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Abstract: In the paper, we make the first attempt to derive a family of two-parameter homogenization
functions in the doubly connected domain, which is then applied as the bases of trial solutions for
the inverse conductivity problems. The expansion coefficients are obtained by imposing an extra
boundary condition on the inner boundary, which results in a linear system for the interpolation of
the solution in a weighted Sobolev space. Then, we retrieve the spatial- or temperature-dependent
conductivity function by solving a linear system, which is obtained from the collocation method
applied to the nonlinear elliptic equation after inserting the solution. Although the required data
are quite economical, very accurate solutions of the space-dependent and temperature-dependent
conductivity functions, the Robin coefficient function and also the source function are available. It is
significant that the nonlinear inverse problems can be solved directly without iterations and solving
nonlinear equations. The proposed method can achieve accurate results with high efficiency even for
large noise being imposed on the input data.

Keywords: nonlinear elliptic equation; doubly connected domain; inverse problems; two-parameter
homogenization functions

MSC: 65N21; 65N35

1. Introduction

In recent decades, a large number of inverse problems of the nonlinear elliptic-type
partial differential equation (PDE) have been well investigated, involving the inverse source
problem, inverse conductivity problem as well as inverse Robin problem, which arise in
several branches of applications in science and engineering. Analytical solutions to inverse
problems are difficult to obtain since some information is missing, such as the boundary
conditions or sources compared with the forward problems. Therefore, many numerical
approaches have been developed to resolve inverse problems [1]. In the linear elliptic type
PDEs, for identifying unknown sources, the regularization methods were advocated in [2,3].
Klose [4] solved an inverse source problem based on the radiative transfer equation arising
in optical molecular imaging. In Ref. [5], Hon et al. applied Green’s function for the inverse
source identification. Then Li et al. [6] proposed the modified regularization method on
the Poisson equation for determining an unknown source. Ahmadabadi and co-workers
proposed the method of fundamental solutions for the inverse space-dependent heat source
problems by using a new transformation [7]. The source function for a seawater intrusion
problem in an unconfined aquifer has been studied by Slimani [8]. The inverse source
problems were examined by Alahyane et al. [9] using the regularized optimal control
method. Some new regularization methods were proposed for inverse source problems
governed by fractional PDEs [10,11]. Nguyen [12] investigated the inverse source problems
of the fractional diffusion equations based on the Tikhonov regularization method. Recently,
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Liu [13] have proposed a new procedure of boundary functions, which preserves the energy
identity to identify the sources of 2D elliptic-type nonlinear PDEs. However, the methods
proposed in [13] required extra boundary conditions of source function on a rectangle. We
will extend the work to any 2D nonlinear elliptic equation without using extra boundary
data of the source function in the doubly connected domain.

On the other hand, linear and nonlinear inverse conductivity problems have been stud-
ied by many authors. Kwon considered the anisotropic inverse conductivity and scattering
problems [14]. The inverse problem of time-dependent thermal conductivity was studied
by Huntul and Lesnic by recasting the original problems into the nonlinear least-squares
minimization [15]. Isakov and Sever provided an integral equation method for inverse
conductivity problems using the linearization method [16]. Based on Calderón’s lineariza-
tion method, a new direct algorithm was suggested for the anisotropic conductivities [17].
Liu et al. [18] constructed two-parameter homogenization functions for solving the bend-
ing problem of a thin plate in a rectangular domain where the boundary conditions can
be exactly satisfied. Using the Lie-group iterative method, Liu and Atluri [19] solved the
linear Calderón inverse problem in a rectangular domain, where the unknown conductivity
function is effectively recovered. The linear and nonlinear inverse conductivity problems
have also been studied by meshless methods, such as the meshless local Petrov-Galerkin
method [20], the singular boundary method [21], and the local radial point interpolation
method [22], the method of fundamental solutions [23], etc.

In this paper, based on the previous work in [18,19], we focus on the construction
of two-parameter 2D homogenization functions in a doubly connected domain, and take
linear equations to identify the space-dependent and temperature-dependent conductivity
functions, the Robin coefficient function and also the source function in the 2D nonlinear
elliptic equations. The derived homogenization functions are used as the bases. The
undetermined expansion coefficients are solved by imposing the extra boundary conditions.
In this way, the nonlinear inverse problems can be solved directly with high accuracy and
efficiency even when twenty percent of noise is added to the known data.

We arrange the rest of this paper as follows. Section 2 describes some nonlinear inverse
problems in a doubly connected domain of a 2D nonlinear elliptic equation, which includes
the recovery of conductivity functions α(x, y) and α(u), the inverse Robin problem and the
inverse source problem. In Section 3, we develop the homogenization functions with two
parameters. In Section 4, the two-parameter homogenization functions act as the bases
for the solution. In Section 5, the space-dependent conductivities of inverse problems
are considered. In Section 6, we solve the temperature-dependent conductivity inverse
problems. The inverse Robin problem and one example are given in Section 7, and the
inverse source problem is solved in Section 8, where two examples are given. Section 9
makes the conclusions.

2. Nonlinear Inverse Problems

For this part, we briefly sketch the problems to be considered that desire the retrieval
of unknown functions in the doubly connected domains.

2.1. Space-Dependent Inverse Conductivity Problem

First a space-dependent conductivity function α(x, y) is to be recovered from

∇ · [α(x, y)∇u(x, y)] = Q(u, ux, uy) + S(x, y), (x, y) ∈ Ω ⊂ R2, (1)

u(x, y) = h1(x, y), (x, y) ∈ Γo, (2)

un(x, y) = g(x, y), (x, y) ∈ Γo, (3)

where n is an outward unit normal on Γo. Besides an unknown conductivity function
α(x, y) and the unknown solution u(x, y), other functions are given.
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Ω is a doubly connected domain with boundary Γ = Γo ∪ Γi, where Γo ∩ Γi = ∅. While
Γo := {(r, θ)|r = ρo(θ), 0 ≤ θ ≤ 2π} denotes an outer boundary, Γi := {(r, θ)|r = ρi(θ),
0 ≤ θ ≤ 2π} is an inner boundary. 0 < ρi(θ) < ρo(θ) are, respectively, the radius functions
of inner boundary and outer boundary. In order to recover α(x, y), we over-specify

u(x, y) = h2(x, y), (x, y) ∈ Γi, (4)

where h2(x, y) is a given function. In Figure 1, we sketch the inverse conductivity problem.

 

x,y)=?
r= o( )

r= i( )

Given h2( )

Given h1( ), g( )

Figure 1. A schematic plot to show a doubly connected domain and for identification.

In the polar coordinates (r, θ), Equation (1) is recast to

α

[
urr +

1
r

ur +
1
r2 uθθ

]
+ αrur +

1
r2 αθuθ = Q(u, ur, uθ) + S(r, θ). (5)

Equation (5) is a first-order PDE for the function α(r, θ) = α(x, y) with respect to r and
θ, where ur, uθ , urr and uθθ are the coefficient functions. It is a nontrivial task to determine
α even with the known u prescribed inside the Ω unless the boundary information of α
on Γ is given in advance. Indeed, the inverse conductivity problem, which is considered
in this paper, becomes more difficult and troublesome since the information of u is not
given inside the solution domain, and only the boundary information is given according to
Equations (2)–(4).

2.2. Temperature-Dependent Inverse Conductivity Problem

Secondly, we attempt to retrieve α(u) in[
urr +

1
r

ur +
1
r2 uθθ

]
α(u) + α′(u)u2

r +
1
r2 α′(u)u2

θ = Q(u, ur, uθ) + S(r, θ), (6)

when S and Q are given.
The temperature-dependent inverse conductivity problem is to determine the un-

known conductivity function α(u) considering the above governing equation along with
the information from Equations (2)–(4). The problem becomes harder for the reason that
Equation (6) is nonlinear for u and linear ODE for α(u) with respect to u.

2.3. Inverse Robin Problem to Determine γ(θ)

In the inner boundary, which is an inaccessible part of the boundary Γ, we cannot
directly detect the transfer coefficient γ(θ) in

un(x, y) + γ(θ)u(x, y) = h3(x, y), (x, y) ∈ Γi. (7)
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When the information of u(x, y) and un(x, y) on Γi is unknown, h3(x, y) is given.
Taken into the consideration of Equations (1)–(3), the unknown Robin coefficient γ(θ) will
be recovered, which is known as the inverse Robin problem.

2.4. Inverse Problem for S(x, y)

When the function u(x, y) is known in advance, we can recover S(x, y) by

S(x, y) = ∇ · [α(x, y)∇u(x, y)]−Q(u, ux, uy), (8)

where α(x, y) and Q(u, ux, uy) are given functions. We will show that S(x, y) is recoverable
from Equations (2)–(4) and (8), without solving nonlinear equations.

3. Two-Parameter Basis Functions

First, we demonstrate the basic idea of homogenization function by starting from a 2D
boundary value problem (BVP):

L[u(x, y)] = S(x, y), (x, y) ∈ (0, a)× (0, b), (9)

u(0, y) = h1(y), u(a, y) = h2(y), u(x, 0) = h3(x), u(x, b) = h4(x), (10)

where L is a second-order linear differential operator. Let

B0(x, y) = h1(y)
(

1− x
a

)
+

x
a

h2(y), (11)

and then,
B0(0, y) = h1(y), B0(a, y) = h2(y) (12)

are apparent.
Upon letting

B(x, y) = B0(x, y) +
(

1− y
b

)
[h3(x)− B0(x, 0)] +

y
b
[h4(x)− B0(x, b)], (13)

and according to the following compatibility conditions:

h3(0) = B0(0, 0) = h1(0), h4(0) = B0(0, b) = h1(b),

h3(a) = B0(a, 0) = h2(0), h4(a) = B0(a, b) = h2(b), (14)

it is easy to verify

B(0, y) = h1(y), B(a, y) = h2(y), B(x, 0) = h3(x), B(x, b) = h4(x). (15)

Therefore, we can produce the 2D homogenization function for the 2D BVP:

B(x, y) =
(

1− x
a

)[
h1(y)−

(
1− y

b

)
h3(0)−

y
b

h4(0)
]

+
x
a

[
h2(y)−

(
1− y

b

)
h3(a)− y

b
h4(a)

]
+
(

1− y
b

)
h3(x) +

y
b

h4(x). (16)

Due to B(x, y), we can transform the original 2D BVP with non-homogeneous bound-
ary conditions to one with homogeneous boundary conditions:

L[v(x, y)] = S(x, y)−L[B(x, y)], (x, y) ∈ (0, a)× (0, b), (17)

v(0, y) = v(a, y) = v(x, 0) = v(x, b) = 0, (18)

with the help of the variable transformation from u(x, y) to v(x, y) = u(x, y) − B(x, y).
Obviously, Equations (17) and (18) are more easy to tackle than Equations (9) and (10). As
an extension of B(x, y) to a two-parameter family, we have
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B(x, y, j, k) =
[

1−
( x

a

)j
][

h1(y)−
[

1−
(y

b

)k
]

h3(0)−
y
b

h4(0)
]

+
( x

a

)j
[

h2(y)−
(

1−
(y

b

)k
)

h3(a)−
(y

b

)k
h4(a)

]
+

(
1−

(y
b

)k
)

h3(x) +
(y

b

)k
h4(x). (19)

B(x, y, j, k) is indeed a family of 2D polynomials, which are complete bases and satisfy the
boundary conditions automatically,

B(0, y, j, k) = h1(y), B(a, y, j, k) = h2(y), B(x, 0, j, k) = h3(x), B(x, b, j, k) = h4(x). (20)

A function is a so-called homogenization function if it satisfies the boundary conditions
on the boundary of a domain. Since the solution u(x, y) must satisfy the prescribed
boundary conditions, it is a member of homogenization functions.

Continuously, the two-parameter homogenization functions are constructed for devel-
oping the present method to solve the inverse problems of Equations (1)–(4).

Definition 1. B0(r, θ) ∈ C2(Ω), with Γo = {(r, θ)|r = ρo(θ), 0 ≤ θ ≤ 2π}, is a homogeniza-
tion function, if the following conditions:

B0(ρo, θ) = h1(θ), B0
n(ρo, θ) = g(θ) (21)

are fulfilled. h1(θ) and g(θ) read as h1(ρo(θ) cos θ, ρo(θ) sin θ) and g(ρo(θ) cos θ, ρo(θ) sin θ),
respectively, and B0

n signifying the normal derivative of B0(r, θ) on Γo is given by

B0
n(ρo, θ) = η(θ)

[
∂B0(ρo, θ)

∂ρo
− ρ′o

ρ2
o

∂B0(ρo, θ)

∂θ

]
, (22)

where

η(θ) =
ρo(θ)√

ρ2
o(θ) + ρ′o(θ)2

. (23)

The following homogenization function has been derived [18]:

B0(r, θ) = h1(θ) + [r− ρo(θ)]
∂u(ρo, θ)

∂ρo
, (24)

B0(ρo, θ) = h1(θ), B0
n(ρo, θ) = g(θ). (25)

Theorem 1. For the given Cauchy data h1(θ) and g(θ) on Γo, there exist homogenization functions
B(j, k, r, θ) in Ω, satisfying Equation (21):

B(j, k, r, θ) =

[
2r
ρo
− r2

ρ2
o

]j

h1(θ) +

[
rk

kρk−1
o
− ρo

k

]
∂u(ρo, θ)

∂ρo
, (26)

where j + 1, k ∈ N are parameters.

Proof. By Equation (26), B(j, k, ρo, θ) = h1(θ) satisfies the first equation in Equation (21).
Next, we consider the second equation in Equation (21), for which we need to prove

∂B(j, k, ρo, θ)

∂ρo
=

∂u(ρo, θ)

∂ρo
,

∂B(j, k, ρo, θ)

∂θ
=

∂u(ρo, θ)

∂θ
. (27)

It is obvious that
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[
2r
ρo
− r2

ρ2
o

]j
∣∣∣∣∣
r=ρo

= 1,
∂

∂r

[
2r
ρo
− r2

ρ2
o

]j
∣∣∣∣∣
r=ρo

= 0, (28)

∂

∂θ

[
2r
ρo
− r2

ρ2
o

]j
∣∣∣∣∣
r=ρo

= j
[

2r
ρo
− r2

ρ2
o

]j−1[−2rρ′o
ρ2

o
+

2r2ρ′o
ρ3

o

]∣∣∣∣∣
r=ρo

= 0, (29)

[
rk

kρk−1
o
− ρo

k

]∣∣∣∣∣
r=ρo

= 0,
∂

∂r

[
rk

kρk−1
o
− ρo

k

]∣∣∣∣∣
r=ρo

= 1, (30)

∂

∂θ

[
rk

kρk−1
o
− ρo

k

]∣∣∣∣∣
r=ρo

=

[
rk

k
(1− k)ρ−k

o ρ′o −
ρ′o
k

]∣∣∣∣∣
r=ρo

= −ρ′o. (31)

It follows from Equations (26), (28) and (30) that the first part in Equation (27) holds
when B(j, k, r, θ) is differentiated to r, and we take r = ρo(θ) on Γo.

The second part in Equation (27) is proven below. It follows from Equation (2) that

h′1(θ) =
∂u(ρo, θ)

∂ρo
ρ′o(θ) +

∂u(ρo, θ)

∂θ
. (32)

From Equations (26) and (28)–(32), it follows that

∂B(j, k, ρo, θ)

∂θ
= h′1(θ)− ρ′o(θ)

∂u(ρo, θ)

∂ρo

=
∂u(ρo, θ)

∂ρo
ρ′o(θ) +

∂u(ρo, θ)

∂θ
− ρ′o(θ)

∂u(ρo, θ)

∂ρo
=

∂u(ρo, θ)

∂θ
. (33)

Due to Equation (27),

Bn(j, k, ρo, θ) = η(θ)

[
∂B(j, k, ρo, θ)

∂ρo
− ρ′o

ρ2
o

∂B(j, k, ρo, θ)

∂θ

]
= η(θ)

[
∂u(ρo, θ)(ρo, θ)

∂ρo
− ρ′o

ρ2
o

∂u(ρo, θ)

∂θ

]
= g(θ) = un(x, y), (x, y) ∈ Γo, (34)

thus we prove
B(j, k, ρo, θ) = h1(θ), Bn(j, k, ρo, θ) = g(θ), (35)

which ends the proof of this theorem.

In Theorem 1, the numbers (j, k) are parameters, and then B(j, k, r, θ) is a two-parameter
function. In addition to Theorem 1, we also have the following result for another two-
parameter function E(j, k, r, θ).

Theorem 2. On Γo given the Cauchy data h1(θ) and g(θ), the two-parameter function E(j, k, r, θ) ∈
C2(Ω) satisfies Equation (21):

E(j, k, r, θ) = B0(r, θ) + [r− ρo(θ)]
2xj−kyk = B0(r, θ) + [r− ρo(θ)]

2rj(cos θ)j−k(sin θ)k, (36)

where j + 1, k ∈ N are parameters and B0 was defined by Equation (24).

Proof. Let
E0(r, θ) := [r− ρo(θ)]

2.

When r = ρo(θ), it is obvious that

E0(r, θ) = [r− ρo(θ)]
2 = 0, E0

n(r, θ) = 2[r− ρo(θ)][r− ρo(θ)]n = 0. (37)
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Inserting r = ρo(θ) into Equation (36) and using Equations (24), (25) and (37), it follows that

E(j, k, ρo, θ) = h1(θ).

Taking the normal derivative of Equation (36) on Γo and using Equations (24), (25) and
(37), we have

En(j, k, ρ, θ) = B0
n(ρo, θ) + E0

n(r, θ)rj(cos θ)j−k(sin θ)k + E0(r, θ)[rj(cos θ)j−k(sin θ)k]n

= B0
n(ρo, θ) = g(θ), when r = ρo(θ).

This completes the proof.

4. A Novel Two-Parameter Homogenization Function Method

Since the set E(j, k, r, θ) is generated from the Pascal polynomials xj−kyk, it is a com-
plete basis for the problem. By the same token, B(j, k, r, θ) is a complete basis. All the
homogenization functions consist of a weighted Sobolev space denoted as B := {v(x, y) ∈
C2(Ω)|v(x, y) = h1(x, y), vn(x, y) = g(x, y), (x, y) ∈ Γo}, which is a weighted space,
because for any two functions v1(x, y), v2(x, y) ∈ B with a weighted linear combination
w1v1(x, y) + w2v2(x, y) ∈ B where w1 + w2 = 1. The Sobolev norm

‖v(x, y)‖2 :=
∫ 2π

0
[v2(ρo cos θ, ρo sin θ) + v2

n(ρo cos θ, ρo sin θ)]dθ (38)

is defined in the space B. More importantly, the approximate solution u(x, y) ∈ B.
In terms of the bases B(j, k, x, y), u(x, y) can be expanded by

u(x, y) ≈
m−1

∑
j=0

m

∑
k=1

ajkB(j, k, x, y), (39)

where ajk satisfies
m−1

∑
j=0

m

∑
k=1

ajk = 1, (40)

and guarantees conditions (2) and (3) being satisfied by u(x, y). The number of the coeffi-
cients ajk is n1 = m2.

As shown in Equation (4), we suppose that there are N data of u(x, y) on the inner
boundary Γi available, and then we can solve a linear system, including Equation (40), to
determine ajk:

m−1

∑
j=0

m

∑
k=1

ajkB(j, k, xq, yq) = h2(xq, yq), (41)

where θq = 2qπ/N, xq = ρi(θq) cos θq and yq = ρi(θq) sin θq.

5. Numerical Procedure to Determine α(x, y)
5.1. Numerical Algorithm

Next, when u(x, y) is obtained from Equation (39), we recover α(x, y) by supposing

α(x, y) =
m0

∑
i=0

i

∑
j=0

bijxi−jyj =
m0

∑
i=0

i

∑
j=0

bijri(cos θ)i−j(sin θ)j, (42)

where bij are n := (m0 + 1)(m0 + 2)/2 unknown weighted parameters to be determined by
the proposed numerical algorithm. In order to solve this problem, m1 ×m2 points of (x, y)
inside the solution domain Ω are collocated by
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xpq = rp cos θq, ypq = rp sin θq,

θq = 2qπ/m1, rp = ρi(θq) + p[ρo(θq)− ρi(θq)]/(m2 + 1), q = 1, . . . , m1, p = 1, . . . , m2. (43)

Since u(x, y) can be approximated by Equation (39), we have

u(xpq, ypq) =
m−1

∑
j=0

m

∑
k=1

ajkB(j, k, xpq, ypq). (44)

Then, inserting Equation (42) into Equation (5) and collocating at point (xpq, ypq), the
following linear system can be obtained:

∆u(xpq, ypq)
m0

∑
i=0

i

∑
j=0

bijx
i−j
pq yj

pq + ur(xpq, ypq)
m0

∑
i=0

i

∑
j=0

ibijri−1
p (cos θq)

i−j(sin θq)
j

+
1
r2

p
uθ(xpq, ypq)

m0

∑
i=0

i

∑
j=0

bijri
p[j(cos θq)

i−j+1(sin θq)
j−1 − (i− j)(cos θq)

i−j−1(sin θq)
j+1]

= Q(u(xpq, ypq), ur(xpq, ypq), uθ(xpq, ypq)) + S(rp, θq), q = 1, . . . , m1, p = 1, . . . , m2, (45)

from which we can determine bij easily, and, correspondingly, the α(x, y) can be determined
from Equation (42).

Therefore, the proposed algorithm for recovering α(x, y) consists of two linear systems
of equations, Equations (41) and (45). We impose the data by a noise:

ĥ1(θj) = h1(θj) + sR(j), ĝ(θj) = g(θj) + sR(j), (46)

where R(j) are random numbers between [−1, 1], which are used to check the stability of
the numerical solution.

To evaluate the accuracy, we consider the maximum error (ME) and a relative error
defined by

ME(α) := max |αn(xpq, ypq)− α(xpq, ypq)|, (47)

e(α) =

√√√√√∑N1
q=1 ∑N2

p=1[αn(xpq, ypq)− α(xpq, ypq)]2

∑N1
q=1 ∑N2

p=1 α2(xpq, ypq)
, (48)

upon comparing the numerical solution of αn to the exact one α at N1 × N2 grid points
(xi, yj) inside the domain with

xpq = rp cos θq, ypq = rp sin θq,

θq = 2qπ/N1, rp = ρi(θq) + p[ρo(θq)− ρi(θq)]/(N2 + 1), q = 1, . . . , N1, p = 1, . . . , N2. (49)

We take N1 = 50 and N2 = 10 in all computations.
We must emphasize that all the linear systems we consider are over-determined, which

means that the number of linear equations is much larger than the number of unknown coeffi-
cients. Therefore, we apply the conjugate gradient method (CGM) to solve the corresponding
normal linear system, whose solution is unique in the sense of least squares.

5.2. Example 1

For Equation (5) with Q = 0, we consider

u = r2 + r cos θ = x2 + y2 + x, α = 10 + r2 + r4 cos2 θ = 10 + (x2 + y2)(x2 + 1). (50)

The outer boundary of the domain Ω is an ellipse:
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ρo(θ) =
ab√

b2 + (a2 − b2) sin2 θ
, (51)

where we take a = 1.5 and b = 0.5, and the inner boundary is ρi = 0.2.
With m = 2, N = 40, m0 = 4, m1 = 30, m2 = 10 and a noise s = 5% added into the

given data, Figure 2a reveals that the maximum absolute error of u is 2.11× 10−2, which
is much smaller than max(u) = 3.29. The maximum absolute error of coefficient α(x, y)
denoted as ME(α) is 0.18, which is quite a lot smaller than max(α) = 15.56. The value
e(α) = 3.8× 10−3 is smaller than 7.65× 10−2 from previous studies. For this problem the
dimension of the normal matrix of the first linear system of (41) and (40) is n1 × n1 = 4× 4,
and the condition number is small with COND = 570.046. The dimension of the normal
matrix of the second linear system (45) is n× n = 15× 15, and the condition number is
COND = 41996.23. They show that these two linear systems are stable.
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Figure 2. For example 1, showing the errors in the numerical recovery of u and α under a noise
s = 0.05, (a) Q = 0 and (b) Q = u2.

The convergence rate is a central issue in numerical methods and algorithms. In
Table 1, we consider a different mesh parameter m1 ×m2 used in the collocation method
to influence the convergence rate as reflected in ME(α) and e(α). It can be seen that more
collocated points lead to a more accurate solution of α.

Table 1. For example 1, the influence of mesh parameter m1 ×m2 on ME(α) and e(α).

m1 × m2 5 × 5 7 × 5 10 × 10 10 × 5 30 × 10

ME(α) 7.7369 1.8430 0.4017 0.2147 0.18364
e(α) 1.46× 10−1 2.34× 10−2 1.83× 10−2 5.15× 10−2 3.79× 10−3

Although for a nonlinear elliptic equation:

α

[
urr +

1
r

ur +
1
r2 uθθ

]
+ αrur +

1
r2 αθuθ = u2(r, θ) + S(r, θ), (52)
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where the exact value of S(r, θ) can be obtained by inserting Equation (50) into the above
equation, as shown in Figure 2b, the ME of u is 2.11× 10−2, the ME of α(x, y) is 0.18 and
e(α) = 3.74× 10−3. For the nonlinear problem, we have the same condition numbers
because the parameters used are the same.

5.3. Example 2

Consider

α

[
urr +

1
r

ur +
1
r2 uθθ

]
+ αrur +

1
r2 αθuθ = sin u(r, θ) + u2(r, θ) + S(r, θ), (53)

u = r2 + r cos θ = x2 + y2 + x, α = 20 + r2 sin(2θ) = 20 + 2xy. (54)

For this problem, the outer boundary is given by Equation (51) with a = 4 and b = 3.5, and

ρi(θ) = 1.5 + cos θ (55)

is the inner boundary. Feeding Equation (54) into Equation (53), S(r, θ) can be obtained.
With m = 2, N = 50, m0 = 2, m1 = 10, m2 = 10 and a noise s = 20%, as shown in

Figure 3, the ME of u is 1.44× 10−2, which is much smaller than max(u) = 18.79. The ME
of α(x, y) is 2.47, which is much smaller than max(α) = 32.96. The value e(α) = 3.85× 10−2

is small. For this problem the dimension of the normal matrix of the first linear system (41)
and (40) is n1 × n1 = 4× 4, and the condition number is small with COND=1844.258. The
dimension of the normal matrix of the second linear system (45) is n× n = 6× 6, and the
condition number is COND = 1013.03. They show that these two linear systems are stable.
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Figure 3. For example 2, showing the errors in the numerical recovery of u and α under a noise
s = 0.2 with Q = u2 + sin u.

6. Numerical Algorithm to Determine α(u)
6.1. Numerical Algorithm

From the last section, we have already recovered the coefficients preceding α(u) and
u2

r + u2
θ/r2 preceding α′(u) in Equation (6), if Q and S are prescribed in advance. Indeed

u(x, y) can be derived from Equation (39). In this case, ∆u before α(u), and u2
r + u2

θ/r2

before α′(u) can be obtained numerically from Equation (39).
Suppose that

α(u) =
m0

∑
i=0

ciui, (56)

where ci are under-determined weighted parameters to be determined.
Similar to Equation (43) in the last section, we arrange m1 ×m2 points of (x, y) inside

the solution domain. Then, inserting Equation (56) into Equation (6) and collocating
(xpq, ypq), we come to
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m0

∑
i=0

ciui(xpq, ypq)∆u(xpq, ypq) +
m0

∑
i=0

ciiui−1(xpq, ypq)[u2
r (xpq, ypq) + u2

θ(xpq, ypq)/r2
p]

= Q(u(xpq, ypq), ur(xpq, ypq), uθ(xpq, ypq)) + S(xpq, ypq), p = 1, . . . , m2, q = 1, . . . , m1. (57)

from which we can obtain ci, and then, α(u) is recovered from Equation (56).
It should be noted here that that even for the highly nonlinear inverse problems for

coefficient α(u), solving nonlinear equations is not needed.

6.2. Example 3

For a quadratic nonlinear Poisson equation:

∆uα(u) + α′(u)u2
r +

1
r2 α′(u)u2

θ + u2 = S(r, θ), (58)

u = r2 = x2 + y2, (59)

α(u) = 10 + u2 + u is to be recovered. The outer boundary is Equation (51) with a = 3.5
and b = 2.5, and ρi = 1 is a unit circle.

With m = 2, N = 40, m0 = 2, m1 = 20, m2 = 5 and s = 5%, as shown in Figure 4a, the
ME of u is 5.68× 10−3, which is much smaller than max(u) = 10.7. The ME of α(u) is 0.082,
which is much smaller than max(α) = 135.43. The value e(α) = 6.03× 10−4 is quite small.
Figure 4b compares the numerical and exact α(u) in the range of u ≤ 11. These two curves
almost coincide.
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Figure 4. For example 3, showing (a) the errors in the numerical recovery of u and α and (b) the
numerical recovery of α under a noise s = 0.05.
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For this problem, the dimension of the normal matrix of the first linear system (41) and
(40) is n1 × n1 = 4× 4, and the condition number is very small with COND=33.959. The
dimension of the normal matrix of the second linear system (57) is n× n = 3× 3, and the
condition number is COND=177571.79. They show that these two linear systems are stable.

6.3. Example 4

For a quadratic and cubic nonlinear Poisson equation:

∆uα(u) + α′(u)u2
r +

1
r2 α′(u)u2

θ + u2 + u3 = S(r, θ), (60)

u = r2 = x2 + y2, (61)

α(u) = 10 + u2 + sin u is to be recovered. The boundaries of Ω are given by

ρo(θ) = 3

√
cos(2θ) +

√
1.5− sin2(2θ), (62)

ρi(θ) = exp(sin θ) sin2(2θ) + exp(cos θ) cos2(2θ). (63)

With m = 2, N = 40, m0 = 3, m1 = 15, m2 = 10 and s = 5%, as shown in Figure 5a,
the ME of u is 2.78× 10−2, which is much smaller than max(u) = 18.6. The ME of α(u) is
2.23, which is much smaller than max(α) = 356.45. The value e(α) = 9.35× 10−3 is quite
small. Figure 5b compares the numerical and exact α(u) in the range of u ≤ 19. These two
curves almost coincide.
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Figure 5. For example 4, showing (a) the errors in the numerical recovery of u and α and (b) the
numerical recovery of α under a noise s = 0.05.

For this problem, the dimension of the normal matrix of the first linear system (41)
and (40) is n1 × n1 = 4× 4, and the condition number is very small with COND=6.3185.
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The dimension of the normal matrix of the second linear system (57) is n× n = 4× 4, and
the condition number is COND = 2.15× 108.

To reduce the condition number for the second linear system (57), we choose m0 = 2,
m1 = 10 and m2 = 10, such that the dimension of the normal matrix reduces to n× n = 3× 3,
and the condition number reduces to COND = 297651.317. Meanwhile, ME(α) and e(α) are
slightly increased to 2.38 and 1.08× 10−2, respectively.

7. Numerical Method to Detect γ(θ)

7.1. Numerical Method

Now, we detect γ(θ) by using the data in Equations (2) and (3). Basically, we need to
solve Equations (1)–(3) in Ω. For this purpose, we take

u(x, y) =
m

∑
j=0

j

∑
k=0

ajkE(j, k, x, y), (64)

where the number of ajk, j, k = 1, . . . , m is n1 = (m + 1)(m + 2)/2, which are to be
determined. Instead of B(j, k, x, y) used in Equation (39), we employ E(j, k, x, y) from
Equation (36) as the bases of u(x, y). The reason is that the order of rj+2 in E(j, k, x, y) is
much lower than the order of r2j in B(j, k, x, y).

Like Equation (43), we arrange m1 ×m2 points of (x, y) and collocating which comes to:

α(xpq, ypq)
m

∑
j=0

j

∑
k=0

ajk∆E(j, k, xpq, ypq) + αx(xpq, ypq)
m

∑
j=0

j

∑
k=0

ajkEx(j, k, xpq, ypq)

+αy(xpq, ypq)
m

∑
j=0

j

∑
k=0

ajkEy(j, k, xpq, ypq) (65)

= Q

(
m

∑
j=0

j

∑
k=0

ajkE(j, k, xpq, ypq),
m

∑
j=0

j

∑
k=0

ajkEx(j, k, xpq, ypq),
m

∑
j=0

j

∑
k=0

ajkEy(j, k, xpq, ypq)

)
+S(xpq, ypq), p = 1, . . . , m2, q = 1, . . . , m1.

from which we can compute ajk, and then u(x, y) is obtained from Equation (64), which is
inserted in Equation (7) to find γ(θ) along the inner boundary Γi.

7.2. Example 5

We give a solution of a linear diffusion-convection equation:

α∆u(x, y) + αxux(x, y) + αyuy(x, y) = S(x, y), (66)

u = x2 + y2 + x, (67)

where α = 1 + x2 + y2, which is defined in a domain Ω by Equation (51) with a = 2.5 and
b = 1.5 and by

ρi(θ) = 1.3 + 0.1 cos θ. (68)

With m = 2, m1 = 20, m2 = 20 and s = 20%, as shown in Figure 6a, the ME of u is
4.58× 10−3, which is much smaller than max(u) = 8.16. Figure 6b compares the numerical
and exact γ(θ), of which these two curves almost coincide with the ME being 1.28× 10−2.
For this problem, we merely solve the linear system (65) and (40), whose dimension of the
normal matrix is n1 × n1 = 6× 6, and the condition number is small with COND = 446.16.
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Figure 6. For example 5, showing (a) the error in the numerical recovery of u and (b) comparing the
numerical recovery of γ under a noise s = 0.2.

8. Numerical Method to Recover S(x, y)

The numerical method to recover S(x, y) is very simple, which is obtained by merely
inserting the numerical solution of u(r, θ) in Equation (39) into the following equation:

S(r, θ) = α

[
urr +

1
r

ur +
1
r2 uθθ

]
+ αrur +

1
r2 αθuθ −Q(u(r, θ), ur(r, θ), uθ(r, θ)), (69)

where α(r, θ) and Q(u(r, θ), ur(r, θ), uθ(r, θ)) are given functions.

8.1. Example 6

For Equation (69) with Q = u2, we consider

u = r2 + r cos θ = x2 + y2 + x, α = 10 + r2 + r4 cos2 θ = 10 + (x2 + y2)(x2 + 1), (70)

with a = 1.5 and b = 0.5 in Equation (51), and we take ρi = 0.2.
In this case, we have m = 2, N = 30 and a noise s = 5% added into the given data, as

shown in Figure 7a, the maximum absolute error of u is 1.35× 10−2, which is much smaller
than max(u) = 3.29. The maximum absolute error of S(x, y), denoted as ME(S), is 1.22,
which is much more accurate than max S = 101.5. The value e(S) = 5.2× 10−3 is small.
For this problem, we merely solve the linear system (41) and (40), whose dimension of the
normal matrix is n1 × n1 = 4× 4, and the condition number is small with COND = 476.623.
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Figure 7. Showing the errors in the numerical recovery of u and S under a noise s = 0.05, (a) example
6 and (b) example 7.

In Table 2, we consider different mesh parameters N used in the collocation method
for u(x, y) to influence the convergence rate as reflected in ME(S) and e(S). It can be seen
that more collocated points lead to a more accurate solution of S.

Table 2. For example 6, the influence of mesh parameter N on ME(S) and e(S).

N 5 10 20 25 30

ME(S) 57.34 43.59 45.93 37.06 1.22
e(S) 1.18× 10−1 9.55× 10−2 8.70× 10−2 6.52× 10−2 5.24× 10−3

8.2. Example 7

For Equation (69) with Q = u2 + cos u, we consider

u = r2 = x2 + y2, α = 10 + r2 + r4 cos2 θ = 10 + (x2 + y2)(x2 + 1). (71)

The outer and inner boundaries are given by Equations (62) and (63), respectively.
For this example, we have m = 2, N = 20 and a noise s = 5%, as shown in

Figure 7b, the maximum absolute error of u is 2.03× 10−2, which is more accurate than
max(u) = 18.62. The ME of S(x, y) is 1.04, which is much smaller than max S = 4001.42.
The value e(S) = 2.99× 10−4 is quite small. The dimension of the normal matrix of the
linear system (41) and (40) is n1 × n1 = 4× 4, and the condition number is small with
COND = 19.858.

In Table 3, we consider different mesh parameters of N used in the collocation method
for u(x, y) to influence the convergence rate as reflected in ME(S) and e(S). It can be seen
that more collocated points lead to a more accurate solution of S and even for a small N = 3
the accuracy is good.
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Table 3. For example 7, the influence of mesh parameter N on ME(S) and e(S).

N 3 8 14 18 20

ME(S) 12.09 10.98 8.98 8.51 1.04
e(S) 3.70× 10−3 2.87× 10−3 2.57× 10−3 2.17× 10−3 2.99× 10−4

9. Conclusions

In the paper, we have constructed a category of two-parameter homogenization func-
tions in the 2D doubly connected domain for automatically satisfying the outer Dirichlet
and Neumann boundary conditions of the nonlinear elliptic equation. A new numerical
method was developed for solving the inverse problems through the technique of two-
parameter homogenization functions, which include the recovery of the space-dependent
and temperature-dependent conductivity functions and also the source function. We first
determine u(x, y) in terms of the bases and then a linear system to satisfy the inner bound-
ary condition by the method of collocation is solved. Back-substituting the solution into the
nonlinear elliptic equation, we recovered the unknown space-dependent and temperature-
dependent conductivity functions by collocating points inside the domain and solving the
derived linear equations. The basis B(j, k, x, y) has good behavior used in the interpolation
for u(x, y) in a weighted Sobolev space, such that we can recover u(x, y) very well; hence,
after the back substitution of u(x, y) into the governing equation, the source function was
directly recovered with high accuracy. It maintains the same advantages of accuracy and
efficiency for solving the inverse conductivity problems and inverse Robin problems, even
for large noise.
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