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Abstract: In this paper we continued our research of the uniform electron gas in a warm dense
matter regime, focusing on the momentum distribution functions and pair correlation functions. We
use the single–momentum path integral Monte Carlo method, based on the Wigner formulation of
quantum statistics to calculate both momentum- and coordinate-depending distributions and average
values of quantum operators for many-fermion Coulomb systems. We discovered that the single-
particle momentum distribution function deviates from the ideal Fermi distribution and forms the
so-called “quantum tails” at high momenta, if non-ideality is strong enough in both degenerate and
non-degenerate cases. This effect is always followed by the appearance of the short-range order on
pair correlation functions and can be explained by the tunneling through the effective potential wells
surrounding the electrons. Furthermore, we calculated the average kinetic and potential energies in
the wide range of states, expanding our previous results significantly.

Keywords: uniform electron gas; warm dense matter; quantum Monte Carlo; path integrals
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1. Introduction

Over the past decade, the interest in warm dense matter (WDM) has been steadily
growing. A WDM regime can be characterized by high values of density and temperature,
exceeding by several orders of magnitude those in solids, so WDM is usually non-ideal
and degenerate. The study of WDM is required in many astrophysical applications, such as
planet interiors [1–3], brown and white dwarfs [4,5], and compact stars [6,7]. Furthermore,
WDM can be realized in experiments on inertial confinement fusion [8,9] and interaction of
intense laser beams with dense plasma [10,11].

To understand this exotic state of matter, the study of its structure and thermodynamic
properties is required. One of the most important structural quantities is a pair correlation
function (PCF), characterizing the average spatial distribution of particles [12]. The analysis
of PCFs gives information about the ordering of particles and hence allows to understand
the state of the system: gas-like, liquid-like, or crystalline. Besides that, PCFs can be
used for the calculation of average potential energy, which is an important quantity in
thermodynamics. Another important thermodynamic quantity is a momentum distribution
function (MDF). Characterizing the probability density to have certain momenta values for
the particles, an MDF is essential in calculations of many other thermodynamic quantities
such as internal energy, scattering parameters, the rate constants of chemical and nuclear
reactions, and their thresholds [13–16].

Due to a strong non-ideality and degeneracy, studying WDM is very challenging. The
most powerful and developed analytical methods are usually based on the perturbative
expansions or other asymptotic approaches. In this way, the perturbative approximations
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of the MDFs for a Coulomb system leads to a “quantum tail” exceeding the Maxwell
distribution in the weakly non-ideal and non-degenerate case [17–19]. However, these
analytical methods are not applicable if any appropriate small parameter does not exist,
and exactly this situation is common in the case of WDM. Therefore, numerical simulation
is the most promising instrument in the studies of WDM, such as quantum Monte Carlo
methods for relatively simple systems (particles in external field [20,21], hydrogen and
electron-hole plasma [22–25], etc.) and the density functional theory (DFT)-based methods
for more complex and realistic materials.

Being the most powerful and universal numerical tools for studying WDM, DFT-based
methods, however, require accurate knowledge of the exchange–correlation (xc) functional,
characterizing the exchange and correlation interactions between electrons. To construct
such an xc-functional, one has to study a many-electron subsystem in thermodynamic
equilibrium and calculate its xc-energy in a wide range of WDM conditions [26]. One of
the most fruitful and popular models of the electron subsystem is a uniform electron gas
(UEG), which has to be considered under WDM conditions for DFT applications [27,28].
Moreover, the UEG is a well-known quantum analog of a one-component plasma [29]
and a simple model of alkali metals [30], so the study of UEG allows one to understand
general features of the plasmas in the WDM regime. The UEG consists of electrons on
a neutralizing rigid background with a uniformly distributed density of the electrical
charges. The thermodynamic state of an unpolarized UEG can be described with two
dimensionless parameters — the Brueckner parameter rs = (4πna3

0/3)−1/3 and the reduced
temperature θ = kT/EF, where EF is the Fermi energy, n is the electron density, a0 is the
Bohr radius. Furthermore, the coupling strength Γ = (e2)/(rskT) and the degeneracy

parameter χ = nλ3, where λ =
√

2πh̄2/(kT) is the thermal wavelength, are often used.
PCFs and MDFs in a weakly non-ideal case have been studied with standard pertur-

bative methods [31,32]. In particular, first-order approximations leads to the “quantum
tail” exceeding the Maxwell distribution in a weakly non-ideal and non-degenerate case.
However, the UEG in the WDM regime cannot be studied with such approaches and
requires ab initio numerical simulations. Most of the quantum Monte Carlo methods uses
the coordinate representation of the partition function and do not allow to calculate the
MDFs. The recent results for the MDFs of the UEG have been obtained by using the config-
uration path integral Monte Carlo (CPIMC) method [33] in the representation of occupation
numbers. However, only the states with weak non-ideality have been considered (rs . 2,
θ & 0.0625), because of a poor convergence at Γ & 1.

To overcome these difficulties, we have developed a single-momentum path integral
Monte Carlo (SMPIMC) method, based on the path integral representation of the Wigner
formulation of quantum mechanics. Dealing with the phase space allows one to calculate
MDFs, PCFs, and other thermodynamic quantities directly from their definitions. The
method has already been applied to many quantum systems: a particle in external potential
fields [21], dense hydrogen plasma, and electron–hole plasma [22,25]. In particular, we have
shown that the MDFs in plasma differs from the Fermi distribution and have the “quantum
tail” in the strongly non-ideal and degenerate case. Furthermore, we have calculated
average kinetic, potential, and exchange–correlation energies in our recent paper [34].

In this paper, we continue our research of the UEG, started in [34], and study the
MDFs and the PCFs in a wide range of parameters 0.5 ≤ θ ≤ 4, 0.2 ≤ rs ≤ 36 covering the
thermodynamic states from almost ideal gas to a deep WDM regime. We have analyzed
the dependence of the MDFs and the PCFs on the parameters and discovered that in the
regime of strong non-ideality, when the short-range order appears and the UEG becomes
liquid-like, the MDFs exceed the Fermi distribution at high momenta and have distinct
“quantum tails”. Furthermore, we have expanded our table from [34] for the average kinetic
and potential energy to the higher values of rs up to 36.
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2. Theoretical Part
2.1. Uniform Electron Gas

Let us consider a UEG with N electrons at temperature T, contained in the cubic cell
with volume V. We assume that the system is unpolarized, and do not take into account
spin interactions, so the numbers of electrons with two different spin projections are equal
and constant: Nu = Nd = N/2. Further, we do not taken into account any spin interactions.
In order to reduce the finite-size effects, we apply the periodic boundary conditions (PBC).
In addition to the Coulomb interactions in the main cell, one has to take into account the
interactions with all periodic images using the Ewald summation technique [35]. As a
result, the effective Hamiltonian of the UEG is as follows [36]:

Ĥ =
N

∑
a=1

p̂2
a

2m
+

N

∑
a=1

N

∑
b=a+1

e2Ψ(qa, qb) +
1
2

e2NξM, (1)

where m and e are the electronic mass and charge, p̂a and qa are the momentum operator
and the coordinate of an a-th electron. The periodic Ewald pair potential is:

Ψ(r, s) =
1

Vπ ∑
G 6=0

G−2e−
π2G2

κ2 +2πiG(r−s) − π

κ2V
+ ∑

R

erfc(κ|r− s + R|)
|r− s + R| , (2)

and the Madelung constant is:

ξM =
1

Vπ ∑
G 6=0

G−2e−
π2G2

κ2 − π

κ2V
+ ∑

R 6=0

erfc(κ|r− s|)
|r− s| . (3)

Here, R = ndL and G = nr/L, with nd and nr having integer components. Note that
the Ewald parameter κ does not affect the values and should be chosen for efficiency reasons.

The MDF of the UEG describes the probability density of the electrons to have certain
values of momentum. Due to the kinematic and dynamic identity of the electrons in the
state of thermodynamic equilibrium, a single-particle MDF is of the most interest:

F(p) =
∫
· · ·

∫
dp2 . . . dpN F(p1, . . . , pN)

∣∣∣
p=p1

, (4)

where F(p1, . . . , pN) is the N-particle MDF, and the integration is taken over all electrons
except for the first one (any other electron can also be chosen).

The PCFs guu(r), gdd(r) and gud(r) describe the distribution of distances between the
electrons with corresponding spin projections:

guu(r) ∝
∫
· · ·

∫
dqu3 . . . dquNdqd1 . . . dqdN g(q1, . . . , qN)

∣∣∣
r=|qu1−qu2|

,

gdd(r) ∝
∫
· · ·

∫
dqu1 . . . dquNdqd3 . . . dqdN g(q1, . . . , qN)

∣∣∣
r=|qd1−qd2|

, (5)

gud(r) ∝
∫
· · ·

∫
dqu2 . . . dquNdqd2 . . . dqdN g(q1, . . . , qN)

∣∣∣
r=|qu1−qd1|

,

where g(q1, . . . , qN) is the N-particle spatial distribution of the electrons, qua and qda spec-
ify the electrons with different spin projections, and the exact values of the normalization
factors depending of Nu, Nd, and V are not required for our purposes.

2.2. Single Momentum Approach

To obtain the expressions for a single-particle MDF and PCFs required for the nu-
merical calculations, we use the “single momentum approach” presented in [34]. This
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approach is based on the pseudoprobability density W(p, q) in the phase space known as
the Wigner function:

W(p, q) =
∫

d3Nξ e
i
h̄ (p,ξ) 〈q− ξ/2|ρ̂|q + ξ/2〉, (6)

where ρ = exp(−βH), β = 1/(kBT), (p, ξ) = ∑N
a=1 paξa. The quantum states |q〉 =

|q1, q2, . . . , qN〉 and |p〉 = |p1, p2, . . . , pN〉 are the N-particle states with certain coordinates
and momenta, antisymmetrized according to the Fermi–Dirac statistics:

|q〉 = 1
N! ∑

Pu ,Pd

(−1)Pu+Pd |qp1〉|qp2〉 . . . |qpN 〉,

|p〉 = 1
N! ∑

Pu ,Pd

(−1)Pu+Pd |pa1〉|pa2〉 . . . |paN 〉. (7)

Here, the sums are taken over all permutations Pu and Pd of the electrons with the
positive and negative spin projections having the factor +1 for each even and −1 for each
odd permutation.

The Weyl symbol can be associated with a quantum operator Â:

A(p, q) = (2πh̄)−3N
∫

d3Nξ e
i
h̄ (p,ξ) 〈q + ξ/2|Â|q− ξ/2〉, (8)

so the average value of Â over the canonical ensemble can be calculated via the classical-like
expression:

〈Â〉 =
∫∫

d3N p d3Nq A(p, q)W(p, q). (9)

The N-particle momentum and coordinate distribution functions can be obtained from
the Wigner function via the integration over coordinates and momenta, respectively [37]:

F(p1, . . . , pN) =
∫

d3Nq W(p, q), g(q1, . . . , qN) =
∫

d3N p W(p, q). (10)

The integration over p2, . . . , pN leads to the product of delta-functions ∏N
a=2 δ(3)(ξa),

so the integrals over ξa (a = 2, . . . , N) disappear. The density matrix with off-diagonal
elements for the particles with numbers b 6= 1 replaced with zeros is known as the
“single–momentum density matrix for particle 1” [34]:

ρSM(q, ξ1) = 〈q− ξ/2|ρ̂|q + ξ/2〉ξ2=···=ξN=0. (11)

Integrating it over coordinates q, one obtains the “single–particle ξ-distribution function”:

f (ξ) =
∫

dq ρSM(q, ξ1)
∣∣∣
ξ=ξ1

. (12)

The Fourier transform of ρSM results in the single-particle MDF:

F(p) =
∫

dξ e
i
h̄ pξ f (ξ). (13)

As the macroscopic system is isotropic, the single-particle ξ-distribution function and
MDF depend only on the modules of the vectors ξ and p, and the 3-dimensional Fourier
transform can be reduced to the 1-dimensional sine transform:

F(p) =
∫ ∞

0
dξ 4πξ2 f (ξ)

sin(pξ/h̄)
pξ/h̄

. (14)
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The expressions for PCFs contains multiple integrals over p1, . . . , pN and can be
transformed in a similar way. Due to the product of the delta-functions, ∏N

a=1 δ(3)(ξa), only
the diagonal elements of the density matrix remain. The density matrix with non-diagonal
elements replaced with zeros is known as the “diagonal density matrix” [34]:

ρDG(q) = 〈q|ρ̂|q〉. (15)

Further integration over N − 2 coordinates gives the corresponding PCF. Due to the
identity of the electrons with the same spin projection, one can choose any pair of them
with σ = +1/2 for guu or σ = −1/2 for gdd and the one with σ = +1/2 and the other with
σ = −1/2 for gud. To improve the convergence of the numerical calculations, we consider
each pair of electrons and average the PCF over all pairs:

guu(r) ∝
2

Nu(Nu − 1)

Nu

∑
ua=1

Nu

∑
ub=ua+1

[
∏

uc 6=ua,ub
dquc

][
∏
dc

dqdc

]
ρDG(q)

∣∣∣
r=|qua−qub |

,

gdd(r) ∝
2

Nd(Nd − 1)

Nd

∑
da=1

Nd

∑
db=da+1

[
∏
uc

dquc

][
∏

dc 6=da,db
dqdc

]
ρDG(q)

∣∣∣
r=|qda−qdb |

, (16)

gud(r) ∝
1

NuNd

Nu

∑
ua=1

Nd

∑
db=1

[
∏

uc 6=ua
dquc

][
∏

dc 6=db
dqdc

]
ρDG(q)

∣∣∣
r=|qua−qdb |

,

where we use the same notations as in (5).

2.3. Path Integrals

For the calculation of the diagonal and single-momentum density matrices by
Equations (11) and (15), we use the method of path integrals [38]. Let us consider the
density matrix ρ(qA, qB) = 〈qB|e−βĤ |qA〉. Decomposing the statistical operator into the
product of M high-temperature operators and using M− 1 complete sets of q-states, one
can represent the density matrix in the form of a multiple integral:

ρ(qA, qB) =
∫
· · ·

∫
d3Nq1 . . . d3NqM−1

M−1

∏
k=0
〈qk+1|e−εĤ |qk〉 q0=qA

qM=qB

, (17)

where ε = β/M. Using the symbol |{qa}〉 for the non-antisymmetrized q-state |q1〉 |q2〉 . . .
|qN〉 and the symbol Pq for the permutation, one can take into account the Fermi statistics
and rewrite the expression (17) as follows [39]:

ρ(qA, qB) =
∫
· · ·

∫
d3Nq1 . . . d3NqM−1 ∑

Pu ,Pd

(−1)Pu+Pd

×
M−1

∏
k=0
〈{qk+1

a }|e−εĤ |{qk
a}〉
∣∣∣ q0=qA

qM=PqB

. (18)

The non-antisymmetrized high-temperature matrix elements are well-known [34]:

〈{qk+1
a }|e−εĤ |{qk

a}〉 = λ−3N
ε

× exp

{
− π

λ2
ε

N

∑
a=1

(qk+1
a − qk

a)
2 − ε

2

(
U(qk+1) + U(qk)

)}
+ O(M−2), (19)

where λε =
√

2πh̄2ε/m . Thus, the approximation for the density matrix with an accuracy
of O(M−1) is:
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ρ(qA, qB) ≈ λ−3NM
∫
· · ·

∫
d3Nq1 . . . d3NqM−1 ∑

Pu ,Pd

(−1)Pu+Pd

× exp

− M−1

∑
k=0

N

∑
a=1

m
2

(
qk+1

a − qk
a

εh̄

)2

−
M−1

∑
k=0

ε

2

(
U(qk+1) + U(qk)

)
∣∣∣∣∣ q0=qA

qM=PqB

, (20)

where λ =
√

2πh̄β/m is the thermal wavelength of electrons and C(M) is a constant de-
pending on the number of high-temperature terms. At M→ ∞ the multiple integral turns
into a path integral over all 3N-dimensional trajectories, and the expression becomes exact:

ρ(qA, qB) = λ−3N ∑
Pu ,Pd

(−1)Pu+Pd

∫
q(0)=qA

q(βh̄)=PqB

D3Nq(t)

× exp

{
−1

h̄

∫ βh̄

0
dt

[
m
2

N

∑
a=1

q̇2
a(t) + U(q(t))

]}
. (21)

(Note that for some singular attractive potentials the continuous limit must be considered
more carefully [40]).

The Formula (21) contains the fermionic sign problem (FSP) due the sign-alternating
permutations and, thus, cannot be used in Monte Carlo simulations directly. To avoid this
problem we substitute the variables:

qa(t) = za(t) +
(

1− t
βh̄

)
qA

a +
t

βh̄
qB

Pa (a = 1, . . . , N), (22)

obtaining the path integral with zero boundary conditions:

ρ(qA, qB) = λ−3N ∑
Pu ,Pd

(−1)Pu+Pd

∫
z(0)=0

z(βh̄)=0

D3Nz(t)

× exp

{
−1

h̄

∫ βh̄

0
dt

[
m
2

N

∑
a=1

ż2
a(t) + U(q(t))

]}
exp

{
− π

λ2

N

∑
a=1

[
(qB

Pa)
2 − (qA

a )
2
]}

. (23)

Now we assume that all permutations in the potential function can be substituted
with the identical one in the WDM regime [23,34]. This simplification allows one to move
all permutations into the product of the exchange determinants:

Dσ
λ(q

A, qB) = det
∣∣∣∣exp

{
− π

λ2

(
qB

a − qA
b

)2
}∣∣∣∣, (24)

where σ = u, d is the index of the spin projection, a, b are the indices of the electrons with a
corresponding σ. Finally, the path integral representation of the density matrix is:

ρ(qA, qB) ≈ λ−3N Du
λ(q

A, qB) Dd
λ(q

A, qB)

×
∫

z(0)=0
z(βh̄)=0

D3Nz(t) exp

{
−1

h̄

∫ βh̄

0
dt

[
m
2

N

∑
a=1

ża(t)2 + U(q(t))

]}
. (25)

For numerical applications one have to use a discrete approximation of the path
integral. Replacing each continuous trajectory z(t) with the poly-line {z0, z1, . . . , zM−1}
having the vertices called “beads“, and the path integral with the multiple integral, we
obtain the final expression for the density matrix:
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ρ(qA, qB) ≈ λ−3N Du
λ(q

A, qB) Dd
λ(q

A, qB)
∫
· · ·

∫
d3Nz1 . . . d3NzM−1

× exp

−ε
M−1

∑
k=0

m
2

N

∑
a=1

(
zk+1

a − zk
a

h̄ε

)2

+
U(qk+1) + U(qk)

2


∣∣∣∣∣ z0=0
zM=0

, (26)

where qk
a = zk

a + (1− k/M)qA
a + k/MqB

Pa.
In the case of the diagonal density matrix ρDG, one should set qA

a = qB
a = qa for

a = 1, 2, . . . , N, and in the case of the single-momentum density matrix ρSM, one should
make the same choice for a = 2, . . . , N and qA,B

1 = q1 ± ξ1/2 for a = 1.
For numerical calculation of MDFs and PCFs we use the developed SMPIMC method,

based on the discrete path integral representation (26). The basic ideas and detailed
algorithm are presented in Appendix A.

3. Simulation Results

We studied the unpolarized UEG in the range of densities and temperatures
0.2 ≤ rs ≤ 36, 0.5 ≤ θ ≤ 4, that corresponds to the coupling parameter 0.03 . Γ . 20
and the degeneracy parameter 0.2 . χ . 4. Therefore, a wide range of states has been
covered: from almost ideal to strongly non-ideal and, simultaneously, from an almost
classical to degenerate system.

We carried out our simulations for N = 66 electrons in the cubic cell with PBCs.
Such number of electrons has been chosen for conformity with the papers [34,36,41] and
is quite enough for θ & 0.5. Furthermore, we simulated the unpolarized ideal Fermi gas
(IFG) under the same conditions, i.e., the UEG with “turned-off” Coulomb interactions
at the same θ and rs. Comparison of these results with the analytical Fermi distributions
allows us to take into account the finite-size effects and control the related systematic errors
in the MDF normalization factors. The influence of the finite-size effects on the MDFs
manifests itself in the deviation of the calculated MDF for the IFG from the analytical Fermi
distribution, which appears at some high value of momentum pFS, so the interval p . pFS
contains the reliable data. We estimated roughly the value of pFS from the plot of F(p) in
the logarithmic scale. One can find the values of pFS for each plot in Table 1. This table also
contains the approximate positions rmax and rmin of the first maximum and minimum of
the PCFs guu, gdd, and gud.

Table 1. Some parameters and data describing the MDFs and PCFs from the Figures 1–5. The values
are shown with two significant digits.

rs θ Γ χ λ, a0 L, a0 pFS, h̄/a0 rmax, a0 rmin, a0

4.0 0.5 4.3 4.3 10 26 0.85 — —
4.0 1.0 2.2 1.5 7.4 26 1.2 — —
4.0 4.0 0.54 0.19 3.7 26 >1.9 — —
12 0.5 13 4.3 31 78 0.28 20–22 30–32
12 1.0 6.5 1.5 22 78 0.42 20–22 —
12 4.0 1.6 0.19 11 78 0.65 — —
16 0.5 17 4.3 42 100 0.21 26–28 40–42
16 1.0 8.7 1.5 30 100 0.30 26–28 —
16 4.0 2.2 0.19 15 100 0.60 — —
28 1.0 15 1.5 52 180 0.17 45–50 70
28 2.0 7.6 0.53 37 180 0.26 45–50 70–75
28 4.0 3.8 0.19 26 180 0.38 50 —
36 1.0 20 1.5 66 230 0.14 60–65 90
36 2.0 9.8 0.53 47 230 0.21 60–65 90–95
36 4.0 4.9 0.19 33 230 0.28 60–65 —

For low values of rs (rs . 1), the UEG is characterized by relatively weak non-ideality
(Γ . 1 in the considered range of θ), and the results are quite trivial and do not deserve to
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be shown in figures. The MDFs completely coincide with the related Fermi distribution
for p . pFS. The PCFs are also similar to the ideal case: guu and gdd, and are determined
mainly by the exchange repulsion and slowly rise from 0 to 1 with growing r, while gud is
determined only by relatively weak Coulomb repulsion and rises much faster.

The results for rs = 4.0 are shown in Figure 1. In cases of θ = 0.5 and θ = 1, the UEG
is significantly non-ideal (Γ ≈ 4.3 and Γ ≈ 2.2), while at θ = 4 it remains weakly coupled
(Γ ≈ 0.54). Although the difference between the MDFs and the related Fermi distribution
does not exceed the statistical error in all cases, the PCFs demonstrate completely non-ideal
behavior: gud rises only slightly faster than guu and gdd (especially at θ = 4.0) because of
the same order of the Coulomb and exchange interactions.

Figure 1. Left plots: single-particle momentum distribution functions of the unpolarized UEG at
rs = 4.0 and θ = 0.5, 1, 4 calculated with the SMPIMC method. The results are compared with the
SMPIMC results for the IFG in the same conditions and with the analytical Fermi distributions. Right
plots: the pair correlation functions guu, gdd, and gud of the UEG.

The results for rs = 12.0 are shown in Figure 2. In the case of θ = 0.5, the coupling
is very strong (Γ ≈ 13), and the MDF significantly differs from the Fermi distribution
demonstrating an extensive “tail” at high momenta, which is not camouflaged by the
finite-size effects. All PCFs have maxima exceeding 1 at rmax, and gud grows almost with
the same rate as guu and gdd, because the Coulomb repulsion plays a major role. In the case
of θ = 1.0, the coupling is quite strong (Γ ≈ 6.5). The difference between MDF and the
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Fermi distribution does not exceed the statistical error. However, there are weak maxima
on the PCFs, and gud almost coincides with guu and gdd. At θ = 4.0, the UEG is significantly
non-ideal (Γ ≈ 1.6), the MDF does not differ from the Fermi distribution, and all the PCFs
are the same and do not have any maxima.

Figure 2. Left plots: single-particle MDFs of the unpolarized UEG at rs = 12 and θ = 0.5, 1, 4
calculated with the SMPIMC method. The results are compared with the SMPIMC for the IFD at the
same conditions and with the analytical Fermi distributions. Right plots: PCFs guu, gdd and gud of
the UEG.

The results for rs = 16.0 are shown in Figure 3. In the case of θ = 0.5 (Γ ≈ 17), the
MDF is quite similar to the previously considered one with rs = 12, but the difference
between it and the Fermi distribution is more significant. The PCFs are also analogous to
the case of rs = 12, but the maxima are more pronounced and the minima (at rmin) begin to
appear. In the case of θ = 1.0, the coupling is also strong (Γ ≈ 8.7), and the MDF begins
to differ from the Fermi distribution. The PCFs have distinct maxima at r ≈ 28a0. In the
case of θ = 4.0, the coupling strength Γ ≈ 2.2, and the MDF coincides with the Fermi
distribution within the statistical error. The PCFs do not have any maxima yet, and there
are no differences between guu, gdd, and gud, so the exchange interaction is negligible in
comparison with the Coulomb one.
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Figure 3. Left plots: single-particle MDFs of the unpolarized UEG at rs = 16 and θ = 0.5, 1, 4
calculated with the SMPIMC method. The results are compared with the SMPIMC for the IFG at the
same conditions, and with the analytical Fermi distributions. Right plots: PCFs guu, gdd, and gud of
the UEG.

The results for rs = 28.0 are shown in Figure 4. In the case of θ = 1, the UEG is strongly
non-ideal (Γ ≈ 15), and the MDF differs from the Fermi distribution very distinctly. All
PCFs are almost the same and have maxima and minima. In the case of θ ≈ 2, the coupling
strength Γ ≈ 7.6 and non-ideality is quite strong. The MDF begins to deviate from the
Fermi distribution, while the PCFs guu, gdd, and gud are exactly the same and have distinct
maxima. In the case of θ ≈ 4.0, the coupling strength Γ ≈ 3.8, and the MDF, slightly differ
from the Fermi distribution. The maxima of the PCFs are small but distinguishable.
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Figure 4. Left plots: single-particle MDFs of the unpolarized UEG at rs = 28 and θ = 0.5, 1, 4
calculated with the SMPIMC method. The results are compared with the SMPIMC for the IFG at the
same conditions and with the analytical Fermi distributions. Right plots: PCFs guu, gdd, and gud of
the UEG.

The results for rs = 36.0 are shown in Figure 5. In the case of θ = 0.5, the coupling
strength is very strong (Γ ≈ 20). The difference between the MDF and the Fermi distribu-
tion becomes more significant. The first maxima and minima of the PCFs become more
pronounced, also, the second maxima starts to appear at r ≈ 120a0; however, the number of
electrons should be increased for better resolution. In the case of θ ≈ 2 (Γ ≈ 9.8), the MDF
has quite a distinct “tail”. The PCFs guu, gdd, and gud are completely the same and have
maxima and hardly distinguishable minima. In the case of θ ≈ 4.0, the coupling strength
Γ ≈ 4.9, the MDF slightly differs from the Fermi distribution and there are maxima on
the PCFs.
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Figure 5. Left plots: single-particle MDFs of the unpolarized UEG at rs = 36 and θ = 0.5, 1, 4
calculated with the SMPIMC method. The results are compared with the SMPIMC for the IFG at the
same conditions and with the analytical Fermi distributions. Right plots: PCFs guu, gdd, and gud of
the UEG.

In addition, we calculated the average kinetic energy Ekin and potential energy Epot
of the UEG, supplementing our results from [34] with the strongly coupled states of UEG.
These results are presented in Table 2 and Figure 6 and compared with the internal (kinetic)
energy of the IFG, calculated with the SMPIMC method (EIFG) and obtained from the
analytical Fermi distribution directly (EIFG0). The kinetic energy rapidly decreases by
many orders of magnitude as the parameter rs increases, similar to the ideal case (for the
Boltzmann gas Ekin ∝ r−2

s ). Ekin starts to exceed EIFG at high values of rs due to the effect of
“quantum tails”; for example, Ekin becomes almost 30% higher than EIFG at rs = 36, θ = 0.5.
The potential energy is negative and rapidly falls as rs grows, while the dependence of Epot
on θ at fixed rs is more sharp at low values of rs and becomes weaker at high values (for
the Boltzmann gas Epot ∝ −r−1

s ).
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Table 2. EIFG0—internal (kinetic) energy of the macroscopic IFG obtained from the analytical Fermi
distribution; EIFG—internal (kinetic) energy of the finite-size IFG obtained from the SMPIMC; Ekin
and Epot—kinetic and potential energy of the UEG. Two significant digits of the statistical error 3σ

are written in brackets. All energies are given per one electron.

rs θ EIFG0, Ha EIFG, Ha Ekin, Ha Epot , Ha

4.0 0.5 0.118 0.118(02) 0.121(02) −0.22386(12)
4.0 1.0 0.195 0.197(05) 0.195(05) −0.21480(10)
4.0 4.0 0.702 0.702(18) 0.699(18) −0.17822(14)
12 0.5 0.0131 0.0131(01) 0.0141(03) −0.081073(40)
12 1.0 0.0217 0.0216(03) 0.0224(04) −0.079157(35)
12 4.0 0.0780 0.0793(18) 0.0789(18) −0.070567(24)
16 0.5 0.00735 0.00735(05) 0.00841(12) −0.061467(25)
16 1.0 0.0122 0.0123(02) 0.0126(02) −0.060535(18)
16 4.0 0.0439 0.0438(10) 0.0446(09) −0.054942(17)
28 1.0 0.00399 0.00402(02) 0.00464(03) −0.035732(12)
28 2.0 0.00738 0.00735(08) 0.00755(09) −0.034815(10)
28 4.0 0.0143 0.0143(02) 0.0149(02) −0.033396(10)
36 1.0 0.00241 0.00240(00) 0.00314(00) −0.028246(08)
36 2.0 0.00446 0.00446(04) 0.00480(04) −0.027628(10)
36 4.0 0.00867 0.00869(11) 0.00894(12) −0.026520(05)

Figure 6. Left plot: average kinetic energy of the UEG at different values of rs and θ compared with
the internal (kinetic) energy of the IFG. Right plot: average potential energy of the UEG.

4. Discussion

First of all, let us discuss the phenomenon of “quantum tails” of the MDFs and make
some suggestions about its physical nature. As it follows from Figures 1–5, the single-
particle MDF of the UEG starts to differ from the Fermi distribution when the system
becomes strongly non-ideal. The value of the coupling parameter Γ, at which the “tail”
appears, depends on the degeneracy rate: in the case of θ = 0.5, (significant degeneracy)
it appears at Γ from 8 to 9 (rs ≈ 8), but in the case of θ = 4.0, the Γ ≈ 5 is quite enough
(rs ≈ 36).

At the same time, the deviation of the MDFs from the Fermi distribution is always
followed by the appearance of the visible maxima on the PCFs, and with increasing maxima,
the deviation also grows. This observation points at a possible physical reason of “quantum
tails”: with increasing non-ideality, the UEG becomes more liquid-like and the short-range
order appears. This results in the potential wells surrounding the electrons at the average
distance rmax, so the spatial localization of the electrons increases. According to the basic
principles of quantum mechanics, the localization of the electrons in the momentum space
is weakened and the MDFs become wider. When the coupling increases, the potential wells
become deeper and the effect grows.

Furthermore, this hypothesis can explain the fact that the “quantum tail” of the MDF
appears at lower values of Γ when the degeneracy is low and at higher values in the
opposite case. In fact, at low θ, the thermal wavelength λ becomes of the order of the
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interparticle distance, so the electron can escape from the potential well more easily via the
quantum tunneling and becomes less localized. Note that the definition of the coupling
strength Γ is based on the classical value of the average kinetic energy kT and gives an
overestimated value of the actual non-ideality in the degenerate case, which should be
characterized by the quantum average kinetic energy between kT and EF. Thus, at the
same values of Γ, a non-degenerate system (high θ) is more non-ideal than a degenerate
one (low θ), and the ”quantum tail” effect is more significant.

Secondly, the difference between PCFs guu, gdd, and gud becomes lower with increasing
rs even at low values of θ (degenerate case). As the exchange repulsion is applied only to
the electrons with the same spin projections, while the Coulomb interaction is universal,
we can conclude that the PCFs of the degenerate UEG are basically conditioned by the last
one. This reasoning is confirmed by the fact that the value of rmax is almost independent of
θ when rs is fixed. However, the value of the maxima depends strongly on θ, following the
coupling strength Γ.

5. Conclusions

In this paper, we have continued our research of the UEG and study the MDFs
and the PCFs using the SMPIMC method in a wide range of temperatures and densities:
0.5 ≤ θ ≤ 4, 0.2 ≤ rs ≤ 36. Thus, different thermodynamic states from an almost ideal gas
(Boltzmann of Fermi) to a strongly non-ideal system with weak and significant degeneracy
have been considered.

Firstly, we have discovered that the single-particle MDFs start to exceed the Fermi
distribution at high momentum values, when the UEG is strongly non-ideal. In the de-
generate case θ = 0.5, this occurs at rs & 8 (Γ & 9), in the semi-degenerate case θ = 1—at
rs & 16 (Γ & 8), in the almost classical case θ = 4—at rs = 36 (Γ & 5). The deviation has the
form of the “quantum tail” at high momenta and is reliable at p . pFS, where the value of
pFS is conditioned by the finite-size effects.

We explain the phenomena of “quantum tails” as follows. The deviation of the MDFs
from the Fermi distribution is always followed by the appearance of the short-range order
on the PCFs; so, with increasing coupling strength, the UEG becomes more liquid-like and
the potential wells surrounding the electrons appear. As a result, the spatial localization of
the electrons increases, so the localization in the momentum space becomes weaker and
the MDFs become wider. Besides, at high degeneracy, the electrons are tunneling from
the potential wells more easily, so the “quantum tail” appears at higher values of Γ in
comparison with the non-degenerate case.

Secondly, we have obtained that the difference between the PCFs of the electrons
with the same and opposite spin projections becomes negligible at high values of Γ in
the degenerate case. Thus, the spatial structure of a strongly non-ideal UEG is basically
conditioned by the Coulomb interaction rather than the exchange repulsion.

Finally, we have calculated the average kinetic and potential energies for rs up to 36,
supplementing our results from [34] significantly.
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Abbreviations
The following abbreviations are used in this manuscript:

CPIMC Configuration Path Integral Monte Carlo
DFT Density Functional Theory
IFG Ideal Fermi Gas
MDF Momentum Distribution Function
PBC Periodic Boundary Conditions
PCF Pair Correlation Function
SMPIMC Single Momentum Path Integral Monte Carlo
UEG Uniform Electron Gas
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Appendix A. Numerical Method SMPIMC

Appendix A.1. Basic Idea of Path Integral Monte Carlo Methods

Let us consider a multiple integral defining the average value of a function a(x) with
a distribution function f (x) (sign-alternating in general case):

〈a〉 f =
1
Z

∫
a(x) f (x)dnx, Z =

∫
f (x)dnx, (A1)

where Z is the normalization factor. Replacing the sign-alternating distribution function
with the product of the normalized absolute value w(x) = | f (x)|/C and the weight function
g(x) = sign f (x), one can give the probabilistic interpretation of (A1):

〈a〉 f =
〈a g〉w
〈g〉w

, where 〈b〉w =
∫

b(x)w(x)dnx. (A2)

Now, the function w(x), can be interpreted as the probability density for a random
vector x. The basic idea of a Monte Carlo method is to estimate the integral via averaging
the integrands over a random sample with the probability density w(x):

〈a〉 f ≈
∑N

i=1 a(xi) g(xi)

∑Nmc
i=1 g(xi)

. (A3)

If random vectors xi in the sample are not correlated, the statistical error is O(N−1/2),
and can be estimated via 3σ-rule according to the law of large numbers.

The sample {x1, x2, . . . , xNmc} can be created via the Metropolis algorithm [42]. This
algorithm consists of sequential steps divided into two sub-steps: the proposal and the
acceptance. If the value of a random vector on the i-th step is xi, and a new random value
x′i uniformly distributed in some n-dimensional cube is proposed, this new state has to be
accepted with the probability:

A(xi → x′i) = max
(

1,
w(xi+1)

w(xi)

)
. (A4)

In the case of acceptance, the state on the i + 1 step becomes xi+1 = x′i, and in the
case of rejection, the old value is saved: xi+1 = xi. Performing Nmc steps of the Metropolis
algorithm gives us the required sample.

Appendix A.2. Periodic Boundary Conditions

Available computer resources do not allow us to simulate macroscopic systems, so
the number of electrons in the simulation box is limited. Since the concentration N/V
is constant, the volume V is relatively small and the finite-size effects can be significant.
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To reduce them and reproduce the properties of a macroscopic system as accurately as
possible, we consider a cubic main cell with side length L = V1/3 and periodic boundary
conditions (PBC) [43]. When any bead qa,k leaves the simulation box, it should be replaced
with the periodic image, entering into the main cell instead:

qk
a,i → qk

a,i − L

[
qk

a,i

L
+

1
2

]
(i = x, y, z). (A5)

Here, [x] means the floor integer value of x. In calculations of the distances between
two beads ∆qab,k, the nearest images should be taken:

∆qab,k,i → ∆qab,k,i − L
[

∆qab,k,i

L
+

1
2

]
(i = x, y, z). (A6)

In calculations of the ξ-distribution, one has also to “periodize” the coordinates ξa
before adding them to the histogram:

ξa,i → ξa,i − L
[

ξa,i

L
+

1
2

]
(i = x, y, z). (A7)

Appendix A.3. Smpimc Algorithm for PCFs

Calculation of PCFs with the SMPIMC method is based on the definition (5) and
representation (26) of the diagonal density matrix ρDG. Integration over the variables qa
and zk

a is performed using the Monte Carlo approach. Electron a in the simulation box
is represented as the closed poly-line with vertices qk

a = qa + zk
a, so that the “center”-

coordinate qa describes the position of the whole a-th electron, and the “bead”-coordinate
zk

a — the relative position of the k-th bead. Note that only coordinates qa are used in the
calculations of PCFs directly, while the beads are “inner” coordinates and define the weight
and probability density of the configuration. The detailed SMPIMC algorithm for the
calculation of PCFs is presented below.

1. Set the run number l = 0 and the initial state x0: the coordinates qa are uniformly
distributed in the simulation box, the coordinates zk

a are equal to zero (a = 1, . . . , N,
k = 0, . . . , M).

2. Set the step number i = 1 and the first state x1 = x0.
3. Select the particle number a = 1, . . . , N randomly, then select the type of the step:

δq–step with the probability Pq or δz–step with the probability Pz = 1− Pq. If δq–
step has been chosen, modify qa → qa + ∆q with ∆q uniformly distributed in the
volume ∼ L3/N. If δz–step has been chosen, select the bead number k = 1, . . . , M− 1
randomly and modify zk

a → zk
a + ∆z with ∆z uniformly distributed in the volume

∼ λ3/(4πK)3/2. In both cases, take into account the PBC. The resulting state has to
be set as the proposed state x′i.

4. Accept the proposed state x′i with the probability A(xi → x′i) (A4) or reject it. In the
case of acceptance — set xi+1 = x′i, in the case of rejection — set xi+1 = xi.

5. Calculate the distances between each pair of electrons rab = |qa − qb| and build
the related histograms: hn

uu(xi), hn
dd(xi) and hn

ud(xi), where n = 1, . . . , Nq is the cell
number with the length ∆r, so n = [rab/∆r] + 1.

6. Repeat steps (3)—(5) for i = 1, . . . , Nsteps.
7. Calculate the average histograms for the obtained sample of Nsteps states via averaging

of hn
uu, hn

dd and hn
ud with g(x) as the weight function:

〈hn
s1s2
〉l =

∑
Nsteps
i=1 hn

s1s2
(xi) g(xi)

∑
Nsteps
i=1 g(xi)

(s1, s2 = {u, d}).
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8. Repeat steps (2)–(7) for l = 1, 2, . . . , Nruns, but instead of initialization x1 = x0 use the

last state from the previous run: x1
∣∣
l =

(
xNsteps

)∣∣
l−1.

9. As a result, the sample of average histograms 〈hn
s1s2
〉l , l = 0, 1, . . . , Nruns is obtained.

Considering the 0-th run as idle and omitting it to eliminate the influence of the initial
state, calculate the resulting average histograms over the sample and the statistical
errors as follows:

〈hn
s1s2
〉 =

∑Nruns
l=1 〈h

n
s1s2
〉l

Nruns
, σ(hn

s1s2
) =

√
∑Nruns

l=1 (〈hn
s1s2
〉l − 〈hn

s1s2
〉)

Nruns
.

10. To obtain the final histograms of the PCFs with the statistical errors one takes into
account the angular distribution and the numbers of electron pairs for different spin
projections:

gn
s1s2

=
〈hn

s1s2
〉

∆nCs1s2

, σ(gn
s1s2) =

σ(hn
s1s2

)

∆nCs1s2

,

where ∆n = 4π∆3
r
(
n2 − n + 1/3

)
, Cs1s2 is equal to Nu(Nu − 1)/2, Nd(Nd − 1)/2 and

NuNd for s1, s2 equal to u,u; d,d and u,d, respectively.

Appendix A.4. Smpimc Algorithm for MDFs

Calculation of the single-particle MDF is based on the sine transform (14) of the
ξ-distribution, which is obtained from the path integral representation (26) via the Monte-
Carlo procedure similar to the one for PCFs. The difference is that the first electron is
represented as the open poly-line with the vertices qk

1 = zk
1 + (1− k/M)(q1 + ξ/2) +

(k/M)(q1 − ξ/2). Only the differential coordinate ξ participates in the calculation of the
single-particle MDF, while the other coordinates define only the weight and probability
density. The detailed SMPIMC algorithm for the calculation of the single-particle MDF is
presented below.

1. Set the run number l = 0 and the initial state x0: the coordinates qa are uniformly
distributed in the simulation box, while the relative coordinates zk

a and the differential
coordinate ξ are equal to zero.

2. Set the step number i = 1 and the first state x1 = x0.
3. Select the type of step: δξ–step with the probability Pξ , δq–step with the probability

Pq or δz–step with the probability Pz = 1 − Pξ − Pq. If δξ–step has been chosen,
modify ξ → ξ + ∆ξ with ∆ξ uniformly distributed in the volume ∼ λ3. Otherwise,
select the particle number a = 1, . . . , N randomly; if δq–step has been chosen, modify
qa → qa + ∆q with ∆q uniformly distributed in the volume ∼ L3/N; if δz–step
has been chosen, select the “bead” number k = 1, . . . , M− 1 randomly and modify
zk

a → zk
a + ∆z with ∆z uniformly distributed in the volume ∼ λ3/(4πK)3/2. Take into

account the PBC. The resulting state has to be set as the proposed state x′i.
4. Accept the proposed state x′i with the probability A(xi → x′i) (A4) or reject it. In the

case of acceptance, set xi+1 = x′i, in the case of rejection, set xi+1 = xi.
5. Calculate the absolute value ξ = |ξ| and build the related histogram Fn

Ω(xi), where
n = 1, . . . , Nξ is the number of the cell with the length ∆ξ , so n =

[
ξ/∆ξ

]
+ 1.

6. Repeat steps (3)–(5) for i = 1, . . . , Nsteps.
7. Calculate the average histogram for the obtained sample of Nsteps states via the

averaging of f n
Ω with g(x) as the weight function:

〈 f n
Ω〉l =

∑
Nsteps
i=1 f n

Ω(xi) g(xi)

∑
Nsteps
i=1 g(xi)

.

8. To obtain the histogram of the ξ-distribution on the l-th run take into account the
angular distribution:
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〈 f n〉l =
〈 f n

Ω〉l
∆n

, ∆n = 4π∆3
ξ

(
n2 − n + 1/3

)
.

9. Repeat steps (2)–(8) for l = 1, 2, . . . , Nruns, but instead of the initialization x1 = x0 use

the last state from the previous run: x1
∣∣
l =

(
xNsteps

)∣∣
l−1.

10. As a result, the sample of average histograms of ξ-distribution 〈 f n〉l , l = 0, 1, . . . , Nruns
is obtained. Considering the 0-th run as idle and omitting it to eliminate the influence
of the initial state, calculate the resulting average histogram over the sample with the
statistical error as follows:

〈 f n〉 = ∑Nruns
l=1 〈 f

n〉l
Nruns

, σ( f n) =

√
∑Nruns

l=1 (〈 f n〉l − 〈 f n〉)
Nruns

.

11. To obtain the histogram of the MDF perform the discrete sine transform of the lattice
function f (ξn) = 〈 f n〉:

F(p) =
Nξ

∑
n=1

∆ξ 4πξ2
n f (ξn)

sin(pξn/h̄)
pξn/h̄

,

for the lattice values of p. The statistical error can be easily calculated via a similar
procedure.
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