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Abstract: The uncertain population model (UPM), which has been proposed and studied, is a kind of
population model driven by a Liu process that can only deal with continuous uncertain population
systems. In reality, however, species systems may be suddenly shaken by earthquakes, tsunamis,
epidemics, etc. The drastic changes lead to jumps in the population and make the sample path no
longer continuous. In order to model the dramatic drifts embedded in an uncertain dynamic popu-
lation system, this paper proposes a novel uncertain population model with jumps (UPMJ), which
is described by a kind of uncertain differential equation with jumps (UDEJ). Then, the distribution
function and the stability of solution for UPMJ are discussed based on uncertainty theory. Finally, a
numerical example related to the transmission of Ebola virus is given to illustrate the characteristics
of the distribution function and the stability of solution for UPMJ.
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1. Introduction

The Malthus population model was proposed in 1798 [1], which describes how a
population tends to grow at an exponential rate. The Malthus population model can only
describe the population size over a short period of time because the constant growth rate
cannot describe the population growth over a long period of time. For example, if the
population growth rate is greater than zero, the population will always survive without
extinction, which is unrealistic.

In 1923, Wiener [2] defined the Wiener process, which is a kind of random process
with stationary and independent normal increments. Ito presented the Ito stochastic differ-
ential equation, which is a kind of differential equation driven by the Wiener process [3].
The stochastic population model characterized by Ito stochastic differential equation is
path continuous.

In real life, the changes of many stochastic phenomena are discontinuous. The Poisson
process is used to describe the stochastic discontinuous dynamic process, as shown in
reference [3]. Lévy defined a class of random processes with stationary independent
increments and right continuity based on probability measures, which is known as the Lévy
process. Both the Wiener process and Poisson process are Lévy processes. Applications of
the Lévy process can be found in reference [4].

Although the stochastic population model has been widely used in practice, stochastic
population models are applied on the premise that the probability distribution function
should be sufficiently close to the actual frequency of events. This requires a lot of sample
data. Due to economic and technical reasons, it is sometimes impossible to obtain sample
data in practice, so we can only rely on domain experts to estimate the possibilities of
events’ occurrence and give their reliabilities. Because people generally overestimate the
probability of unlikely events, sometimes if we use probability theory, we might make the
wrong decision.
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To address this issue, Liu [5] proposed uncertainty theory in 2007, which is a math-
ematical branch and simulates human uncertainty. In 2008, the uncertain process was
introduced to describe the evolution of uncertain quantities. The uncertain differential
equation is a kind of differential equation containing uncertain processes. The Liu process is
a stable independent incremental process, and plays an essential role in uncertain analysis.
There is also a kind of uncertain process with discontinuous path called uncertain renewal
process (URP), which is used to characterize the evolution of discontinuous phenomena in
an uncertain environment.

Recently, uncertain differential equations have become a main tool to handle uncertain
dynamic systems. Lu et al. [6] studied a new stock model under uncertain conditions
for the stock market. Shi and Sheng [7] discussed some concepts of stability of backward
UDEs. Gu and Zhu [8] proposed a new Adams prediction correction method to solve UDE.
Wang and Zhu [9] studied fractional delay differential equations with linear uncertainty.
Yao and Liu [10] proposed the moment estimation method for parameter estimation of
UDEs. Sheng et al. [11] discussed the principle of minimum noise by using the least square
estimation method and obtained the parametric estimation of some special kinds of UDEs.
Yao [12] presented a kind of UDE called UDEJ for dealing with discontinuous phenomena.
A great number of research achievements have been obtained for UDE, see [13–19]. Uncer-
tainty theory has been widely used in finance, engineering technology, physics medicine,
and other fields.

In recent years, uncertainty theory has also been applied to the study of biological
population models. In 2021, Jia and Liu [20] designed an optimal harvesting strategy of
an uncertain logistic population model. Deng et al. [21] proved the inverse distribution
theorem for the solution of an uncertain age-structured population equation. In 2017,
Sheng et al. [22] proposed an UPM with age-structure. In 2020, Zhang and Yang [23]
added an uncertain perturbation to the growth rate and obtained an uncertain Malthus
population model. However, the above population model only applies to continuous
dynamic uncertain systems because it is a kind of UDE driven by a Liu process. In
practice, population systems are sometimes subjected to sudden shocks, such as droughts,
floods, earthquakes, tsunamis, epidemics, etc. These phenomena can lead to jumps in the
population. An UPM driven by a Liu process is no longer suitable for describing such
phenomena. Based on this, this paper proposes a novel UPMJ, which is a kind of UDE
driven by both a Liu process and an URP. The UPMJ can describe the dramatic drifts
embedded in an uncertain population dynamic system.

The rest of this paper is arranged as follows. In Section 2, the UPMJ is developed. In
Section 3, the solution of UPMJ is given, and the distribution function of solution is also
discussed. In Section 4, we prove that stability of the solution in measure can be derived
from stability in p-th moment for UPMJ when t is a finite number. A numerical example
related to the transmission of Ebola virus is given to explain the distribution function and
the stability of solution for UPMJ in Section 5. Finally, a brief summary is given in Section 6.

2. Uncertain Population Model with Jumps (UPMJ)

Suppose the number of species population at time t is Pt. The Malthus population
model is

dPt

dt
= bPt − dPt, (1)

where b and d are the birth and death rates, respectively, and they are constants. If we write
r = b − d, then Equation (1) simplifies to

dPt

dt
= rPt, (2)

where r is called the population growth rate. For the given initial value P0, Equation (2) has
a solution

Pt = P0 exp(rt).
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Considering the various uncertainties of reality, Zhang and Yang [23] added an uncer-
tain noise to the growth rate as follows

r → r + σ · noise,

where σ is the intensity of the noise. The uncertain Malthus population model they
presented is as follows

dPt = rPtdt + σPtdCt (3)

where Ct is a continuous uncertain process called the Liu process, and the noise dCt
dt is an

uncertain normal variable with expectation 0 and variance 1. Equation (3) has a solution

Pt = P0 exp(rt + σCt).

In real-world situations, the species system may be subjected to sudden shocks, such as
earthquakes, tsunamis, epidemics, etc. The drastic changes lead to jumps in the population,
and the sample path becomes no longer continuous. An UDE driven by a Liu process is
not appropriate for describing the dynamic process with jumps, while an UDEJ is available
to portray such drastic drifts. Based on this, we add two different noises to the birth rate
and death rate terms as follows

b→ b + σ1“noise 1” ,−d→ −d + σ2“noise 2”,

where σ1 and σ2 are the intensity of noise 1 and noise 2, respectively.
Case I. Suppose the drastic drifts embedded in the death rate, then noise 2 is character-

ized by dNt
dt , and noise 1 is characterized by dCt

dt as follows

b→ b + σ1
dCt

dt
,−d→ −d + σ2

dNt

dt
,

where Ct is a continuous uncertain process called Liu process, and Nt is a discontinuous
uncertain process called URP. Thus, we propose the UPMJ as shown below

dPt = (bPtdt + σ1PtdCt) + (−dPtdt + σ2PtdNt). (4)

For simplicity,
dPt = rPtdt + σ1PtdCt + σ2PtdNt. (5)

Case II. Suppose the dramatic drifts embedded in the birth rate, then noise 1 is
characterized by dNt

dt , and noise 2 is characterized by dCt
dt as follows

b→ b + σ1
dNt

dt
,−d→ −d + σ2

dCt

dt
.

In this case, the same model as Equation (5) is obtained. Therefore, in the uncertain
environment, UPMJ can be obtained whether the sharp drifts are embedded in the birth rate
or the death rate. It is a proper model to deal with the uncertain discontinuous dynamic
population system.

3. Solution of UPMJ

In this section, we will further discuss the solution of UPMJ and the distribution
function of the solution.

Theorem 1. Let Nt be an URP with iid uncertain interarrival times η1, η2, · · · , and Ct be a Liu
process. Define T0 = 0 and Tn = η1 + η2 + · · ·+ ηn for n ≥ 1. Suppose r, σ1 and σ2 are three
given real numbers. If the initial population size P0 is given, then UPMJ

dPt = rPtdt + σ1PtdCt + σ2PtdNt,
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has a solution
Pt = P0 exp(rt + σ1Ct) · (1 + σ2)

Nt . (6)

Proof. Note that Ct(γ) is path continuous, we discuss differential equation

dPt(γ) = rPt(γ)dt + σ1Pt(γ)dCt(γ) + σ2Pt(γ)dNt(γ), P0(γ) = P0. (7)

For any given time v, we prove that UDE (7) has a unique solution on the interval [0, v].
Suppose Nv(γ) = n, i.e., Tn(γ) ≤ v < Tn+1(γ). For any t ∈ [0, T1(γ)), we have dNt(γ) = 0.
Then, UDE (7) degenerates to

dPt(γ) = rPt(γ)dt + σ1Pt(γ)dCt(γ), P0(γ) = P0. (8)

UDE (8) has a solution. Pt(γ) = P0 exp(rt + σ1Ct(γ)) in [0, T1(γ).)
At the time T1(γ), a jump occurs. So

PT1(γ) = lim
t→(T1(γ))

−
Pt(γ) + σ2 · lim

t→(T1(γ))
−

Pt(γ)

= P0 exp
(∫ T1(γ)

0 rds +
∫ T1(γ)

0 σ1dCs(γ)
)
(1 + σ2)

= P0 exp
(
rT1(γ) + σ1CT1(γ)

)
(1 + σ2).

On the interval [T1(γ), T2(γ)), dNt(γ) = 0, and UDE (7) degenerates to

dPt(γ) = rPt(γ)dt + σ1Pt(γ)dCt(γ), P0(γ) = PT1(γ). (9)

In [T1(γ), T2(γ)) UDE (9) has a solution

Pt(γ) = PT1(γ) exp
(∫ t

T1(γ)
rds +

∫ t
T1(γ)

σ1dCs(γ)
)

= P0 exp
(∫ t

0 rds +
∫ t

0 σ1dCs(γ)
)
(1 + σ2)

= P0 exp(rt + σ1dCt(γ))(1 + σ2).

At the time T2(γ), a jump occurs. So

PT2(γ) = lim
t→(T2(γ))

−
Pt(γ) + σ2 · lim

t→(T2(γ))
−

Pt(γ)

= P0 exp
(∫ T2(γ)

0 rds +
∫ T2(γ)

0 σ1dCs(γ)
)
(1 + σ2)

2

= P0 exp
(
rT2(γ) + σ1CT2(γ)

)
(1 + σ2)

2.

Repeating the process,

PTn(γ) = P0 exp
(∫ Tn(γ)

0 rds +
∫ Tn(γ)

0 σ1dCs(γ)
) n

∏
i=1

(1 + σ2)

= P0 exp(rTn(γ) + σ1CTn(γ))
n
∏
i=1

(1 + σ2).

On [Tn(γ), v), we obtain dNt(γ) = 0, and UDE (7) degenerates to

dPt(γ) = rPt(γ)dt + σ1Pt(γ)dCt(γ), P0(γ) = PTn(γ). (10)

In [Tn(γ), v), UDE (10) has a solution
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Pv(γ) = PTn(γ) exp
(∫ v

Tn(γ)
rds +

∫ v
Tn(γ)

σ1dCs(γ)
)

= P0 exp
(∫ v

0 rds +
∫ v

0 σ1dCs(γ)
) n

∏
i=1

(1 + σ2)

= P0 exp(rv + σ1dCv(γ))
Nv(γ)

∏
i=1

(1 + σ2).

Then, UDE (7) has a unique solution on the interval [0, v]. Thus, UPMJ has a solution

Pt = P0 exp(rt + σ1Ct) · (1 + σ2)
Nt .

The theorem is proven. �

Lemma 1 (Liu [24]). Let Nt be an uncertain renewal process with iid positive uncertain interarrival
times η1, η2, · · · . If φ(x) is the common regular uncertainty distribution of those interarrival times,
then Nt has an uncertainty distribution

Υt(z) = 1− φ

(
t

[z] + 1

)
, ∀z ≥ 0, (11)

where [z] represents the maximal integer less than or equal toz.

Theorem 2. Let Nt be an URP, and Ct be a Liuprocess. Ct has an uncertain distribution Φt(y),
and Nt has an uncertain distribution Υt(z), where z ≥ 0. Suppose Nt and Ct are mutually
independent uncertain variables. If Pt = P0 exp(rt + σ1Ct)(1 + σ2)

Nt , where σ1 > 0, σ2 > 0,
then the uncertain variable Pt has an uncertain distribution

Ψ(x) = sup
f (y,z)=x

Φt(y) ∧ Υt(z), (12)

where f (y, z) = P0 exp(rt + σ1y)(1 + σ2)
z.

Proof. Because σ1 > 0, σ2 > 0 and f (Ct, Nt) = P0 exp(rt + σ1Ct)(1 + σ2)
Nt , f (Ct, Nt)

increases strictly with respect to Ct and Nt. We have

{Pt ≤ x} = { f (Ct, Nt) ≤ x} = ∪
f (y,z)=x

(Ct ≤ y) ∩ (Nt ≤ z). (13)

Then

Ψ(x) = M{ f (Ct, Nt) ≤ x} = M
{
∪

f (y,z)=x
(Ct ≤ y) ∩ (Nt ≤ z)

}
. (14)

For any given number x, the event

∪
f (y,z)=x

(Ct ≤ y) ∩ (Nt ≤ z),

is a polyrectangle. From the polyrectangular theorem [5], we get

Ψ(x) = sup
f (y,z)=x

M{(Ct ≤ y) ∩ (Nt ≤ z)}

= sup
f (y,z)=x

M{Ct ≤ y} ∧M{Nt ≤ z}

= sup
f (y,z)=x

Φt(y) ∧ Υt(z).

The theorem is proven. �
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4. Stability Analysis

The stability of solution for UPMJ is of great significance in practice, which implies
insensitivity of the uncertain dynamic population system when a small perturbation is
added to the initial state. Many concepts of stability for UDEJ have been studied. Up to
now, there are mainly six kinds of stability for UDEJ. The stability in measure for UDEJ
was first presented by Yao [12]. Subsequently, Ji and Ke [25] investigated almost sure
stability for UDEJ. Ma et al. [26] focused on the stability in p-th moment for UDEJ. Liu [27]
gave exponential stability for UDEJ. Gao [28] researched the stability in mean for UDEJ.
Liu et al. [29] studied a new p-th moment exponential stability for UDEJ.

When t ≥ 0, the stability in p-th moment for UDEJ has been studied in reference [26].
By the definition, it can be proven that UPMJ is unstable in the p-th moment. However, in
practice, the model is usually applied when t is a finite number. Extending the previous
work on the stability of UDEJ, this paper will develop new concepts of stability in the p-th
moment and stability in measure for UDEJ when t is a finite number, and the relationship
between them is also discussed.

Definition 1. Suppose T is a finite positive number, and t ∈ [0, T]. Let Xt and Yt be solutions of
UDEJ

dPt = f (t, Pt)dt + g(t, Pt)dCt + h(t, Pt)dNt,

with initial values X0 and Y0, respectively. Then we say that UDEJ is stable in p-th moment if

lim
|X0−Y0|→0

E

{
sup

0≤t≤T
|Xt −Yt|p

}
= 0, p > 0. (15)

Definition 2. Suppose T is a finite positive number, and t ∈ [0, T]. Let Xt and Yt be solutions of
UDEJ

dPt = f (t, Pt)dt + g(t, Pt)dCt + h(t, Pt)dNt,

with initial values X0 and Y0 , respectively. Then we say that UDEJ is stable in measure if for each
given number ε > 0,

lim
|X0−Y0|→0

M

{
sup

0≤t≤T
|Xt −Yt| ≤ ε

}
= 1. (16)

Theorem 3. Suppose T is a finite positive number, and t ∈ [0, T]. Let Xt and Yt be solutions of
UPMJ

dPt = rPtdt + σ1PtdCt + σ2PtdNt,

with initial values X0 and Y0, respectively. Then UPMJ is stable in p-th moment.

Proof. The solutions with initial values X0 and Y0 are

Xt = X0 exp(rt + σ1Ct)(1 + σ2)
Nt , (17)

and
Yt = Y0 exp(rt + σ1Ct)(1 + σ2)

Nt , (18)

respectively. Since

|Xt −Yt| = |X0 −Y0| exp(rt + σ1Ct)(1 + σ2)
Nt → 0 (19)

when |X0 −Y0| → 0 and 0 ≤ t ≤ T, we can get

lim
|X0−Y0|→0

E

{
sup

0≤t≤T
|Xt −Yt|p

}
= 0, p > 0.
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According to Definition 1, UPMJ is stable in p-th moment. �

Theorem 4. Suppose T is a finite positive number, and t ∈ [0, T]. Let Xt and Yt be solutions of
UPMJ

dPt = rPtdt + σ1PtdCt + σ2PtdNt,

with initial values X0 and Y0, respectively. Then UPMJ is stable in measure.

Proof. The solutions with initial values X0 and Y0 are

Xt = X0 exp(rt + σ1Ct)(1 + σ2)
Nt ,

and
Yt = Y0 exp(rt + σ1Ct)(1 + σ2)

Nt ,

respectively. Since

|Xt −Yt| = |X0 −Y0| exp(rt + σ1Ct)(1 + σ2)
Nt → 0, (20)

when |X0 −Y0| → 0 and 0 ≤ t ≤ T, we can get

lim
|X0−Y0|→0

M

{
sup

0≤t≤T
|Xt −Yt| ≤ ε

}
= 1.

According to Definition 2, UPMJ is stable in measure. �

Next, we prove the stability in measure can be derived from the stability in p-th
moment for UPMJ when t is a finite number.

Theorem 5. Suppose T is a finite positive number, and t ∈ [0, T]. If UPMJ

dPt = rPtdt + σ1PtdCt + σ2PtdNt,

is stable in p-th moment, then it is stable in measure.

Proof. By Definition 1, for solutions Xt and Yt with initial values X0 and Y0, respectively,
we have

lim
|X0−Y0|→0

E

{
sup

0≤t≤T
|Xt −Yt|p

}
= 0, p > 0.

According to Markov inequality, for each given real number ε > 0, we have

lim
|X0−Y0|→0

M

{
sup

0≤t≤T
|Xt −Yt| ≥ ε

}
≤ 1

εp lim
|X0−Y0|→0

E

[
sup

0≤t≤T
|Xt −Yt|p

]
= 0. (21)

Thus, we can get

lim
|X0−Y0|→0

M

{
sup

0≤t≤T
|Xt −Yt| ≤ ε

}
= 1,

for each given real number ε > 0. The theorem is proven. �

5. A Numerical Example

In this section, a numerical example related to the transmission of Ebola virus is given
to explain the distribution function and the stability of solution for UPMJ. Ebola virus is a
kind of virulent infectious disease that can cause blood fever in humans and animals and
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has an unusually high mortality rate. For example, a small city has seen a large number
of deaths due to the spread of Ebola virus, and this leads to jumps in the population.
The UPMJ proposed in this paper is suitable for dealing with such uncertain dynamic
population systems with sharp drift. In Sections 5.1 and 5.2, we discuss the disturbances
on the birth and death rates resulting from the spread of the Ebola virus.

5.1. The Disturbance on Birth Rate

Due to the spread of Ebola virus, the birth rate b is disturbed as follows

b→ b + σ1
dCt

dt
,

where Ct is a Liu process and σ1 is the intensity of disturbance. Liu process Ct has an
uncertain distribution

Φt(y) =
(

1 + exp
(

1− πy√
3t

))−1
. (22)

Set t = 10 and t = 30. When y falls between −150 and 150, we get two uncertain
distributions of Liu process Ct, as shown in Figure 1. It can be observed in Figure 1 that
Φt(y) is a continuous and monotone increasing function. This indicates that the spread of
Ebola virus has caused a continuous perturbation on the birth rate.
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5.2. The Disturbance on Death Rate

Due to the spread of Ebola virus, the death rate d is disturbed as follows

−d→ −d + σ2
dNt

dt
,

where Nt is an URP, and σ2 is the intensity of disturbance. In the following, the distribution
function of URP Nt is discussed.

Assume those interarrival times η1, η2, · · · in Lemma 1 are linear uncertain variables,
and they have a same linear uncertainty distribution as follows

φ(x) =


0, i f x ≤ a;
(x− a)/(c− a), i f a ≤ x ≤ c;
1, i f x ≥ c.

(23)
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Suppose a = 1, c = 10, t = 15, and z changes gradually from 0 to 15, we get the
uncertain distribution Υt(z) = 1− φ

(
t

[z]+1

)
shown in Figure 2. It can be observed in

Figure 2, Υt(z) is not continuous, but is a right continuous and increasing step function.
Furthermore, we can see that Υt(z) does not jump at time 0 and it has at most one renewal
at a time. This indicates that there are dramatic shifts embedded in the death rate due to
the spread of Ebola virus, and these sudden environmental disturbances are discontinuous,
causing the distribution function Υt(z) to jump intermittently again and again.
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Remark 1. According to the elementary renewal theorem [24], the average renewal number

Nt

t
→ 1

η1
, (24)

in the sense of convergence in distribution as t→ ∞ .

Remark 2. According to the elementary renewal theorem [24], if E
[

1
η1

]
exists, then

lim
t→∞

E[Nt]

t
= E

[
1
η1

]
. (25)

5.3. Uncertain Distribution Ψ(x) of Solution Pt

Suppose the people of the small city at time t is Pt, and the initial population size P0 is
50,000. The UPMJ related to the transmission of Ebola virus is as follows

dPt = (bPtdt + σ1PtdCt) + (−dPtdt + σ2PtdNt).

Since
r = b− d,

for simplicity,
dPt = rPtdt + σ1PtdCt + σ2PtdNt.

According to Theorem 1, the UPMJ related to the transmission of Ebola virus has
a solution

Pt = P0 exp(rt + σ1Ct)(1 + σ2)
Nt ,
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where Ct and Nt are independent uncertain variables. In this section, the distribution
function of solution Pt is studied. Parameters concerning UPMJ related to the transmission
of Ebola virus including P0, r, σ1, σ2, a, c, y, and z are summarized in Table 1.

Table 1. Model parameter values.

Parameters Values Unit Sources

P0 50,000 Person Assumption
t 15 Month Assumption
r 0.02 Non-dimensional Assumption

σ1 0.01 Non-dimensional Assumption
σ2 0.01 Non-dimensional Assumption
a 1 Non-dimensional Assumption
c 10 Non-dimensional Assumption
y [–150, 150] Non-dimensional Assumption
z [0, 15] Non-dimensional Assumption

By Theorem 2, the solution Pt has an uncertain distribution

Ψ(x) = sup
f (y,z)=x

Φt(y) ∧ Υt(z).

where f (y, z) = P0 exp(rt + σ1y)(1 + σ2)
z. When x changes gradually from 0 to 120,000, we

get the uncertain distribution Ψ(x) of solution Pt, as shown in Figure 3. It can be observed
that Ψ(x) is a continuous and increasing function. Furthermore, Figure 3 indicates that the
spread of Ebola virus has caused intermittent pauses in the population.
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5.4. Stability Analysis of UPMJ

The stability for UPMJ related to the transmission of Ebola virus is of great significance
in practice. The UPMJ is stable, meaning that any small changes in the initial value will
not result in a substantial effect on the uncertain dynamic population system. Parameters
including t, r, σ1, σ2, a, c, y, and z are also shown in Table 1. Let P0 = 50,000 and P0 = 50,500,
when x ranges gradually from 0 to 120,000, the uncertain distributions Ψ(x) of solution Pt
are shown in Figure 4. It can be seen that when the initial value P0 increases from 50,000 to
50,500, the uncertain distribution Ψ(x) is not sensitive, indicating that the UPMJ under the
background of Ebola virus spread is stable. Figure 4 is in line with our expectation, which
can provide certain theoretical basis for decision-makers to make decisions.
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6. Conclusions

In this paper, an UPMJ is established to simulate dramatic drifts embedded in an
uncertain population dynamic system. In addition, the characteristics of the distribution
function and the stability of solution for the UPMJ are illustrated via a numerical example
related to the transmission of Ebola virus.

It is obvious that our work is just the first step to study uncertain population sys-
tems subjected to sudden shocks. Recently, using mathematical models to solve practical
problems has attracted the attentions of more and more scholars. This paper only dis-
cusses an UPMJ in an uncertain environment from the theoretical aspect. For future work,
applications of the UPMJ could be studied.

In practice, without any historical data, Liu [24] proposed a questionnaire survey
method to obtain expert experience data. Then, he proposed the linear interpolation
method and Delphi method to obtain the empirical uncertainty distribution according to
the obtained expert experience data. The unknown parameters in the empirical uncertainty
distribution are estimated by the least square multiplication and moment method.

Of course, the researchers can further study with only a small amount of historical data.
Lio and Liu [30] proposed the uncertain maximum likelihood function estimation method
to estimate the unknown parameters in the model. The uncertain likelihood function was
defined as

L(θ|x1 , x2, . . . , xn) =
n
∧

i=1
F′(xi |θ), (26)

where θ is a vector of unknown parameters, x1, x2, . . . , xn are the observed values of the
sample, and F′ is the derivative of the uncertainty distribution function of the sample.
According to the theory of uncertain maximum likelihood estimation, the estimation of
unknown parameters is given by

θ∗ = argmax
θ

L(θ|x1 , x2, . . . , xn). (27)

Our future work will apply the ideas and methods proposed by Liu [24] and Lio and
Liu [30] to study the applications of the UPMJ.

Author Contributions: C.G. analyzed and prepared/edited the manuscript, Z.Z. analyzed and
prepared the manuscript, B.L. analyzed and prepared the manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by Fundamental Research Program of Shanxi Province Scientific
No. 20210302124310 and Planning Project of Philosophy and Social Science of Shanxi Province No.
2020YJ132.

Institutional Review Board Statement: Not applicable.



Mathematics 2022, 10, 2265 12 of 12

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful to two referees for their careful reading and
valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Malthus, T. An Essay on the Principle of Population as it Affects the Future Improvement of Society with Remarks on the Speculations of Mr.

Godwin, M. Condorcot and Other Writers; J. Johnson: London, UK, 1798.
2. Wiener, N. Differential space. J. Math. Phys. 1923, 2, 131–174. [CrossRef]
3. Ito, K. Stochastic differential equations in a differentiable manifold. Nagoya Math. J. 1950, 1, 35–47. [CrossRef]
4. Jacod, J.; Protter, P. Time reversal on Lévy processes. Ann. Probab. 1988, 16, 620–641. [CrossRef]
5. Liu, B. Uncertainty Theory, 2nd ed.; Springer: Berlin, Germany, 2007.
6. Lu, Z.; Yan, H.; Zhu, Y. European option pricing model based on uncertain fractional differential equation. Fuzzy Optim. Decis.

Mak. 2019, 18, 199–217. [CrossRef]
7. Shi, G.; Sheng, Y. Stability in uncertain distribution for backward uncertain differential equation. J. Intell. Fuzzy Sys. 2019, 37,

7103–7110. [CrossRef]
8. Gu, Y.; Zhu, Y. Adams predictor–corrector method for solving uncertain differential equation. Comput. Appl. Math. 2021, 40, 61.

[CrossRef]
9. Wang, J.; Zhu, Y. Solutions of linear uncertain fractional-order delay differential equations. Soft Comput. 2020, 24, 17875–17885.

[CrossRef]
10. Yao, K.; Liu, B. Parameter estimation in uncertain differential equations. Fuzzy Optim. Decis. Mak. 2020, 19, 1–12. [CrossRef]
11. Sheng, Y.; Yao, K.; Chen, X. Least squares estimation in uncertain differential equations. IEEE Trans. Fuzzy Syst. 2020, 28,

2651–2655. [CrossRef]
12. Yao, K. Uncertain differential equation with jumps. Soft Comput. 2015, 19, 2063–2069. [CrossRef]
13. Yao, K. Uncertain Differential Equation; Springer: Berlin/Heidelberg, Germany, 2016.
14. Jin, T.; Xia, H.; Gao, S. Reliability analysis of the uncertain fractional-order dynamic system with state constraint. Math. Methods

Appl. Sci. 2022, 45, 2615–2637. [CrossRef]
15. Tao, N.; Zhu, Y. Stability and attractivity in optimistic value for dynamical systems with uncertainty. Int. J. Gen. Syst. 2016, 45,

418–433. [CrossRef]
16. Shi, G.; Li, X.; Jia, L. Stability in p-th moment of multi-dimensional uncertain differential equation. J. Intell. Fuzzy Syst. 2020, 38,

5267–5277. [CrossRef]
17. Jia, L.; Sheng, Y. Stability in distribution for uncertain delay differential equation. Appl. Math. Comput. 2019, 343, 49–56. [CrossRef]
18. Liu, Z.; Yang, Y. Pharmacokinetic model based on multifactor uncertain differential equation. Appl. Math. Comput. 2021,

392, 125722. [CrossRef]
19. Yao, K.; Ke, H.; Sheng, Y. Stability in mean for uncertain differential equation. Fuzzy Optim. Decis. Mak. 2015, 14, 365–379.

[CrossRef]
20. Jia, L.; Liu, X. Optimal harvesting strategy based on uncertain logistic population model. Chaos Solitons Fractals 2021, 152, 111329.

[CrossRef]
21. Deng, S.; Fei, C.; Mei, C. Age-structured population model under uncertain environment. Soft Comput. 2021, 25, 13411–13423.

[CrossRef]
22. Sheng, Y.; Gao, R.; Zhang, Z. Uncertain population model with age-structure. J. Intell. Fuzzy Syst. 2017, 33, 853–858. [CrossRef]
23. Zhang, Z.; Yang, X. Uncertain population model. Soft Comput. 2020, 24, 2417–2423. [CrossRef]
24. Liu, B. Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty; Spring: Berlin/Heidelberg, Germany, 2010.
25. Ji, X.; Ke, H. Almost sure stability for uncertain differential equation with jumps. Soft Comput. 2016, 20, 547–553. [CrossRef]
26. Ma, W.; Liu, L.; Zhang, X. Stability in p-th moment for uncertain differential equation with jumps. J. Intell. Fuzzy Syst. 2017, 33,

1375–1384. [CrossRef]
27. Liu, S. Exponential stability of uncertain differential equation with jumps. J. Intell. Fuzzy Syst. 2019, 37, 6891–6898. [CrossRef]
28. Gao, R. Stability in mean for uncertain differential equation with jumps. Appl. Math. Comput. 2019, 346, 15–22. [CrossRef]
29. Liu, S.; Liu, L.; Wang, N.; Zhang, J. The p-th moment exponential stability of uncertain differential equation with jumps. J. Intell.

Fuzzy Syst. 2020, 39, 4419–4425. [CrossRef]
30. Lio, W.; Liu, B. Uncertain maximum likelihood estimation with application to uncertain regression analysis. Soft Comput. 2020, 24,

9351–9360. [CrossRef]

http://doi.org/10.1002/sapm192321131
http://doi.org/10.1017/S0027763000022819
http://doi.org/10.1214/aop/1176991776
http://doi.org/10.1007/s10700-018-9293-4
http://doi.org/10.3233/JIFS-182877
http://doi.org/10.1007/s40314-021-01461-2
http://doi.org/10.1007/s00500-020-05037-w
http://doi.org/10.1007/s10700-019-09310-y
http://doi.org/10.1109/TFUZZ.2019.2939984
http://doi.org/10.1007/s00500-014-1392-8
http://doi.org/10.1002/mma.7943
http://doi.org/10.1080/03081079.2015.1072522
http://doi.org/10.3233/JIFS-191880
http://doi.org/10.1016/j.amc.2018.09.037
http://doi.org/10.1016/j.amc.2020.125722
http://doi.org/10.1007/s10700-014-9204-2
http://doi.org/10.1016/j.chaos.2021.111329
http://doi.org/10.1007/s00500-021-06164-8
http://doi.org/10.3233/JIFS-162080
http://doi.org/10.1007/s00500-018-03678-6
http://doi.org/10.1007/s00500-014-1521-4
http://doi.org/10.3233/JIFS-17332
http://doi.org/10.3233/JIFS-190771
http://doi.org/10.1016/j.amc.2018.09.068
http://doi.org/10.3233/JIFS-200409
http://doi.org/10.1007/s00500-020-04951-3

	Introduction 
	Uncertain Population Model with Jumps (UPMJ) 
	Solution of UPMJ 
	Stability Analysis 
	A Numerical Example 
	The Disturbance on Birth Rate 
	The Disturbance on Death Rate 
	Uncertain Distribution (x)  of Solution Pt  
	Stability Analysis of UPMJ 

	Conclusions 
	References

