

(E, ψxy ×2 F, τyz)(k) = (
R2

∑
y∈X

(E ∩ F, ψxy ⊗ τyz)(k) =

(E ∩ F, ⋁
y∈X

ψxy ⊗ τyz)(k) =
⎧⎪⎪⎨⎪⎪⎩

⋁y∈X ψxy(k)⊗ τyz(k), k ∈ E ∩ F
0L, k ∈ K ∖ E ∩ F

=

(E ∩ F, σxz)(k) = Ψ(E ∩ F, T ◇ S)(x, z)(k) = Ψ((E, T)⊠ (F, S))(x, z)(k),
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where σxz(k) = T ◇ S(k)(x, z). Therefore, Ψ is the isomorphism.
(2) Recall that by the intuitionistic L-fuzzy relation in X we understand the intu-

itionistic L-fuzzy set in X ×X. For (t, s) ∈ J (X ×X) and arbitrary (x, x′) ∈ X ×X we have
(t, s)(x, x′) = (t(x, x′), s(x, x′)), where ¬t(x, x′) ≥ s(x, x′) and it follows that (s, t)(x, x′) ∈ R1.
Therefore, (s, t) can be identified with the (R1,R∗1 )-fuzzy set X ×X → R1. The rest follows
directly from Proposition 2.

As another example, we show a fuzzy relation that can be transformed to the (R5,R∗5 )-
fuzzy relation.

Example 11. If we want to specify how two elements x, y ∈ X correspond to some fuzzy relation
Q, that is, to determine the value Q(x, y), under certain conditions, this value depends on the
observation points α ∈ Ω, the points x, y are observed. For the correct determination of the value of
Q(x, y), it should be assumed that if the positions of two observation points are similar, the observed
values of the relation Q should also be close. Therefore, instead of the fuzzy relation Q ∶ X ×X → L,
there is the fuzzy relation Q′ ∶ X × X ×Ω → L, where Ω is the set of observation points. This
approach was first discussed by A. Šostak in [24], where he introduced the concept of many-level
L-fuzzy relations. We show that these structures can be transformed into (R5,R∗5 )-fuzzy relations.
To do this, we first specify this notion more precisely.

Definition 11. Let X be a set, and let (Ω, ρ) be a set with the L-fuzzy equivalence relation ρ. The
L-fuzzy relation Q ∶ X ×X ×Ω → L is called the Ω-level L-fuzzy relation, if the following holds:

x, y ∈ X, α, β ∈ Ω, Q(x, y, α)↔ Q(x, y, β) ≥ ρ(α, β), (5)

where↔ is the biresiduum operation in the MV-algebra L.

We show that there is a bijection between the set of all Ω-level L-fuzzy relations in
a set X and the set of (R5,R∗5 )-fuzzy relations in a set X. For Q ∶ X × X × Ω → L and
S ∶ X ×X → R5 we define the map Θ ∶ LX×X×Ω → RX×X

5 and the inverse map Θ−1 by

Θ(Q)(x, y)(α) ∶= Q(x, y, α), Θ−1(S)(x, y, α) = S(x, y)(α).

It is clear that Θ(Q)(x, y) ∈ LΩ is ρ-extensional, Θ−1(S) is the Ω-level L-fuzzy relation,
and Θ and Θ−1 are mutually inverse mappings. Using this bijection and Example 7, we
can define operations for Ω-level L-fuzzy sets. For example, the composition T ○ S of two
Ω-level L-fuzzy relations S and T in X can be defined using Definition 10 by

(T ○ S)(x, z, α) = Θ−1(Θ(T) ○5 Θ(S))(x, z)(α) =
R5

∑
y∈X

(Θ(S)(x, y)×5 Θ(T)(y, z))(α) =

R5

∑
y∈Y

Θ(S)(x, y)⊗Θ(T)(y, z)(α) = ⋁
y∈X

⋁
β∈Ω

Θ(S)(x, y)(β)⊗Θ(T)(y, z)(β)⊗ ρ(α, β) =

⋁
y∈X

⋁
β∈Ω

S(x, y)(β)⊗ T(y, z)(β)⊗ ρ(α, β).

4.2. (R,R∗)-Approximation Spaces

In the following definition, we introduce the notion of upper and lower approxi-
mations of (R,R∗)-fuzzy sets defined by the (R,R∗)-relations. If T is a (R,R∗)-fuzzy
equivalence relation in X, the pair (X, T) is called the (R,R∗)-approximation space.

Definition 12. Let (R,R∗) be the dual pair of semirings with the self-inverse isomorphism ¬ and
let T ∶ X ×Y → R be a (R,R∗)-fuzzy relation.
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1. The upper (R,R∗)-approximation defined by T is the mapping T↑ ∶ RX → RY defined by

s ∈ RX , y ∈ Y, T↑(s)(y) =
R

∑
x∈X

s(x)× T(x, y).

2. The lower (R,R∗)-approximation defined by T is the mapping T↓ ∶ RX → RY defined by

s ∈ RX , y ∈ Y, T↓(s)(y) =
R
∗

∑
x∈X

s(x)×∗ ¬(T(x, y)).

3. If X = Y and T is the (R,R∗)-fuzzy equivalence relation, pair (T↓(s), T↑(s)) is called the
(R,R∗)-fuzzy rough set of s with respect to (X, T).

Definition 12 allows us to introduce the concept of rough fuzzy structure for all types
of new fuzzy structures that can be transformed into (R,R∗)-fuzzy sets. To illustrate the
possible application of Definition 12, we present the upper and lower approximations for
two examples of fuzzy structures. Namely, we show that the existing definitions of the
rough intuitionistic L-fuzzy set defined by [8] and the rough L-fuzzy soft set in the variant
defined by [21] are identical to the rough fuzzy structures according to Definition 12. In the
last section, we present applications of these rough (R,R∗)-fuzzy structures to the color
segmentation of color images.

A simple example of (R,R∗)-approximation mappings is given by two variants of
Zadeh’s extension principle for (R,R∗)-fuzzy sets.

Example 12. Let (R,R∗) be the dual pair of semirings and let f ∶ X → Y be a mapping. Let
[ f ] ∶ X ×Y → R be the (R,R∗)-relation defined by

[ f ](x, y) =
⎧⎪⎪⎨⎪⎪⎩

1R, f (x) = y,
0R, f (x) ≠ y

.

The lower and upper Zadeh’s extension mappings RX → RY f⇒ and f→, respectively, are
defined by

1. s ∈ RX , y ∈ Y, f⇒(s)(y) = [ f ]↓(s)(y) = ∑R
∗

x∈X, f(x)=y s(x),

2. s ∈ RX , y ∈ Y, f→(s)(y) = [ f ]↑(s)(y) = ∑Rx∈X, f(x)=y s(x).

By mapping f we can also define the (R,R∗)-relation ( f ) ∶ Y ×X → R, such that ( f )(y, x) =
[ f ](x, y). In that case, the upper and lower approximations defined by ( f ) represent (only one)
version of the Zadeh’s inverse extension RY → RX , i.e.,

t ∈ RY, x ∈ X, f←(t)(y) =∶ ( f )↑(t)(x) = t( f (x)) = ( f )↓(t)(x).

Example 13. Let S be the intuitionistic L-fuzzy relation in X and let f be an intuitionistic L-fuzzy
set in X. According to [8], the upper and lower intuitionistic approximations S( f ), S( f ) of f are
defined by

S( f )(x) = ( ⋁
y∈X

T(S1(x, y), f1(y)), ⋀
y∈X

I(S2(x, y), f2(y))),

S( f )(x) = ( ⋀
y∈X

I(¬(S2(x, y)), f1(y)), ⋁
y∈X

T(S1(x, y), f2(y))),

where for arbitrary (x, x′) ∈ X ×X, S(x, x′) = (S1(x, x′), S2(x, x′)) and f (x) = ( f1(x), f2(x)), T
is a t-norm and I is an implicator (see [8]).



Mathematics 2022, 10, 2274 17 of 31

From Proposition 3, it follows that S is also (R1,R∗1 )-relation, i.e., S ∶ X ×X → R1 and if for
a, b ∈ L we set

T(a, b) = a⊗ b, I(a, b) = ¬a⊕ b,

we obtain S↑( f )(x) = S( f )(x) and S↓( f )(x) = S( f )(x). Therefore, if L is the MV-algebra, the
intuitionistic L-fuzzy rough sets are (R1,R∗1 )-fuzzy rough sets.

In the next example, we will focus on rough fuzzy soft sets. Unlike the well-known
and unambiguously defined classical rough L-fuzzy sets, the notion of rough L-fuzzy soft
set is not defined in a generally accepted way. In contrast, there are a number of variants,
including possible variants of names. For example, in [25] the construction of upper and
lower fuzzy soft approximations is defined for approximations of classical fuzzy sets, where
instead of fuzzy soft relations, fuzzy soft sets are used. On the other hand, in [26], fuzzy
soft relations are explicitly used to define upper and lower soft approximations of fuzzy
soft sets, but without the notion of rough fuzzy soft sets.

That brief overview shows that rough fuzzy soft sets or upper and lower soft approx-
imations of fuzzy soft sets defined by fuzzy soft relations have not been systematically
introduced so far. In the next example, we show how we can explicitly define this notion.
According to Example 4, a fuzzy soft set in X can be identified with the mapping X → R2
and according to Proposition 3, a fuzzy soft relation in X with the mapping X ×X → R2. By
Definition 12, we obtain:

Example 14. Let (K, X) be a soft space and let (R2,R∗2 ) be the dual pair of semirings from
Example 4. For a (R2,R∗2 )-fuzzy soft set f ∶ X → R2 we put f (x) = (Fx, fx) ∈ R2, where Fx ⊆ K,
fx ∶ K → L is a mapping, and (Fx, fx) ∶ K → L is such that

(Fx, fx)(k) =
⎧⎪⎪⎨⎪⎪⎩

fx(k), k ∈ Fx,
0L, k ∈ K ∖ Fx.

According to Proposition 3, L-fuzzy soft relation in a set X can be identified with the (R2,R∗2 )-
fuzzy relation X ×X → R2. For this relation T ∶ X ×X → R2, for (x, x′) ∈ X ×X we set

T (x, x′) = (Exx′ , ϕxx′) ∈ R2,

k ∈ K, (E, ϕxx′)(k) =
⎧⎪⎪⎨⎪⎪⎩

ϕxx′(k), k ∈ Exx′ ,
0L, k ∈ K ∖ Exx′ .

It is easy to see that T is the (R2,R∗2 )-fuzzy equivalence relation if and only if T is the
L-fuzzy soft equivalence relation. Therefore, according to Definition 12 and Example 4, the rough
(R2,R∗2 )-fuzzy soft set (T ↓( f ),T ↑( f )) is defined for x ∈ X, k ∈ K, by

T
↑
( f )(x)(k) =

⎛

⎝

R2

∑

z∈X
T (x, z)×2 f (z)

⎞

⎠

(k) =
⎛

⎝

R2

∑

z∈X
(Exz, ϕxz)×2 (Fz, fz)

⎞

⎠

(k) =

⎛

⎝

R2

∑

z∈X
(Exz ∩ Fz, ϕxz ⊗ fz)

⎞

⎠

(k) =

⋁

z∈X

⎧
⎪⎪
⎨
⎪⎪
⎩

ϕxz(k)⊗ fz(k), k ∈ Exz ∩ Fz,

0L, k ∈ K ∖ Exz ∩ Fz,
= ⋁

{z∈X∶k∈Exz∩Fz}

ϕxz(k)⊗ fz(k),

T
↓
( f )(x)(k) =

⎛

⎜

⎝

R
∗

2

∑

z∈X
¬(T (x, z))×∗2 f (z)

⎞

⎟

⎠

(k) =
⎛

⎜

⎝

R
∗

2

∑

z∈X
¬(Exz, ϕxz)×

∗
2 (Fz, fz)

⎞

⎟

⎠

(k) =

⎛

⎜

⎝

R
∗

2

∑

z∈X
(Exz ∩ Fz,¬ϕxz ⊕ fz)

⎞

⎟

⎠

(k) =

⋀

z∈X

⎧
⎪⎪
⎨
⎪⎪
⎩

¬2(ϕxz(k))⊕ fz(k), k ∈ Exz ∩ Fz,

0L, k ∈ K ∖ Exz ∩ Fx.
= ⋀

{z∈X∶k∈Exz∩Fz}

¬2(ϕxz(k)⊕ fz(k).
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It can be proven that the (R2,R∗2 )-fuzzy rough set (T ↓( f ),T ↑( f )) can be identified with the
rough fuzzy soft set defined in [26] or [21].

In the next part of the paper, we concentrate on the basic properties of the upper and
lower (R,R∗)-approximations of (R,R∗)-fuzzy sets. Because some L-fuzzy structures
can be transformed into (R,R∗)-fuzzy sets, the lower and upper approximations of these
(R,R∗)-fuzzy sets in the (R,R∗)-approximation space can be converted to lower and
upper approximations of these L-fuzzy structures. The properties of the lower and upper
approximations created in this way then copy the properties of rough (R,R∗)-fuzzy sets,
and it is not necessary to prove them for individual fuzzy structures.

The basic properties of (R,R∗)-fuzzy rough sets are presented in the following propo-
sition. For a ∈ R, we denote by a the constant (R,R∗)-fuzzy set with the only value a. We

also use the following (R,R∗)-fuzzy set ηX(z) ∈ (R,R∗)X , where ηX(z)(y) =
⎧⎪⎪⎨⎪⎪⎩

1R, y = z,
0R, y ≠ z

and η∗X(z) = ¬ηX(z). Using this notation we obtain the following simple lemma.

Lemma 3. For arbitrarily f ∈ (R,R∗)X we have

f = ⊔
x∈X

( f (x) ⋆ ηX(x)) = ⊓
x∈X

( f (x) ⋆∗ η∗X(x)).

The Proof is trivial, and it will be omitted.

Proposition 4. Let (R,R∗) be the dual pair of semirings with the self-inverse isomorphism ¬ and
let T be a (R,R∗)-fuzzy relation in X. Let a ∈ R and s, t, si ∈ (R,R∗)X , i ∈ I.

1. T↑(⊔i∈I si) = ⊔i∈I T↑(si), T↓(⊓i∈I si) = ⊓i∈I T↓(si),
2. T↑(a ⋆ s) = a ⋆ T↑(s), T↓(a ⋆∗ s) = a ⋆∗ T↓(s),
3. s ≤ t⇒ T↓(s) ≤ T↓(t), T↑(s) ≤ T↑(t),
4. T↓(s) = ¬(T↑(¬(s))), T↑(s) = ¬(T↓(¬(s))),
5. if T is reflexive, T↓(s) ≤ s ≤ T↑(s).
6. The following statements are equivalent for arbitrary s ∈ (R,R∗)X

(a) T is transitive,
(b) T↑(T↑(s)) ≤ T↑(s),
(c) T↓(T↓(s)) ≥ T↓(s).

Proof. To prove 1.–3. is the routine only, and it will be omitted.
4. We have

T↓(s)(x) =
R
∗

∑
z∈X

¬T(x, z))×∗ s(z) = (
R
∗

∑
z∈X

¬(T(x, z)×¬s(z)) =

¬(
R

∑
z∈X

(T(x, z))×¬(s(z))) = ¬(T↑(¬s))(x),

and similarly for the other part.
5. It is easy to see that T↑(s) ≥ s for a reflexive T. The rest is derived from the inequality

¬T↓(s) = T↑(¬s) ≥ ¬s. 6. The implication (a)⇒ (b) can be proved simply. Implication (b)⇒
(c) follows from the inequality.

¬T↓(T↓(s)) = T↑(¬T↓(s)) = T↑T↑(¬s) ≤ T↑(¬s) = ¬T↓(s),

and it follows T↓T↓(s) ≥ T↓(s). To prove (c)⇒ (a), we put s = η∗X(z). Since T↓(η∗X(z))(x) =
¬T(x, z), we obtain the following.



Mathematics 2022, 10, 2274 19 of 31

T↓(T↓(η∗X(z))(x) =
R
∗

∑
y∈X

¬T(x, y)×∗ T↓(η∗x (z))(y) =
R
∗

∑
y∈X

¬T(x, y)×∗ ¬T(y, z) =

¬(
R

∑
y∈X

T(x, y)× T(y, z)) ≥ ¬T(x, z),

and we obtain T(x, y)× T(y, z) ≤ ∑Ry∈X T(x, t)× T(t, z) ≤ T(x, z). Therefore, T is the transi-
tive (R,R∗)-relation.

From Proposition 4 and Lemma 3, we immediately obtain the following lemma, which
will be used in the next theorem.

Lemma 4. Let Γ and Γ′ be upper and ∆ and ∆′ be lower (R,R∗)-approximations RX → RX,
respectively. Then the following implications hold.

∀s ∈ RX , Γ(s) = Γ′(s) ⇔ ∀x ∈ X, Γ(ηX(x)) = Γ′(ηX(x)),

∀s ∈ RX , ∆(s) = ∆′(s) ⇔ ∀x ∈ X, ∆(η∗X(x)) = ∆(η∗X(x)).

In the paper [27], the axiomatic characterization of the lower and upper approxima-
tions of the [0, 1]-fuzzy sets was presented. In the next part, we prove that an analogical
axiomatic characterization of (R,R∗)-approximations of (R,R∗)-fuzzy sets can also be
proven. It follows without any proof that this axiomatic characteristic holds for an arbitrary
fuzzy structure, which can be transformed into (R,R∗)-fuzzy sets.

Proposition 5. Let (R,R∗) be the dual pair of semirings, X be a set, and let Γ ∶ RX → RX be a
mapping. The following statements are equivalent.

1. There exists a (R,R∗)-equivalence relation T in X, such that Γ = T↑.
2. For arbitrary s, si ∈ (R,R∗)X , a ∈ R, the mapping Γ satisfies the following conditions.

(a) Γ(s) ≥ s,
(b) ΓΓ(s) = Γ(s),
(c) Γ(⊔i∈I si) = ⊔i∈I Γ(si),
(d) Γ(a ⋆ s) = a ⋆ Γ(s),
(e) Γ(ηX(x))(z) = Γ(ηX(z))(x).

Proof. The implication 1⇒ 2 follows from Proposition 4. We prove the implication 2⇒ 1.
Let conditions 2) hold. We define the symmetric and reflexive (R,R∗)-relation T by

x, y ∈ X, T(x, y) = Γ(ηX(x))(y) = Γ(ηX(y))(x) = T(y, x),

and we show that it is transitive. According to Lemma 3, for arbitrary s ∈ (R,R∗)X, we
have the following.

Γ(s)(x) = Γ(⊔
t∈X

s(t) ⋆ ηX(t))(x) = ∑
t∈X

s(t)× Γ(ηX(t))(x) = ∑
t∈X

s(t)× T(x, y) =

T↑(s)(x),

where T is a symmetric and reflexive (R,R∗)-relation. According to Proposition 4, T is
also transitive.

An analogous axiomatic characterization can be performed for the lower (R,R∗)-
approximation.
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Proposition 6. Let (R,R∗) be the dual pair of semirings, X be a set, and let Λ ∶ RX → RX be a
mapping. The following statements are equivalent.

1. There exists the (R,R∗)-equivalence relation S in X, such that Λ = S↓.
2. For arbitrary s, si ∈ (R,R∗)X , a ∈ R, the mapping Λ satisfies the following conditions.

(a) Λ(s) ≤ s,
(b) ΛΛ(s) = Λ(s),
(c) Λ(⊓i∈I si) = ⊓i∈I Λ(si),
(d) Λ(a ⋆∗ s) = a ⋆∗ Λ(s),
(e) Λ(η∗X(x))(y) = Λ(η∗X(y))(x).

Proof. The implication 1⇒ 2 follows from Proposition 4. Now, let Condition 2 hold. We
define the symmetric and reflexive (R,R∗)-relation S by

S(x, y) = ¬(Λ(η∗X(x)(y)) = ¬(Λ(η∗X(y)(x)) = S(y, x).

According to Lemma 3, for arbitrary s ∈ (R,R∗)X we have

Λ(s)(x) = Λ(⊓
t∈X

s(t) ⋆∗ η∗X(t))(x) = ∑
t∈X

s(t)×∗ Λ(η∗X(t))(x) =

∑
t∈X

s(t)×∗ ¬(S(x, t)) = S↓(s)(x),

and S is also transitive, according to Proposition 4.

Relationships between approximation mappings satisfying conditions (a)–(e) from
previous propositions, on the one hand, and (R,R∗)-fuzzy relations, can be more precisely
described by category theory. Let us introduce the following three categories.

Definition 13. Let (R,R∗) be the dual pair of semirings.

1. The category (R,R∗)↑ of upper approximation mappings between power sets of (R,R∗)-
fuzzy sets is defined by

(a) objects are mappings Γ ∶ RX → RX , satisfying conditions (a)–(e) of Proposition 5,
(b) morphisms from Γ ∶ RX → RX to ∆ ∶ RY → RY are mappings f ∶ X → Y, such that in

the diagram

RX Γ
> RX

RY

f→∨
∆
> RY

f→∨

the inequality ∆. f→ ≥ f→.Γ holds.

2. The category (R,R∗)↓ of lower approximation mappings between power sets of (R,R∗)-fuzzy
sets is defined by

(a) objects are mappings Γ ∶ RX → RX , satisfying conditions (a)–(e) of Proposition 6,
(b) morphisms from Γ ∶ RX → RX to ∆ ∶ RY → RY are mappings f ∶ X → Y, such that in

the diagram

RX Γ
> RX

RY

f←
∧

∆
> RY

f←
∧

the inequality f←.∆ ≥∗ Γ. f← holds.

3. The category Rel↑(R,R∗) of the upper (R,R∗)-fuzzy relations is defined by
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(a) objects are (R,R∗)-fuzzy equivalence relations Q ∶ X ×X → R,
(b) morphisms from Q ∶ X ×X → R to S ∶ Y ×Y → R are mappings f ∶ X → Y, such that

for arbitrary x, x′ ∈ X, the inequality Q(x, x′) ≤ S( f (x), f (x′)) holds.

4. The category Rel↓(R,R∗) of the lower (R,R∗)-fuzzy relations is defined by

(a) objects are (R,R∗)-fuzzy equivalence relations Q ∶ X ×X → R,
(b) morphisms from Q ∶ X ×X → R to S ∶ Y ×Y → R are mappings f ∶ X → Y, such that

for arbitrary x, x′ ∈ X, the inequality Q(x, x′) ≤∗ S( f (x), f (x′)) holds.

The compositions of the morphisms in all these categories are standard compositions of map-
pings.

The relationship between these three categories describes the following theorem.

Theorem 2. Let (R,R∗) be the dual pair of semirings with the self-inverse isomorhism ¬. There
exist isomorphic functors E, F, G, H such that the following diagram commutes.

(R,R∗)↑ H
> (R,R∗)↓

Rel↑(R,R∗)

F∨
E

> Rel↓(R,R∗).

G∨

Proof. (1) We define the functor F ∶ (R,R∗)↑ → Rel↑(R,R∗). Let Γ ∶ RX → RX be an object
of (R,R∗)↑. We put

F(Γ) = Γ̂ ∶ X ×X → R, such that Γ̂(x, x′) = Γ(ηX(x))(x′).

For a morphism f ∶ Γ → ∆, where ∆ ∶ RY → RY is the object of (R,R∗)↑, we set F( f ) = f .
We prove that this definition is correct, that is, f is the morphism in Rel↑(R,R∗). We need
to prove that Γ̂(x, x′) ≤ ∆̂( f (x), f (x′)), for arbitrary x, x′ ∈ X. Since f is the morphism in
(R,R∗)↑, we have ∆. f→ ≥ f→.Γ and obtain

Γ̂(x, x′) = Γ(ηX(x))(x′) ≤
R

∑
z∈X, f(z)= f(x′)

Γ(ηX(x))(z) = f→.Γ(ηX(x))( f (x′)) ≤

∆⋅ f→(ηX(x))( f (x′)) = ∆(ηY( f (x))( f (x′)) = ∆̂( f (x), f (x′)).

Therefore, f is a morphism in Rel↑(R,R∗) and it is easy to see that F is a functor.
We define the inverse functor F−1 ∶ Rel↑(R,R∗)→ (R,R∗)↑ by

F−1(Q) = Q↑,

where Q ∶ X × X → R is an object of Rel↑(R,R∗), and for the morphism f ∶ Q → S in
Rel↑(R,R∗), where S ∶ Y ×Y → R, we set F−1( f ) = f . As follows from Proposition 5, this
definition is correct, and we only need to show that f ∶ Q↑ → S↑ is the morphism in (R,R∗)↑.
For s ∈ RX , y ∈ Y, we have

f→.Q↑(s)(y) =
R

∑
{x∈X, f(x)=y}

Q↑(s)(x) =
R

∑
{x∈X, f(x)=y}

R

∑
x′∈X

s(x′)×Q(x′, x) ≤

R

∑
{x∈X, f(x)=y}

R

∑
x′∈X

s(x′)× S( f (x′), f (x)) =
R

∑
{x∈X, f(x)=y}

R

∑
x′∈X

s(x′)× S( f (x′), y) =

R

∑
x′∈X

s(x′)× S( f (x′), y) =
R

∑
{(x′,z)∈X×Y∶ f(x′)=z}

s(x′)× S(z, y) ≤
R

∑
z∈Y

f→(s)(z)× S(z, y) =

S↑( f→(s))(y).
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It follows that f is the morphism in (R,R∗)↑. We show that F and F−1 are mutually
inverse functors. For Q ∶ X ×X → R and for Γ ∶ RX → RX , s ∈ RX , x, x′ ∈ X, according to the
Lemma 3 and the properties of Γ, we have

F⋅F−1(Q)(x, x′) = F(Q↑)(x, x′) = Q↑(ηX(x))(x′) =
R

∑
t∈X

ηX(x)(t)×Q(t, x′) =

Q(x, x′),

F−1⋅F(Γ)(s)(x) = F−1(Γ̂)(s)(x) = Γ̂↑(s)(x) =
R

∑
t∈X

s(t)× Γ̂(t, x) =

R

∑
t∈X

s(t)× Γ(ηX(t))(x) = Γ(
R

⊔
t∈X

s(t)× ηX(t))(x) = Γ(s)(x),

and F, F−1 are mutually inverse functors.
(2) We define the functor H ∶ (R,R∗)↑ → (R,R∗)↓. For an object Γ ∶ RX → RX from

(R,R∗)↑ we set

H(Γ) = Γ̂↓ ∈ (R,R∗)↓,
x, x′ ∈ X, Γ̂(x, x′) = Γ(ηX(x))(x′).

Let ∆ ∶ RY → RY be another object from (R,R∗)↑ and let f ∶ Γ → ∆ be a morphism in
(R,R∗)↑. We set H( f ) = f . According to Proposition 6, we only need to prove that f ∶ Γ̂↓ →
∆̂↓ is the morphism in (R,R∗)↓. Since f is the morphism in (R,R∗)↑, for ηX(x) ∈ RX , v ∈ Y,
we obtain ∆. f→(ηX(x))(v) ≥ f→.Γ(ηX(x))(v) and it follows that

∆̂( f (x), v) = ∆(ηY( f (x)))(v) = ∆( f→(ηX(x)))(v) ≥

f→(Γ(ηX(x)))(v) =
R

∑
u∈X, f(u)=v

Γ(ηX(x))(u) =
R

∑
u, f(u)=v

Γ̂(x, u).

We can prove that f ∶ Γ̂↓ → ∆̂↓ is the morphism in (R,R∗)↓, that is, we prove that
for arbitrary t ∈ RY, x ∈ X, the inequality Γ̂↓. f←(t)(x) ≤∗ f←.∆̂↓(t)(x) holds. Since f← is
the lower approximation defined by the relation ( f ), according to Lemma 3, for arbitrary
t ∈ RY, we have

t =
R
∗

∑
v∈Y

t(v)×∗ η∗Y(v),

f←(t) = f←
⎛
⎝
R
∗

∑
v∈Y

t(v)×∗ η∗Y(v)
⎞
⎠
=
R
∗

∑
v∈Y

t(v)×∗ f←(η∗Y(v)),

Γ̂↓( f←(t)) = Γ̂↓
⎛
⎝
R
∗

∑
v∈Y

t(v)×∗ f←(η∗Y(v))
⎞
⎠
=
R
∗

∑
v∈Y

t(v)×∗ Γ̂↓. f←(η∗Y(v)).

Therefore, according to the Lemma 4, to prove the inequality, instead of a general
function t ∈ RY, we can consider only functions t = η∗Y(v).
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Γ̂↓⋅ f←(η∗Y(v))(x′) =
R
∗

∑
t∈X

f←(η∗Y(v))(t)×∗ ¬(Γ̂(t, x′)) =

R
∗

∑
t∈X

η∗Y(v)( f (t))×∗ ¬(Γ̂(t, x′)) =
R
∗

∑
t∈X, f(t)=v

¬(Γ̂(t, x′)) =

¬
⎛
⎝

R

∑
t∈X, f(t)=v

Γ̂(t, x′)
⎞
⎠
≤∗ ¬(∆̂( f (t), f (x′))) = ¬(∆̂(v, f (x′))) =

R
∗

∑
z∈Y

η∗Y(v)(z)×∗ ¬(∆̂(z, f (x′))) = ∆̂↓(η∗Y(v))( f (x′)) =

f←⋅∆̂↓(η∗Y(v)(x′).

and it follows that Γ̂↓. f←(t)(x) ≤∗ f←.∆̂↓(t)(x). Therefore, H is the functor.
We define the inverse functor H−1. Let f ∶ Γ → ∆ be a morphism in (R,R∗)↓, where

Γ ∶ RX → RX and ∆ ∶ RY → RY. We put

H−1(Γ) = (¬Γ̃)↑ ∈ (R,R∗)↑, H−1( f ) = f ,

where Γ̃(x, x′) = Γ(η∗X(x))(x′) for arbitrary x, x′ ∈ X. We show that f ∶ (¬Γ̃)↑ → (¬∆̃)↑ is the
morphism in (R,R∗)↑. In fact, because f is the morphism in (R,R∗)↓, analogously as in
the proof of the functor G, we can show that

Γ̃(x, x′) ≤∗ ∆̃( f (x), f (x′)).

We need to prove the inequality f→.(¬Γ̃)↑(s)(y) ≤ (∆̃)↑. f→(s)(y), for arbitrary s ∈ RX

and y ∈ Y. Analogously as in the proof of the functor H, according to Lemma 4, it suffices
to prove this inequality only for s = ηX(x), for arbitrary x ∈ X. We have

f→(¬Γ̃)↑(ηX(x))(y) =
R

∑
t∈X, f(t)=y

(¬Γ̃)↑(ηX(x))(t) =

R

∑
t∈X, f(t)=y

R

∑
u∈X

ηX(x)(u)×¬(Γ̃(u, t)) =
R

∑
t∈X, f(t)=y

¬(Γ̃(x, t)) ≤ ∑
t∈X, f(t)=y

¬(∆̃( f (x), y)) =

∑
v∈Y

f→(ηX(x))(v)×¬(∆̃(v, y)) = (¬∆̃)↑( f→(ηX(x))(y).

Therefore, t is the morphism of (R,R∗)↑ and H−1 is the functor. We prove that H and
H−1 are inverse functors. Let Γ ∈ (R,R∗)↓. We need to prove that H.H−1(Γ)(g) = Γ(g), for
arbitrary g ∈ RX . According to Lemma 4, we prove it for g = η∗X(x), for arbitrary x ∈ X. We
have the following.

H⋅H−1(Γ)(η∗X(x))(x′) = H((¬Γ̃)↑)(η∗X(x))(x′) = (¬̂Γ̃↑)↓(η∗X(x))(x′) =
R
∗

∑
t∈X

η∗X(x)(t)×∗ ¬(¬̂Γ̃↑)(t, x′) = ¬(¬̂Γ̃↑)(x, x′) = ¬((¬Γ̃)↑)(ηX(x))(x′) =

¬(
R

∑
t∈X

ηX(x)(t)×¬(Γ̃)(t, x′)) = ¬(¬(Γ̃))(x, x′) = Γ(η∗X(x))(x′).
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Analogously, for ∆ ∈ (R,R∗)↑, we obtain the following.

H−1⋅H(∆)(ηX(x))(x′) = H−1(∆̂↓)(ηX(x))(x′) = ¬(
̃̂↓
∆)(ηX(x))(x′) =

R

∑
t∈X

ηX(x)(t)×¬(
̃̂↓
∆)(t, x′) = ¬(

̃̂↓
∆)(x, x′) = ¬∆̂↓(η∗X(x))(x′) =

¬
⎛
⎝
R
∗

∑
t∈X

η∗X(x)(t)×∗ ¬(∆̂(t, x′))
⎞
⎠
= ∆(ηX(x))(x′).

(3) We define the functor G. Let f ∶ Γ → ∆ be a morphism in (R,R∗)↓, where Γ ∶ RX →
RX and ∆ ∶ RY → RY are objects of category (R,R∗)↓. We set

G( f ) = f , G(Γ) = Γ̃,

Γ̃(x, x′) = Γ(η∗X(x))(x′).

We show that G is a functor, that is, G(Γ)(x, x′) ≤∗ G(∆)( f (x), f (x′)). Since f is the
morphism of (R,R∗)↓, we have Γ. f← ≤∗ f←.∆. Using the inequality f←(η∗Y( f (x)))(x′) ≥∗
η∗X(x)(x′) for an arbitrary x′ ∈ X, and the fact that Γ is the non-decreasing mapping with
respect to both relations ≤ and ≤∗, we obtain

Γ̃(x, x′) =
Γ(η∗X(x))(x′) ≤∗ Γ( f←(η∗Y( f (x)))(x′) ≤∗ f←.∆(η∗Y( f (x))(x′) = ∆(η∗Y( f (x))( f (x′)) =

∆̃( f (x), f (x′)).

Therefore, f is the morphism of Rel↓(R,R∗) and G is the functor.
We define the functor G−1 ∶ Rel↓(R,R∗)→ (R,R∗)↓. Let f ∶ Q → S be a morphism in

Rel↓(R,R∗), where Q ∶ X ×X → R and S ∶ Y ×Y → R be objects of Rel↓(R,R∗). We set

G−1( f ) = f , G−1(Q) = ¬(Q↓).

We show that f is the morphism in (R,R∗)↓, that is, for arbitrary g ∈ RY, ¬Q↓. f←(g) ≤∗
f←.¬S↓(g) holds. According to Lemma 3 and the properties of the objects of (R,R∗)↓,
it suffices to prove it for g = η∗Y(v), for arbitrary v ∈ Y. For arbitrarily x′ ∈ X, from
Q(x, x′) ≤∗ S( f (x), f (x′)), we obtain the following.

¬Q↓⋅ f←(η∗Y(v))(x′) = ¬
⎛
⎝
R
∗

∑
t∈X

f←(η∗Y(v))(t)×∗ ¬(Q(t, x′))
⎞
⎠
=

R

∑
t∈X

¬( f←(η∗Y(v))(t))×Q(t, x′) =
R

∑
t∈X

ηY(v)( f (t))×Q(t, x′) =

R

∑
t∈X, f(t)=v

Q(t, x′).

Since Q(t, x′) ≤∗ S(v, f (x′)) for arbitrary t ∈ X, f (t) = v, we have Q(t, x′) ≥ S(v, f (x′))
and because the operation + is idempotent, we obtain

R

∑
t∈X, f(t)=v

Q(t, x′) ≥
R

∑
t, f(t)=v

S(v, f (x′)) = S(v, f (x′)).
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It follows that

R

∑
t∈X, f(t)=v

Q(t, x′) ≤∗ S(v, f (x′)) =
R

∑
z∈Y

ηY(v)(z)× S(z, f (x′)) =

¬
⎛
⎝
R
∗

∑
z∈Y

η∗Y(v)(z)×∗ ¬(S(z, f (x′))
⎞
⎠
= ¬S↓(η∗Y(v))( f (x′)) = f←(¬S↓(η∗Y(v)))(x′).

Therefore, we have ¬Q↓. f← ≤∗ f←.¬S↓ and it follows that f is the morphism in
(R,R∗)↓ and G−1 is the functor. We prove that G and G−1 are mutually inverse functors.
Let Q ∈ Rel↓(R,R∗). We have, for an arbitrarily x, x′ ∈ X,

G⋅G−1(Q)(x, x′) = G(¬Q↓)(x, x′) = ¬̃Q↓(x, x′) = ¬Q↓(η∗X(x))(x′) =

¬
⎛
⎝
R
∗

∑
u∈X

η∗X(x)(u)×∗ ¬(Q(u, x′))
⎞
⎠
= Q(x, x′).

On the contrary, let Γ ∈ (R,R∗)↓. To prove that for arbitrary s ∈ RX, the identity
G−1.G(Γ)(s) = Γ(s) is valid, according to Lemma 3, we need to prove this identity only for
η∗X(x), for arbitrary x ∈ X. We have the following.

G−1⋅G(Γ)(η∗X(x))(x′) = G−1(Γ̃)(η∗X(x))(x′) = ¬Γ̃↓(η∗X(x))(x′) =

¬
⎛
⎝
R
∗

∑
t∈X

η∗X(x)(t)×∗ ¬Γ̃(t, x′)
⎞
⎠
=
R

∑
t∈X

¬(η∗X(x)(t))× Γ̃(t, x′) =

R

∑
t∈X

ηX(x)(t)× Γ(η∗X(t))(x′) = Γ(η∗X(x))(x′).

Therefore, G−1.G is the identity functor.
(4) We define the functor E ∶ Rel↑(R,R∗)→ Rel↓(R,R∗). Let f ∶ Q → S be a morphism

in Rel↑(R,R∗), where Q ∶ X ×X → R and S ∶ Y ×Y → R be objects of Rel↑(R,R∗). We set

E( f ) = f , E(Q) = ¬Q.

It follows that Q(x, x′) ≤ S( f (x), f (x′)), for arbitrary x, x′ ∈ X, and we obtain ¬Q(x, x′) ≤∗
¬S( f (x), f (x′)). Therefore, f is the morphism of Rel↓(R,R∗) and E is the functor. Now,
let g ∶ Q → S be a morphism in Rel↓(R,R∗). The inverse functor E−1 ∶ Rel↓(R,R∗) →
Rel↑(R,R∗) is defined by

E−1( f ) = f , E−1(Q) = ¬Q.

It is clear that f is the morphism in Rel↑(R,R∗) and E−1 is the functor, which is the
inverse functor to E. Finally, it is easy to see that the diagram commutes.

5. Examples of Applications

In this section, we show two examples of possible applications of fuzzy rough struc-
tures created using the theory of (R,R∗)-fuzzy rough sets. For this purpose, we will use the
(R2,R∗2 )-fuzzy rough set defined for the fuzzy soft set in Example 14 and (R1,R∗1 )-fuzzy
rough sets defined for intuitionistic fuzzy sets in Example 13. In both cases, we show how
these fuzzy rough structures can be used to determine the upper and lower approximations
of a color segment corresponding to a particular color k in a color image. Because we use
the same default conditions in these examples, it allows us to compare how (R2,R∗2 )-fuzzy
sets and (R1,R∗1 )-fuzzy sets solve this problem.

We suppose that a color image consists of pixels of the set X. We also assume that for
each pixel x ∈ X a value S(x) represents the color in a pixel x. The value S(x), a color code,
can be given by numerous color models; we selected the HSV (hue saturation value) color
model, which allows us to fix the hue (such as red or yellow) and, taking all combinations
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of saturation and values, obtain all possible visualizations of the color. In that case, this
value is represented as a vector S(x) = [hx, sx, vx], where hx represents the hue of the color,
sx represents a saturation dimension, and vx represents the dimension of the value that
resembles the mixture of those paints with varying amounts of black or white paint in the
pixel x. Let K be the set of all possible colors.

In the next part, we suppose that L = ([0, 1],⊗,⊕,¬) is the Łukasiewicz algebra with
the biresiduum↔ defined by a↔ b = (a → b)∧ (b → a).

5.1. (R2,R∗2 )-Fuzzy Rough Sets

To illustrate the possible applications of rough (R2,R∗2 )-fuzzy sets from the soft space
(K, X), we present a method for approximations of a colour segment in an image. Unlike
Examples 10 and 11 of [28], for these approximations, we use a different (R2,R∗2 )-relation
T .

Let E = S(X) ⊆ K and consider the (R2,R∗2 )-fuzzy set f ∶ X → RK
2 defined by

x ∈ X, f (x) = (E, fx) ∈ LK, where fx ∈ LK,

k ∈ K, fx(k) ∶= ∑z∈X ρ(x, z).σ(S(z), k)
∑z∈X ρ(x, z) ∈ [0, 1],

k ∈ K, f (x)(k) =
⎧⎪⎪⎨⎪⎪⎩

fx(k), k ∈ E,
0L, k ∈ K ∖ E.

where σ(k, k′) ∈ [0, 1] represents the degree of similarity of two colors in K and the fuzzy
similarity relation ρ ∶ X ×X → [0, 1] expresses the fact that pixels x and z are spatially close
to each other. For example, we can set

(x, y) ∈ X ×X, ρ(x, y) =
⎧⎪⎪⎨⎪⎪⎩

1
d(x,y)ω , d(x, y) ≠ 0,

1, d(x, y) = 0,

where d ∶ X ×X → R+ is the real-valued metric in the set X and ω is a positive real number.
Similarly, the similarity relation σ can be defined by

k = [hk, sk, vk], m = [hm, sm, vm] ∈ K, σ(k, m) ∶= 1− ∣hk − hm∣+ ∣sk − sm∣+ ∣vk − vm∣
3

,

where h, s, v ∈ [0, 1]. In that case, the (R2,R∗2 )-fuzzy set f represents the concept that
describes the segments that correspond to the colors of the set K. This means that the point
x ∈ X corresponds to the color segment of color k ∈ K with the truth value f (x)(k).

The lower and upper approximations of the segment f are defined as the (R2,R∗2 )-
rough set (T ↓( f ),T ↑( f )) of f with respect to the (R2,R∗2 )-relation T ∶ X × X → R2,
defined by

(x, x′) ∈ X ×X, T (x, x′) = (E, ψxx′) ∈ R2,

k ∈ K, ψxx′(k) = σ(S(x), k)↔ σ(S(x′), k) ∈ [0, 1].

According to Example 14, the rough (R2,R∗2 )-fuzzy set (T ↓( f ),T ↑( f )) is defined by

T ↓( f )(x)(k) =
⎧⎪⎪⎨⎪⎪⎩

⋀z∈X ¬ψxz(k)⊕ fz(k), k ∈ E,
0L, k ∈ K ∖ E,

T ↑( f )(x)(k) =
⎧⎪⎪⎨⎪⎪⎩

⋁z∈X ψxz(k)⊗ fz(k), k ∈ E,
0L, k ∈ K ∖ E.
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The upper and lower approximations of the color segment f corresponding to the
color k ∈ K can be approximated by the α-cuts, i.e., by subsets.

T ↓( f )(k)α = {x ∈ X ∶ T ↓( f )(x)(k) ≥ α},

T ↑( f )(k)α = {x ∈ X ∶ T ↑( f )(x)(k) ≥ α},

where α ∈ L. The corresponding visualization of these color segments can be created, for
example, so that the color of the pixels x ∈ T ↑( f )(k)α or x ∈ T ↓( f )(k)α will be S(x) and the
color of the other pixels will be transformed to the color on the black and white scale, that
is, set the saturation to zero.

5.2. (R1,R∗1 )-Fuzzy Rough Sets

We illustrate how the same problem of the color segment approximation can be solved
by rough (R1,R∗1 )-fuzzy sets. To compare the results of Sections 5.1 and 5.2, we use the
(R1,R∗1 )-fuzzy sets that represent the concept that describes a color segment, and we
involve the same function fx ∈ LK and transform it into the (R1,R∗1 )-fuzzy set X → R1. For
this purpose, we use the so-called intuitionistic fuzzy generators defined in [29].

Definition 14 ([29]). A function ϕ ∶ [0, 1] → [0, 1] is called an intuitionistic fuzzy generator if
ϕ(x) ≤ 1− x for all x ∈ [0, 1].

Using the intuitionistic fuzzy generator ϕ, the (R1,R∗1 )-fuzzy set wk,ϕ is defined by

x ∈ X, wk,ϕ(x) = ( fx(k),
1− fx(k)

1+ λ fx(k)) ∈R1, −1 < λ < 0,

which represents the intuitionistic concept describing the segment in the color image
corresponding to the color k ∈ K. As in the previous example, using the definition of the
relation ψxx′ , the approximation of this intuitionistic concept wk,ϕ can be defined as the
rough (R1,R∗1 )-fuzzy set of wk,ϕ with respect to the (R1,R∗1 )-fuzzy relation Fk ∶ X ×X →
R1, such that

(x, x′) ∈ X ×X, Fk(x, x′) = (ψxx′(k), ϕ(ψxx′(k))) ∈ R1,

where we use the same intuitionistic fuzzy generator ϕ. According to Example 13, the
upper and lower approximations of the intuitionistic color segment wk,ϕ corresponding to
color k are defined for x ∈ X by

F↓k (wk,ϕ)(x) =
⎛
⎝⋀y∈Y

ϕ(ψxy(k))⊕wk(y), ⋁
y∈Y

ψxy ⊗ ϕ(wk(y))
⎞
⎠

,

F↑k (wk,ϕ)(x) =
⎛
⎝⋁y∈X

ψxy(k)⊗wk(y), ⋀
y∈Y

ϕ(ψxy(k))⊕ ϕ(wk(y))
⎞
⎠

.

To be able to visualize these upper and lower intuitionistic approximations of wk,ϕ,
we must first transform intuitionistic fuzzy sets into classical fuzzy sets. According to the
procedure presented in [30], we use the transformation of elements (γ, δ) ∈ R1 into the
classical L value of a fuzzy set defined by

(γ, δ) ∈R1 ↦
1
2
(1+ γ − δ) ∈ L.

In that way, from (R1,R∗1 )-fuzzy sets F↑(wk,ϕ) and F↓(wk,ϕ) we obtain standard
L-fuzzy sets Wk

↑(wk,ϕ) and Wk
↓(wk,ϕ), and, analogously to the previous example, these

fuzzy sets can be approximated by α-cuts Wk
↑(wk,ϕ)α and Wk

↓(wk,ϕ)α.
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5.3. Visualization

Rough (R1,R∗1 ) and (R2,R∗2 )-fuzzy sets can be created from arbitrary-dimensional
data; here, we will demonstrate visualization using 2D image data. The color of pixels x ∈
T ↑( f )(k)α or x ∈ T ↓( f )(k)α for (R2,R∗2 )-fuzzy rough sets and Wk

↑(wk,ϕ)α or Wk
↓(wk,ϕ)α for

(R1,R∗1 )- fuzzy rough sets will be S(x) and the color of the other pixels will be transformed
to the color on the black and white scale, that is, the saturation of these pixels will be reduced
to zero; see Figures 1 and 2. The figures also visually nicely confirm the following:

1. ∣T ↓( f )(k)α∣ ≤ ∣T ↑( f )(k)α∣ for (R2,R∗2 )-fuzzy rough sets,
2. ∣Wk

↓(wk,ϕ)α∣ ≤ ∣Wk
↑(wk,ϕ)α∣ for (R1,R∗1 )-fuzzy rough sets,

3. ∣T ↓( f )(k)α∣ ≤ ∣Wk
↓(wk,ϕ)α∣,

4. ∣T ↑( f )(k)α∣ ≤ ∣Wk
↑(wk,ϕ)α∣.

Figure 1. Image “green object”, where we preserve only the color of pixels in a particular α-cut where
we set α = 0.95. From the left, top row: original image where the red cross marks the selected color k.
Middle row: Wk

↓
(wk,ϕ)α and Wk

↑
(wk,ϕ)α of the (R1,R∗1 )-fuzzy rough set. Bottom row: T ↓( f )(k)α

and T ↑( f )(k)α of the (R2,R∗2 )-fuzzy rough set.
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Figure 2. Image “meal”, where we preserve only the color of pixels in a particular α-cut where we
set α = 0.8. From left, top row: original image where the green cross marks the selected color k.
Middle row: Wk

↓
(wk,ϕ)α and Wk

↑
(wk,ϕ)α of the (R1,R∗1 )-fuzzy rough set. Bottom row: T ↓( f )(k)α

and T ↑( f )(k)α of the (R2,R∗2 )-fuzzy rough set.

6. Conclusions

The paper is a continuation of our previous paper [13], where we introduced the
notion of semiring-valued fuzzy sets and investigated the F-transforms of these structures.
In the actual paper, we focus on another construction that is commonly used in the theory
and applications of L-fuzzy sets, namely the issue of rough L-fuzzy sets. The main goal of
this paper was to create a tool that could be used to apply this method universally to a large
part of new fuzzy structures, currently used mainly in applications, such as intuitionistic,
hesitant, neutrosophic, or fuzzy soft sets and their mutual combinations. For the basic
structure of this tool, we used the so-called dual pairs of semirings (R,R∗) and fuzzy
sets with values in these dual pairs of semirings, so-called (R,R∗)-fuzzy sets, which were
presented in modified form in [13]. This structure makes it possible to transform a large part
of new fuzzy structures with values in complete MV-algebras into suitable (R,R∗)-fuzzy
sets, which in turn makes it possible to unify the theory of these new fuzzy structures.

Another possible use of this universal method of (R,R∗)-fuzzy sets offers the possi-
bility of creating new types of fuzzy sets, defined using suitable examples of dual pairs of
semirings. We also gave examples of this procedure, when we mentioned the possibility of
introducing fuzzy sets with values in Abelian l-groups of application of (R,R∗)-fuzzy sets
in many-level fuzzy sets and relations introduced by Šostak [24]. It can be assumed that
further research in this direction will show many other examples of new types of fuzzy sets.

However, it should be noted that the universality of applications of this method for
(R,R∗)-fuzzy sets has also limitations. An example of these limitations is the fact that, for
example, some new fuzzy structures do not have uniformly established terminology, and
use, for example, several types of fuzzy relations or several types of rough fuzzy structures.
In that case, the transformation of these fuzzy structures into (R,R∗)-fuzzy structures can
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reflect only one selected variant of these constructions. If we want to transform another
variant, it would probably require the use of a completely new dual pair of semirings.

Another type of limitation of using the (R,R∗)-fuzzy sets method to transform new
types of fuzzy structures (e.g., intuitionistic, neutrosophic, or fuzzy soft sets) to (R,R∗)-
fuzzy sets is that in all existing transformation examples it was necessary to assume that the
basic value-set structure used in these types of fuzzy structures is the complete MV-algebra.
If we want to reduce this assumption to a weaker assumption, it would be necessary to
modify the definition of the basic algebraic structure, which we use to construct dual pairs
of semirings, that is the AMV-algebra.

The great advantage of the presented method of transformation of various new fuzzy
structures is the fact that instead of specific power set structures of different types of fuzzy
sets and different types of their basic operations we can use one universal type of power
set structure of (R,R∗)-fuzzy sets with one structure of basic operations. This makes it
possible to define for a large part of the new fuzzy structures most of the constructions
(such as various approximations and transformations) on their power set structures in a
uniform way.

Our further research will focus, among other things, on examples of new dual pairs of
semirings, which could become the basis for new types of fuzzy sets which can be used in
applications. At the same time, however, we will deal with the extension of theoretical tools
applicable in the theory of (R,R∗)-fuzzy sets, such as algebraic or topological structures
defined above as (R,R∗)-fuzzy sets.
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