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Abstract: It is well known that the sphere S6(1) admits an almost complex structure J which is nearly
Kähler. If M is a hypersurface of an almost Hermitian manifold with a unit normal vector field N, the
tangent vector field ξ = −JN is said to be characteristic or the Reeb vector field. The Jacobi operator
with respect to ξ is called the structure Jacobi operator, and is denoted by l = R(·, ξ)ξ, where R is the
curvature tensor on M. The study of Riemannian submanifolds in different ambient spaces by means
of their Jacobi operators has been highly active in recent years. In particular, many recent results deal
with questions around the existence of hypersurfaces with a structure Jacobi operator that satisfies
conditions related to their parallelism. In the present paper, we study the parallelism of the structure
Jacobi operator of real hypersurfaces in the nearly Kähler sphere S6(1). More precisely, we prove that
such real hypersurfaces do not exist.

Keywords: real hypersurface; structure Jacobi operator; hopf hypersurface

MSC: 53B25; 53B35

1. Introduction

If an almost Hermitian manifold (M̃, g, ∇̃, J) has a parallel almost complex structure
J, i.e., ∇̃J = 0, then it is a Kähler manifold. If, however, a weaker condition holds, that
is, if the tensor G(X, Y) = (∇̃X J)Y is skew-symmetric, the manifold is nearly Kähler. It
was shown in [1] that nearly Kähler manifolds are locally Riemannian products of six-
dimensional nearly Kähler manifolds, certain homogenous nearly Kähler spaces, and
twistor spaces over quaternionic Kähler manifolds with positive scalar curvature, endowed
with the canonical nearly Kähler metric. It was proved in [2] that the only homogeneous
six-dimensional nearly Kähler manifolds are the following compact 3-symmetric spaces:
the nearly Kähler six-dimensional sphere S6(1), the manifold S3 × S3, the projective space
CP3, and the flag manifold SU(3)/U(1)×U(1), where the last three are not endowed with
their standard metrics.

The Jacobi operator with respect to a tangent vector field X of a Riemannian manifold
M with the curvature tensor R is provided by R(·, X)X, and is inspired in a natural way
by the well-known differential equation of Jacobi fields along geodesics. In particular, if
M is a hypersurface of an almost Hermitian manifold with a unit normal vector field N,
the tangent vector field ξ = −JN is said to be characteristic, or the Reeb Vector field. In
this particular setting, the Jacobi operator with respect to ξ is called the structure Jacobi
operator, and is denoted by l = R(·, ξ)ξ.

The study of Riemannian submanifolds in different ambient spaces by means of their
Jacobi operators has been active in recent years. One of the reasons for this is that the con-
ditions provided in terms of the structure Jacobi operator generate larger families then the
analogue conditions provided in terms of the Riemannian tensor. In particular, many recent
results deal with questions of the existence of hypersurfaces with structure Jacobi operators
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that satisfy conditions related to their parallelism. In [3], the real hypersurfaces of the
complex space form with a Ricci tensor and structure Jacobi operator parallel with respect
to the Reeb vector field were classified, while in [4] it was shown that the hypersurfaces of
the complex space form with a structure Jacobi operator symmetric along the Reeb flow and
commuting with the shape operator is a Hopf hypersurface. In [5], the classification of the
hypersurfaces in complex two-plane Grasmannians with a structure Jacobi operator com-
muting with any other Jacobi operator or with the normal Jacobi operator was provided,
and in [6] it was shown that there are no Hopf real hypersurfaces in complex two-plane
Grasmannians with parallel structure operators. In [7], the class of real hypersurfaces
in non-flat complex space forms with generalized ξ-parallel structure Jacobi operators
was classified. In [8], the non-existence of the particular class of Hopf hypersurfaces in
complex two-plane Grasmannians was provided. The non-existence of real hypersurfaces
in non-flat complex space forms with structure Jacobi operators of the Lie–Codazzi type
was proven in [9]. In [10], the non-existence of real hypersurfaces in non-flat complex
space forms with recurrent structure Jacobi operators was shown. In particular, most of the
known results deal with Kähler manifolds, where the parallelism of the almost complex
structure somewhat simplifies the calculations. Here, we want to initiate a similar line of
research with respect to the hypersurfaces in nearly Kähler manifolds, in particular, the
homogeneous six-dimensional sphere S6(1), in terms of its structure Jacobi operator. We
prove the following non-existence theorem.

Theorem 1. There exist no real hypersurfaces with parallel structure Jacobi operators in S6(1).

We note that the skew symmetry of the tensor G imposes a somewhat different
approach to analizing hypersurfaces in nearly Kähler manifolds compared to the one in
Kähler manifolds, necessitating the construction of a suitable moving frame along the
hypersurface.

2. Preliminaries

We denote by 〈, 〉 and g, respectively, the standard Euclidean metric in the space R7

and the metric on S6(1) induced by 〈, 〉. The corresponding Levi-Civita connections we
denote by D and ∇̄, respectively.

We will briefly recall the construction of the almost complex structure of S6(1). Namely,
one can regard the space R7 as the space of purely imaginary Cayley numbers O and use
the Cayley multiplication to introduce a vector cross product in R7, in the following way

u× v =
1
2
(uv− vu).

This cross product is well defined in the space R7. Moreover, if we denote by e1, . . . , e7
an orthonormal basis of R7 then we have the following multiplication table.

× e1 e2 e3 e4 e5 e6 e7
e1 0 e3 −e2 e5 −e4 −e7 e6
e2 −e3 0 e1 e6 e7 −e4 −e5
e3 e2 −e1 0 e7 −e6 e5 −e4
e4 −e5 −e6 −e7 0 e1 e2 e3
e5 e4 −e7 e6 −e1 0 −e3 e2
e6 e7 e4 −e5 −e2 e3 0 −e1
e7 −e6 e5 e4 −e3 −e2 e1 0

Any orthonormal basis or frame that satisfies the relations of this table is called a G2
basis or a G2 frame. Then, for an arbitrary point p ∈ S6(1) and X ∈ TpS6(1) we define a
(1,1)-tensor field J by

JpX = p× X.
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Then, one can show that J is an almost complex structure which is, moreover, Hermitian
and nearly Kähler.

Let M be a Riemannian submanifold of the nearly Kähler sphere S6(1) Then, the
(2, 1)-tensor field G on S6(1) defined by G(X, Y) = (∇̄X J)Y, where ∇̄ is the Levi–Civita
connection on S6(1), is skew-symmetric and satisfies

G(X, JY) + JG(X, Y) = 0, g(G(X, Y), Z) + g(G(X, Z), Y) = 0.

Moreover, following [11], we have

(∇̄G)(X, Y, Z) = g(X, Z)JY− g(X, Y)JZ− g(JY, Z)X, (1)

for the arbitrary vector fields X, Y, Z tangent to S6(1).
We denote by ∇ and ∇⊥ the Levi–Civita connection of M and the normal connection

induced from ∇̄ in the normal bundle T⊥M of M in S6(1), respectively. Then, the formulas
of Gauss and Weingarten are respectively provided by

∇̄XY = ∇XY + h(X, Y), ∇̄X N = −AN X +∇⊥X N,

where X, Y are tangent, N is a normal vector field on M, and h and AN are the second
fundamental form and the shape operator with respect to the section N, respectively. The
second fundamental form and the shape operator are related by g(h(X, Y), ξ) = g(AX, Y).
In addition, for the tangent vector fields X, Y, Z, and W we have the following Gauss and
Codazzi equations

R(X, Y, Z, W) = g(X, W)g(Y, Z)− g(X, Z)g(Y, W)

+ g(h(X, W), h(Y, Z))− g(h(X, Z), h(Y, W)), (2)

(∇X A)Y = (∇Y A)X, (3)

where we denote by R the Riemannian curvature tensor of M, and consider that (∇X A)Y =
∇X(AY)− A(∇XY).

We denote by N the unit normal vector field of M and by ξ = −JN the corresponding
Reeb vector field. We denote by η(X) = g(X, ξ) a 1-form on M. For a vector field X tangent
to M, we set JX = φ(X) + η(X)N, where φ(X) is the tangential component of JX. It then
follows that φ is a (1, 1) tensor field on M and that (φ, ξ, η, g) defines an almost contact
metric structure on M, that is,

φ2 = −I + η ⊗ ξ, η(ξ) = 1, η ◦ φ = 0, φ(ξ) = 0,

and g(φX, φY) = (X, Y)− η(X)η(Y) for X, Y tangent to M.
Let D = Ker η = {X ∈ TM | η(X) = 0}. Then, D is a four-dimensional smooth

distribution on M, which is J-invariant.
A real hypersurface of an almost Hermitian manifold is Hopf if ξ is principal, that is,

if Aξ = αξ for a certain function α on the submanifold. Recall, see [12], that, for a Hopf
hypersurface in S6(1), the function α is a constant. Namely, from (3), by taking X = ξ, we
obtain that

(ξα)g(ξ, Y) + αg(∇ξ, Y)− g(A∇Yξ, Y) = (Yα)− g(A∇Yξ, ξ).

Hence, Yα = (ξα)g(ξ, Y).Note that, since there are no 4-dimensional almost complex
submanifolds in S6(1), see [13], the distibution D is not integrable and there exist vector
fields X, Y ∈ D such that [X, Y] has a non-vanishing component in direction of ξ. Then
0 = [X, Y]α = (ξα)g([X, Y], ξ) yielding ξα = 0. Consequently, α is a constant.
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The classification of the Hopf hypersurfaces of the sphere S6(1) is well known; see [12].
Such hypersurfaces are either totally geodesic spheres or tubes around almost complex
curves. Hence, every Hopf hypersurface in S6(1) has exactly one, two, or three distinct
principal curvatures at each point. The umbilical varieties are open subsets of geodesic hy-
perspheres with a principal curvature α of multiplicity 5, while the non-umbilical varieties
are open subsets of tubes around almost complex curves. If M is an open part of a tube
around a totally geodesic almost complex curve in S6(1), then M has exactly two distinct
principal curvatures, namely, α of multiplicity 3 and µ of multiplicity 2. Alternatively, if M
is an open part of a tube around an almost complex curve of type (I), (II), or (III), then it has
three distinct principal curvatures, α of multiplicity 3 and µ and λ of multiplicity 1; see [14].

3. The Moving Frame for Hypersurfaces in S6(1)

Here, we present one of the more convenient moving frames to work with and the
relationship between the connection coefficients in it; for details, see [15]. We also refer
readers to [16–18].

For each unit vector field E1 ∈ D, let E2 = JE1, E3 = G(E1, ξ), E4 = JE3. Then, the
set {E1, E2, E3, E4, E5 = ξ} is a local orthonormal frame on M; see [15]. Moreover, the
following holds.

Lemma 1 ([15]). For the previously defined orthonormal frame, the following relations hold:

G(E1, E2) = 0, G(E1, E3) = −ξ, G(E1, E4) = N, G(E1, ξ) = E3,

G(E1, N) = −E4, G(E2, E3) = −N, G(E2, E4) = ξ, G(E2, ξ) = −E4,

G(E2, N) = −E3, G(E3, E4) = 0, G(E3, ξ) = −E1, G(E3, N) = E2,

G(E4, ξ) = E2, G(E4, N) = E1. (4)

Note that such a moving frame is not uniquely determined and depends on the choice
of the vector field E1 ∈ D.

For one such frame, let us denote by

gk
ij = 〈DEi Ej, Ek〉, hij = 〈DEi Ej, N〉, 1 ≤ i, j, k ≤ 5. (5)

The connection D is metric and the second fundamental formsymmetric, meaning that
we have gk

ij = −gj
ik and hij = hji.

Lemma 2. For the previously defined coefficients, we have

g3
12 = −g4

11, g4
12 = g3

11, h11 = −g5
12, h12 = g5

11,

g3
22 = −g4

21, g4
22 = g3

21, g5
22 = −g5

11, h22 = g5
21,

g3
32 = −g4

31, g4
32 = g3

31, h13 = 1− g5
32, h23 = g5

31,

g3
42 = −g4

41, g4
42 = g3

41, h14 = −g5
42, h24 = −1 + g5

41,

g3
52 = −1− g4

51, g4
52 = g3

51, h15 = −g5
52, h25 = g5

51,

g5
32 = 2 + g5

14, g5
42 = −g5

13, g5
31 = −g5

24, g5
41 = 2 + g5

23,

h33 = −g5
43, h34 = g5

33, g5
44 = −g5

33, h44 = g5
43,

h35 = −g5
54, h45 = g5

53.

Proof. The above Lemma follows from (4) and the relation

∇̄X(JY) = G(X, Y) + J(∇̄XY)

by taking X ∈ {E1, . . . , ξ} and Y ∈ {E1, . . . , ξ, N}.
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For X = E1, Y = E1, we obtain

g3
12 = −g4

11, g4
12 = g3

11, h11 = −g5
12, h12 = g5

11.

For X = E2, Y = E1, we have

g3
22 = −g4

21, g4
22 = g3

21, g5
22 = −h12 = −g5

11, h22 = g5
21.

The other relations follow in a similar way.

Lemma 3. The differentiable functions (5) satisfy

g5
52 = g2

11 + g4
13, g5

51 = −g2
21 − g4

23, g5
54 = g2

31 + g4
33,

g5
53 = −g2

41 − g4
43, h55 = −g2

51 − g4
53. (6)

Proof. By taking X = E1, Y = E1, Z = E3 in (1), we obtain that g5
52 = g2

11 + g4
13. Similarly,

by taking X = E2, Y = E1, Z = E3, we obtain g5
51 = −g2

21 − g4
23 and for X = E3, Y = E1,

Z = E3, we obtain g5
54 = g2

31 + g4
33. Finally, for X = E4, Y = E1, Z = E3 and X = ξ, Y = E1,

Z = E3, respectively, we have g5
53 = −g2

41 − g4
43 and h55 = −g2

51 − g4
53 which completes the

proof.

If the hypersurface M is not Hopf, then the vector field Aξ has a non-vanishing
projection A(ξ) − g(Aξ, ξ)ξ on D and therefore, there is a unique smooth vector field
E1 ∈ D such that A(ξ)− g(Aξ, ξ)ξ = βE1, β > 0. If M is a Hopf hypersurface then we have
that Aξ = αξ. Thus, for any smooth vector field E1 ∈ D we may write Aξ = 0 · E1 + αξ.
Hence, regardless of the case there exists a smooth vector field E1 ∈ D and differentiable
functions α and β such that

Aξ = βE1 + αξ. (7)

Because the components of Aξ in the direction of E2, E3, E4vanish, we have

g4
13 = −g2

11 − β, g4
23 = −g2

21, g4
33 = −g2

31,

g4
43 = −g2

41, g4
53 = −g2

51 − α.

Now, we can use the Gauss equations to obtain further relations between the coeffi-
cients. In the following Lemma, we list those that we directly use in further calculations.

Lemma 4. For the coefficients (5), the following relations hold:

ξ(g5
11) = 1 + (g5

11)
2 + g5

12g5
21 − g5

13g5
24 + g5

12g2
51 + g5

21g2
51 + g5

13g3
51 − g5

24g3
51

+ 2g4
51 + g5

23g4
51 + g5

14(2 + g5
23 + g4

51)− g5
12α + g2

11β− β2,

E2(g5
13) = −g5

11g3
21 + g5

12g4
21 + g2

21g5
23 + g3

21g5
33 − g5

12g2
41 − g5

21g2
41 − g5

13g3
41

+ g5
24g3

41 − 2g4
41 − g5

23g4
41 − g5

14(g2
21 + g4

41) + g4
21g5

43 + g5
13β + g5

24β + E4(g5
11),

ξ(g5
13) = g5

13g5
33 + g5

14g5
43 − g5

14g2
51 + g5

23g2
51 + g5

11(g5
13 − g3

51)− α + g5
33g3

51

+ g5
43g4

51 + g5
12(1 + g5

23 + g4
51)− 2g5

14α + g4
11β,

ξ(g5
14) = −g5

14g5
33 + g5

13g5
34 + g5

13g2
51 + g5

24g2
51 + g5

12(g5
24 − g3

51) + g5
34g3

51

+ g5
11(g5

14 − g4
51)− g5

33g4
51 + 2g5

13α− g3
11β,

ξ(g5
21) = 2g3

51 + 2g5
23g3

51 + g5
24(3 + 2g4

51) + g5
11(−2g2

51 + α) + g2
21β,

E1(g5
23) = −g2

11g5
13 + g5

14g2
21 + g5

11g3
21 − g3

11g5
21 − g2

21g5
23 − g2

11g5
24 − g3

21g5
33

− g4
11(g5

11 + g5
33) + g3

11g5
43 − g4

21g5
43 − g4

21g5
12 − 2g5

24β + E2(g5
13),

E2(g5
23) = −g5

13g2
21 − g5

11g4
21 − g3

21g5
21 − g2

21g5
24 − g4

21g5
33 + 2g5

11g2
41 − 2g3

41
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− 2g5
23g3

41 − 2g5
24g4

41 + g213g435 + E4(g215),

ξ(g5
23) = −g5

33 + g5
23g5

33 + g5
24g5

43 + g5
43g3

51 − g5
24g2

51 − g5
21g3

51 − g5
33g4

51

+ g5
13(g5

21 − g2
51)− g5

11(1 + g5
23 + g4

51)− 2g5
24α + g4

21β,

E1(g5
24) = −g2

11g5
14 − g5

13g2
21 + g5

12g3
21 + g5

11g4
21 − g4

11g5
21 + g2

11g5
23 − g2

21g5
24

+ g3
11(g5

11 − g5
33) + g4

21g5
33 − g4

11g5
34 − g3

21g5
34 + β + 2g5

23β + E2(g5
14),

E2(g5
24) = −g5

14g2
21 + g5

11g3
21 − g4

21g5
21 + g2

21g5
23 − 2g5

11g2
31 + 2g3

31 + 2g5
23g3

31

+ 2g5
24g4

31 − g3
21g5

33 − g4
21g5

34 − E3(g5
21),

E4(g5
24) = −g5

13g2
31 − g5

24g2
31 − g5

21g3
31 − g5

11g4
31 − g4

31g5
33 − g5

14g2
41 + g5

23g2
41

+ g5
11g3

41 − g5
33g3

41 − g5
21g4

41 − g5
34g4

41 + g3
31g5

43 − E3(g5
23),

ξ(g5
24) = −g5

24g5
33 − g5

34 + g5
23g5

34 + g5
14(g5

21 − g2
51) + g5

23g2
51 − g5

33g3
51 + α

+ g5
11(−g5

24 + g3
51)− g5

21g4
51 − g5

34g4
51 + 2g5

23α− g3
21β,

E2(g5
33) = 2g4

21 + g5
14g4

21 + g4
21g5

23 + g3
21g5

24 + g5
24g2

31 + g5
21g3

31 + g5
11g4

31

+ g5
13(−g3

21 + g2
31) + g4

31g5
33 − g2

21g5
34 − g2

21g5
43 − g3

31g5
43 + E3(g5

23),

ξ(g5
33) = 3− g5

13g5
24 + g5

34g5
43 − g5

34g2
51 − g5

43g2
51 − g5

13g3
51 + g5

24g3
51 + (g5

33)
2

+ 2g4
51 + g5

23(3 + g4
51) + g5

14(1 + g5
23 + g4

51)− 2g5
34α− g5

43α + g4
31β,

E1(g5
34) = −2g3

11(1 + g5
14) + 2g4

11g5
24 − g5

13g2
31 − g5

24g2
31 + g5

12g3
31 + g5

11g4
31

+ 2g2
11g5

33 + g4
31g5

33 − g3
31g5

34 + 3g5
33β + E3(g5

14),

E2(g5
34) = −2(1 + g5

14)g3
21 + 2g4

21g5
24 + g5

14g2
31 − g5

23g2
31 − g5

11g3
31 + g5

21g4
31

+ 2g2
21g5

33 + g3
31g5

33 + g4
31g5

34 + E3(g5
24),

E2(g5
43) = −2g5

13g4
21 − 2g3

21(1 + g5
23) + 2g2

21g5
33 + g5

13g2
41 + g5

24g2
41 + g5

21g3
41

+ g5
11g4

41 + g5
33g4

41 − g3
41g5

43 + E4(g5
23).

Proof. By taking X = E1, Y = ξ, Z = E1, W = ξ into the Gauss Equation (2), we obtain that

ξ(g5
11) = 1 + (g5

11)
2 + g5

12g5
21 − g5

13g5
24 + g5

12g2
51 + g5

21g2
51 + g5

13g3
51 − g5

24g3
51

+ 2g4
51 + g5

23g4
51 + g5

14(2 + g5
23 + g4

51)− g5
12α + g2

11β− β2.

Similarly, the second and third equations are obtained by taking X = E1, Y = E4,
Z = E1, W = ξ and X = E1, Y = ξ, Z = E3, W = ξ into (2). The other equalities follow in a
similar way.

Now, by taking the results of Lemma 4 and calculating the Gauss equation for different
choices of the vector fields appearing in it, we can obtain the covariant derivatives of
coefficients in various directions. Here, we omit most of the obtained expressions due
to the length of the list. However, we note that by taking (X, Y, Z, W) = (E2, E3, E3, E4),
(X, Y, Z, W) = (E2, E4, E3, E4), and (X, Y, Z, W) = (E3, E4, E3, E4) in (2), we obtain the last
three equations, respectively, in the following lemma as a result.

Lemma 5. The functions (5), α, and β satisfy

E2(α) = (−3g5
21 + g2

51 + α)β,

E3(α) = (3g5
24 + g3

51)β,

E4(α) = −(5 + 3g5
23 − g4

51)β,

E1(β) = g5
13 − 2g5

11g2
51 + 2g3

51 + 2g5
14g3

51 − 2g5
13g4

51 + g5
11α− ξ(g5

12),

E2(β) = 2(g5
11)

2 + g5
14 + 2g5

12g5
21 + g5

23 + 2g5
14g5

23 − 2g5
13g5

24 − g5
12α + g5

21α + g2
11β,

E3(β) = −g5
11(3 + 2g5

14)− 2g5
12g5

24 + g5
33 + 2g5

14g5
33 − 2g5

13g5
34 − (g5

13 + g5
24)α + g3

11β,
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E4(β) = 2g5
11g5

13 + g5
12(3 + 2g5

23) + 2g5
13g5

33 + g5
43 + 2g5

14g5
43 − g5

14α + g5
23α + 2α + g4

11β,

0 = (3 + 2g5
14)g5

21 − 2(g5
11 + g5

33)g5
24 + g5

34(1 + 2g5
23) + (g5

23 − g5
14 − 2)α + (g2

31 − g3
21)β, (8)

0 = g5
11(3 + 2g5

23)− g5
33 − 2g5

23g5
33 − 2g5

24g5
43 + g5

24α + g5
13(−2g5

21 + α) + (g2
41 − g4

21)β, (9)

0 = 2g5
13g5

24 − 4− 3g5
23 − g5

14(3 + 2g235)− 2(g5
33)

2 − 2g5
34g435 + g5

34

− g5
43α + (g3

41 − g4
31)β = 0. (10)

4. Proof of the Main Theorem

Let nk
ij = g(∇Ei (lEj)− l(∇Ei Ej), Ek). The condition of the parallel structure Jacobi

operator is equivalent to nk
ij = 0, 1 ≤ i, j, k ≤ 5.

From n5
5i = 0, 1 ≤ i ≤ 4, using Lemma 5, we have, respectively,

g5
11αβ = 0, (1 + g5

21α)β = 0, g5
24αβ = 0, (1 + g5

23)αβ = 0. (11)

We now treat the cases of Hopf and non-Hopf hypersurfaces separately.
Case 1: Suppose that M is a Hopf hypersurface, i.e., β = 0, ξ is an eigenvector field

for the shape operator A, Aξ = αξ. Then, see Preliminaries, α is a constant.
We have from Lemma 5 and Ei(β) = 0, i = 2, 3, 4 that

g5
14 + g5

23 + 2((g5
11)

2 + g5
12g5

21 + g5
14g5

23 − g5
13g5

24) + (g5
21 − g5

12)α = 0,

g5
33 − g5

11(3 + 2g5
14) + 2(g5

14g5
33 − g5

12g5
24 − g5

13g5
34)− (g5

13 + g5
24)α = 0,

g5
12(3 + 2g5

23) + 2g5
13(g5

11 + g5
33) + g5

43 + 2g5
14g5

43 + (2− g5
14 + g5

23)α = 0. (12)

Recall that the principal curvatures are continuous and smooth functions, and that,
around any point in M, there is a local orthonormal frame, consisting of principal directions,
diagonalizing the shape operator. Note that in this case we have the freedom to choose
the vector field E1 ∈ D. Therefore, let us take E1 to be an eigenvector field for the shape
operator A, corresponding to the eigenvalue that we may specify a few steps later. As
AE1 = −g5

12E1 + g5
11E2 − (1 + g5

14)E3 + g5
13E4, we have

g5
11 = 0, g5

14 = −1, g5
13 = 0,

thus, ξ(g5
14) = 0, while from Lemma 4 we have

g5
33 + g5

24g2
51 + g5

12(g5
24 − g3

51) + g5
34g3

51 − g5
33g4

51 = 0. (13)

From n4
15 = 0, we have

g5
23 + 2(g5

33)
2 + 2g5

34g5
43 + g5

12α + g5
12g5

23α− g5
34α = 0,

thus, if we add this up with (10), we obtain

−1 + g5
12(1 + g5

23)α− g5
43α = 0,

therefore, α 6= 0. From
0 = n3

15 = −(g5
12g5

24 + g5
33)α,

we obtain g5
33 = −g5

12g5
24, thus, the second equation of (12) becomes −g5

24(g5
12 + α) = 0.

As α 6= 0, the Hopf hypersurface M is not totally geodesic, and is therefore part of
the tube around an almost complex surface. Therefore, there exists an eigenvalue for the
shape operator A different from α. We may assume that the vector field E1 is such that
its corresponding eigenvalue −g5

12 6= α. Straightforwardly, it follows that g5
24 = 0 and
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g5
33 = 0. Then, from Lemma 4, E2(g5

33) = 0, ξ(g5
33) = 0 and E4(g5

24) = 0. Thus, we obtain,
respectively,

E3(g5
23) = −g4

21(1 + g5
23)− g5

21g3
31 + g2

21g5
34 + g2

21g5
43 + g3

31g5
43,

2 + g4
51 + g5

23(2 + g4
51) + g5

34(g5
43 − g2

51 − 2α)− g5
43(g2

51 + α) = 0,

g4
21 + g4

21g5
23 + g2

41 + g5
23g2

41 − (g5
21 + g5

34)g4
41 − g2

21(g5
34 + g5

43) = 0. (14)

Now, Equation (8) and the third equation of (12)reduce to g5
21 = −(1 + 2g5

23)g5
34 +

α− g5
23α and g5

43 = g5
12(3 + 2g5

23) + (3 + g5
23)α. By subtracting (10) from the first equation

of (12), we obtain 4(g5
12 + α)(g5

34 + α) = 0; furthermore, g5
34 = −α. Then, Lemma 4 yields

0 = E1(g5
34) = g3

31(g5
12 + α),

0 = E2(g5
34) = −(1 + g5

23)g2
31 + g4

31(g5
21 − α), (15)

and g3
31=0. Therefore, (13) becomes −g3

51(g5
12 + α) = 0, so g3

51 = 0. From (8) and (10) we
obtain, respectively, g5

21 − (2 + g5
23)α = 0 and −1− g5

23 + g5
43α− α2 = 0; thus,

g5
21 − α = (1 + g5

23)α = (g5
43 − α)α2. (16)

From the previous, we have

AE1 = −g5
12E1, AE2 = g5

21E2 + (1 + g5
23)E4, AE3 = αE3,

AE4 = (1 + g5
23)E2 + g5

43E4, Aξ = αξ. (17)

If we assume that g5
43 = α, from (16) we have 1+ g5

23 = 0 and g5
21 = α, and because (17),

we can find that E2, E3, E4 and ξ are eigenvectors with eigenvalue α and that E1 is an
eigenvector with eigenvalue −g5

12 6= α, which is a contradiction.
Thus, g5

43 6= α. From (16), we have g5
23 = (g5

43 − α)α− 1 and g5
21 = (g5

43 − α)α2 + α.
Now, the second and third equations of (14) and (15) become, respectively,

(g5
43 − α)(−g2

51 + g4
51α) = 0,

(g5
43 − α)(g2

21 − α(g4
21 + g2

41 − g4
41α)) = 0,

(g5
43 − α)α(−g2

31 + g4
31α) = 0,

thus, g2
51 = g4

51α, g2
21 = α(g4

21 + g2
41 − g4

41α) and g2
31 = g4

31α. From

0 = E2(g5
23 − (g5

43 − α)α + 1) = (g5
43 − α)(g3

21 − g3
41α)(1 + α2),

using Lemma 4 we can obtain g3
21 = g3

41α. Now, from

0 = n4
51 = α(g5

43 − α)(−1 + g5
12α),

we have g5
12α = 1. Finally, by putting this into

0 = n4
15 = −1− g5

12α3 + g5
43α(−1 + g5

12α) = −1− α2,

we obtain a contradiction.
Case 2: We now assume that M is not a Hopf hypersurface, i.e., that β 6= 0. Then, the

second equation of (11) implies α 6= 0; thus, from (11) we obtain

g5
11 = 0, g5

21α = −1, g5
24 = 0, g5

23 = −1. (18)

Further, from Lemma 4, we have
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Lemma 6.

0 =ξ(g5
11) = 1 + g5

21g2
51 + g5

13g3
51 + g4

51 + g5
14(1 + g4

51) + (g2
11 − β)β

+ g5
12(g5

21 + g2
51 − α), (19)

0 =E1(g5
24) = −g2

11(1 + g5
14) + (g5

12 + g5
21)g2

31 + g5
13g3

31 + g4
31 + g5

14g4
31

− g3
11g5

33 − g4
11(g5

21 + g5
34) + (2 + g5

14)β,

0 =E4(g5
24) = −g5

13g2
31 − (1 + g5

14)g2
41 − g5

33(g4
31 + g3

41)− g5
34g4

41 + g3
31g5

43

− g5
21(g3

31 + g4
41),

0 =ξ(g5
24) = −2g5

34 + g5
14(g5

21 − g2
51)− g2

51 − g5
33g3

51 − (g5
21 + g5

34)g4
51

− g3
21β− α, (20)

0 =E1(g5
23) = −g4

11g5
33 − (g5

12 + g5
21)g2

41 − (1 + g5
14)g4

41 + g3
11(−g5

21 + g5
43)

− g5
13(g2

11 + g3
41 − β),

0 =ξ(g5
23) = g5

13(g5
21 − g2

51)− g5
21g3

51 + g5
43g3

51 − g5
33(2 + g4

51) + g4
21β.

Then, from E2(g5
24) = 0 and E2(g5

23) = 0, we have

E3(g5
21) = −(1 + g5

14)g2
21 − g3

21g5
33 − g4

21(g5
21 + g5

34),

E4(g5
21) = g5

13g2
21 + g4

21g5
33 + g3

21(g5
21 − g5

43). (21)

Now, by using Lemmas 4 and 5 and (21), from Ei(g5
21α) = 0, i = 2, 3, 4, we obtain

E2(g5
21) = −(g5

21)
2(3g5

21 − g2
51 − α)β,

g5
21g3

51β− ((1 + g5
14)g2

21 + g3
21g5

33 + g4
21(g5

21 + g5
34))α = 0,

g5
13g2

21α + g4
21g5

33α + g3
21(g5

21 − g5
43)α + g5

21(−2 + g4
51)β = 0. (22)

Further, from 0 = n5
11 = −g5

13α and 0 = n5
33 = g5

33, we have g5
13 = 0 and g5

33 = 0;
hence, the following holds.

Lemma 7.

0 = E2(g5
13) = −(1 + g5

14)g2
21 + g3

21g5
33 + g5

12(g4
21 − g2

41)− g5
21g2

41 − (1 + g5
14)g4

41 + g4
21g5

43,

0 = ξ(g5
13) = −g2

51 + g5
33g3

51 + (g5
12 + g5

43)g4
51 − α + g4

11β + g5
14(g5

43 − g2
51 − 2α), (23)

0 = E2(g5
33) = g4

21 + g5
14g4

21 + g5
21g3

31 − g2
21g5

34 − (g2
21 + g3

31)g5
43,

0 = ξ(g5
33) = g4

51(1 + g5
14) + g5

34(g5
43 − g2

51 − 2α)− g5
43(g2

51 + α) + g4
31β. (24)

Lemma 8. The coefficients in (5) satisfy

g5
43 − g5

34(1 + (g5
43)

2)− g2
51 − g5

21(3 + g5
14 + g4

51)− g145(g2
51 + g5

43g4
51)

+α + (g5
34 + g5

43)(−g4
51 + g5

43(g2
51 + α))− g2

31β− g4
31g5

43β = 0, (25)

1 + g5
14 + g5

43(g5
21 + g5

34) = 0,

g4
41(2g2

51 − 2(g5
12 + g5

43)g4
51 + α + g5

14(−2g5
43 + 2g2

51 + 3α)− 2g4
11β) = 0,

−(1 + g5
14)g4

41α = 0,

−g3
11 + (g5

21 + g5
34)g4

41 + (g2
21 − g3

31)g5
43 = 0,

g5
14 + g5

34α = 0,

−g4
11(1 + g5

14) + (g5
34 + g5

43)(g2
11 + β) = 0,

g5
14(1 + g5

43α) = 0,
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(1 + g5
14)(g2

11α− g4
11) = 0,

g2
21(g5

34 + g5
43) = 0,

(1 + g5
14)(1 + g5

21g5
43)α = 0,

−(g5
21 + g5

34)g4
41α = 0.

Proof. From (9), we have (−g4
21 + g2

41)β = 0, and therefore, g2
41 = g4

21.
Now, by taking n5

43 = 0, we obtain the first relation of the Lemma.
Further, it follows that (25)+ g5

43(24)+ (8)− (20) = 0, and we have g5
43− (1+ g5

14)α−
g5

34g5
43α = 0. If we multiply this by g5

21 and use g5
21α = −1, we obtain the second relation of

the Lemma.
Now, the sum of the third relation of Lemma 6 and the third relation of Lemma 7 and

the first relation of Lemma 7, respectively, reduce to

− (g5
21 + g5

34)g4
41 − g2

21(g5
34 + g5

43) = 0,

g5
43(g5

21 + g5
34)g2

21 + g5
43(g5

21 + g5
34)g4

41 + g4
21(−g5

21 + g5
43) = 0. (26)

If we multiply the first relation of (26) by g435 and add it to the second, we obtain

(g5
21 − g5

43)(−g4
21 + g2

21g5
43) = 0.

If we assume that g5
21 = g5

43, from the last relation of Lemma 6 we have g4
21 = 0. On

the other hand, if we assume that g4
21 = g2

21g5
43, first, by using the second relation of the

Lemma we obtain g5
21g3

51β = 0 from the first equation of (22), thus, g3
51 = 0. Then, from the

last equation of Lemma 6, we have g2
21g5

43β = 0; thus, 0 = g2
21g5

43 = g4
21. In both cases, we

have g4
21 = 0.

The third relation of the Lemma now follows directly from n2
41 = 0.

The fourth relation is obtained as the sum of the third and the product of (23) by 2g4
41.

Note that the second relation of (26) has now become

(g5
21 + g5

34)(g2
21 + g4

41)g5
43 = 0.

From the forth relation, using the second relation of the Lemma we have 0 = −(1 +
g5

14)g4
41 = (g5

21 + g5
34)g5

43g4
41; thus, from the second relation of (26), we obtain 0 = g5

43(g5
21 +

g5
34)g2

21 = (1 + g5
14)g2

21. Now, the first relation of (22) becomes g5
21g3

51β = 0, therefore, it
holds that g3

51 = 0.
Using the second relation of the Lemma along with β 6= 0, from ξ(1 + g5

14 + g5
43(g5

21 +
g5

34)) = 0 we can obtain the fifth equation.
The sixth equation follows from n3

25 − (24) + g5
21(23) = 0 by taking g5

21α = −1.
Because n4

13− (β+ g2
11)(2 · (24)+ (10))− g4

11(2 · (20)− (8)) = 0, we obtain the seventh
equation.

The eighth equation is deduced from n4
15 − g5

14((24) + (10)) + g5
12(20) = 0, and the

ninth then follows from g5
21(n

1
12 + g2

11(19)− g4
11(2 · (20)− (8)))− g2

11(n
1
25 + (20)− (8)) = 0.

From n3
24 − g2

21(2 · (24) + (10)) = 0,n1
25 + (20)− (8)− g5

21(n
1
45 − g5

43((20)− (8))) = 0
and n2

43 + g4
41((19) + (24)) = 0, respectively, we obtain g2

21(g5
34 + g5

43)α = 0, and the tenth,
eleventh, and twelfth relations are obtained.

Now, we consider the ninth relation of Lemma 8.
Case 2.1: We first assume that g5

14 = −1; then, from the sixth relation of Lemma 8 we
have g5

34 = −g5
21 and from the eight we have g5

43 = g5
21.

From Lemma 4 and 0 = ξ(g5
14) = −g3

31β, we obtain g3
31 = 0. From 2 · (20)− (8) = 0

and the second relation of (22) we have, respectively,

−(g3
21 + g2

31)β = 0, g5
21(−2 + g4

51)β = 0,
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thus, g2
31 = −g3

21 and g4
51 = 2. The fifth relation of Lemma 8 then yields g5

21(g2
21 − g3

31) = 0,
thus, g3

31 = g2
21. As g5

34 + g5
21 = 0, from E2(g5

34 + g5
21) = 0 and using Lemma 4, we obtain

(g5
21)

2(−3g5
21 + g2

51 + α)β = 0,

thus, we have g2
51 = 3g5

21 − α. If we multiply (24) by two and add it to (10), we have
(g4

31 + g3
41)β = 0, thus, g3

41 = −g4
31. Finally, if we add 2g4

31β to (10), we obtain 2g5
21(g5

21 −
α) = 0; thus, g5

21 = α. Now, from (18), we have −1 = g5
21α = α2, which is a contradiction.

Therefore, g5
14 6= −1, g5

34 6= −g5
21, and g5

43 6= −g5
34.

Case 2.2: From the tenth relation of Lemma 8 we have g2
21 = 0, while the twelfth yields

g4
41 = 0 and the eleventh g5

43 = α.
From the third relation of Lemma 6 and the fifth relation of Lemma 8 we have,

respectively, g3
31(−g5

21 + α) = 0 and −g3
11 − g3

31α = 0. If g5
21 = α, we have a contradiction;

thus, g3
31 = 0 and g3

11 = 0. Furthermore, from the eighth relation of Lemma 8, we have
g5

14(1 + α2) = 0; thus, g5
14 = 0 and the second yields 1 + (g5

21 + g5
34)α = 0, meaning that

g5
34 = 0. Now, from the ninth and seventh equations of Lemma 8 we respectively obtain

g4
11 = g2

11α and αβ = 0, which is a contradiction.
This completes the proof.
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