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Abstract: This paper proposes a fault-detection system for faulty induction motors (bearing faults,
interturn shorts, and broken rotor bars) based on multiresolution analysis (MRA), correlation and
fitness values-based feature selection (CFFS), and artificial neural network (ANN). First, this study
compares two feature-extraction methods: the MRA and the Hilbert Huang transform (HHT) for
induction-motor-current signature analysis. Furthermore, feature-selection methods are compared
to reduce the number of features and maintain the best accuracy of the detection system to lower
operating costs. Finally, the proposed detection system is tested with additive white Gaussian noise,
and the signal-processing method and feature-selection method with good performance are selected
to establish the best detection system. According to the results, features extracted from MRA can
achieve better performance than HHT using CFFS and ANN. In the proposed detection system, CFFS
significantly reduces the operation cost (95% of the number of features) and maintains 93% accuracy
using ANN.

Keywords: multiresolution analysis (MRA); correlation and fitness values-based feature selection
(CFFS); artificial neural network (ANN); feature selection

MSC: 68T07

1. Introduction

With the fourth industrial revolution developing, the way factories operate will no
longer be the same. Factory automation can save manpower and avoid equipment fail-
ures with online fault-detection systems [1-3]. In factories, motors can cause production
equipment failure and a significant impact on the economy [4]. Therefore, establishing a
motor-detection system could solve the failure problems before severe damages are caused
to factory productions. This study analyzes and builds a fault-detection system for common
cases of motor failure [5]: (1) bearing fault, (2) interturn short circuit, and (3) broken rotor
bar, based on motor-current signature analysis (MCSA) [6].

In recent years, many signal-processing methods have received high attention in
the problem of fault-detection systems. For example, R. Romero-Troncoso improved the
fast Fourier transform (FFT) by fractional resampling and proposed a multirate signal-
processing technique for induction-motor fault detection [7]. M. Riera-Guasp et al. pro-
posed the Gabor analysis of the current via the chirp z-transform to obtain high-resolution
time—frequency images of transient motor currents [8]. V. Climente-Alarcon used a combi-
nation of Wigner-Ville distribution (WVD) and particle-filtering feature extraction to study
in detail the evolution of principal slot harmonics (PSH) in induction motors under different
load profiles [9]. M. Z. Ali et al. proposed a threshold-based fault-diagnosis method for
induction motors, first using discrete wavelet transform to process the stator current, and
then calculating the threshold value of the motor load through a curve-fitting equation [10].
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The above signal-processing methods have their own advantages, but the current signal
may obtain nonlinear and nonstationary noise signals in the time and frequency domains
due to the faulty motor, which limits the performance of these methods. For example, FFT
and GT are sensitive to noise [7]. The cross-term interference of nonstationary signals limits
the performance of WVD [11]. The predefined wavelet-based parameters cause the WT
may not be able to adaptively process nonstationary signals [12].

In recent years, several studies have demonstrated the advantages of multiresolution
analysis (MRA) [13,14] and Hilbert Huang transform (HHT) [15-17] in analyzing nonlinear
and nonstationary noise signals of induction motors. Therefore, this study compares
two signal-processing approaches: (1) MRA, (2) HHT. The result of the research could
help establish the best fault-detection system for induction motors. (1) MRA can analyze
undetectable fault information in the time and frequency domain with current signals that
are composed of detail coefficients and approximation coefficients. MRA is used to analyze
motor-failure-current signals and extract the important features for fault-detection system
from noisy signals; (2) HHT is widely used to analyze nonlinear and nonstationary signals.
In conclusion, the HHT is used to analyze the noisy current signals that are caused by a
faulty motor in order to find the noise frequency through the Hilbert transform to improve
the accuracy of the fault-detection system.

The fault-detection system established with the features extracted from signal-processing
approaches. Therefore, this study uses feature engineering to improve the system. Feature
engineering can be divided into three categories [18]: feature construction [19,20], feature
extraction [21-23], and feature selection [24-26]. Feature construction can increase the num-
ber of features by creating the new features based on old features. If the new features are
important information, the fault-detection system may achieve better performance. Feature
extraction can decrease the dimension of features from high-dimensional features with
transfer function, and also avoid a situation where the accuracy of the system would be re-
duced when the Hughes phenomenon occurs. Feature selection has two methods: filter and
wrapper. The filter selects the features based on feature correlation. The wrapper selects the
features based on the evaluation function. Therefore, this study uses correlation and fitness
values-based feature selection (CFFS) [27] to select the features. The CFFS is improved from
correlation-based feature selection (CFS) [28]. CFFS uses Relief [29,30] and ReliefF [31] to
calculate the correlation. CFFS selects the features based on evaluation function (perfor-
mance of artificial neural network (ANN)) and features correlation. In conclusion, the CFFS
obtains the advantages from the filter method and the wrapper method.

The selected classifier is the last part of fault-detection system. In [32], most classifier
types are compiled, the advantages and disadvantages are discussed, and it is shown that
ANN s are supervised by machine learning and achieve robust performance for irrelevant
input data and noise and nonlinear data. This study also trains the neural network with
Levenberg-Marquardt (LM) [33,34]. LM has advantages when training the neural network
with small or medium data, so it is widely used for training feedforward networks [35-37].
Therefore, this study uses an artificial neural network with LM to establish a fault-detection
system, selects important features via feature-selection method, and adds additive white
Gaussian noise with a different signal-to-noise ratio (SNR) to test the efficiency of the
fault-detection system.

2. Measure and Analyze the Current Signals

The classes of motor faults and damages are shown in Figure 1. As the equipment
layout is shown in Figure 2, this study uses the AC power supply with 3 phases and
220 volts for motors. The control panel could adjust the load of the servo motor, which has
a 220 V rated voltage, a 60 Hz power frequency, a 2 Hp output, a 1764 rpm rated speed,
and a 0.8 power factor. The data-acquisition equipment (PXI-1033) captures the current
from all types of motors. Labview can save each observation for 2 s and save sampling
frequency for 1 kHz. Corresponding to four types (one healthy motor and three faulty
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motors) Labview can collect 400 observations for each case, save each observation for 2 s,
and save the sampling frequency at 1 kHz.

(b) ()

Figure 1. Faulty motor failure sample. (a) Bearing fault (0.53 mm width and 1.96 mm length),
(b) interturn short circuit (5 insulation destructive coils), (c) broken rotor bar (2 holes—10 mm depth
and 8 mm diameter).

Analyze the current

Save the motor signal, and establish
Power for induction motor Data Acquisition  current signal H\{F_D jyjtem
,~ T ACpowersupply | /[ NIPXI-1033 ] ,” [Labview | e
»

Simulate the half ,7 Select torque of ,

’
Four types of motors _,/ load of motor 4 AC servo motor ,/
Induction motor [[AC servo motor | [Control panel |

Figure 2. Equipment layout.

After measuring the data, this study establishes the fault-detection system with Matlab
as shown in Figure 3. This classification system is divided into five parts: (a) NI PXI-1033 is
used to capture 400 observations of current signals for four types of motors. The current
signals will be processed by normalization, benefiting system operation. (b) A total of
1600 observations (4 classes) of normalized current signals were analyzed using MRA and
HHT, while features were captured by Matlab. In this section, a fault dataset of 4 types
of induction motors with 1600 observations and 4 classes is established. The number of
extracted features is described in detail in the next subsection. (c) Critical features are
selected by feature-selection approaches to lower the number of features. (d) In the dataset,
each type is divided into 300 observations for training and 100 observations for testing. The
artificial neural network is trained by the LM to build the fault-detection system. (e) Finally,
the accuracy of the fault-detection system can be calculated.

(a) | Current signal of motor | Data capture

(b) | MRA, HHT | Signal analysis

© | ReliefF, CFS, CFFS | Feature selection

@] ANNwithim | Classifier
Result of

(©) classification

Figure 3. Schematic diagram of classification system. (a) capture the observations, (b) build fault
detection dataset, (c) feature selection, (d) train the ANN, (e) classification result.



Mathematics 2022, 10, 2250

40f17

2.1. MRA and Feature Distribution of Current Signals

The MRA is used to analyze the current signals of four motors. According to [38], the
MRA function in (1) demonstrates that signal f () can be decomposed into approximation
coefficient a; and detail coefficient d;. ¢(f) is the scaling function. y(t) is the wavelet function,
where gg and hy are filter coefficients.

t) = Zﬂjo,kq’jo,k(t) + szj,k¢j,k(t) 1)
k ik

Z@ )+ g2t — k) )

tho )+ (2t — k) 3)

Firstly, the MRA decomposes the signal and uses detail coefficients and approximation
coefficients to compose the signal, as shown in Figure 4, where x-axis is the time and
y-axis is the amplitude. Then, 60 features extracted from the signal will be composed with
d1-5 and a5, as shown in Table 1, namely (1) Tmax; (2) Tmin; (3) Tmean; (4) Tmse; (5) Tstd;
(6) Fmax; (7) Fmin; (8) Fmean; (9) Fmse; (10) Fstd. Features are summarily presented below.
The frequency domain is analyzed with FFT. Finally, Figure 5 shows the feature distribution
of IM.

(1) Tmax: maximum of each coefficient in time domain;

(2) Tmin: minimum of each coefficient in time domain;

(3) Tmean: average of each coefficient in time domain;

(4) Tmse: root mean square of each coefficient in time domain;

(5) Tstd: standard of each coefficient in time domain;

(6) Fmax: maximum of each coefficient in frequency domain;

(7)  Fmin: minimum of each coefficient in frequency domain;

(8) Fmean: average of each coefficient in frequency domain;

(9) Fmse: root mean square of each coefficient in frequency domain;
(10) Fstd: standard of each coefficient in frequency domain.

I I I I I I I I I I
| (@) | (b) | () | (d) | ’l (@) | (b)I () | d) |

1

di1 o d4 0

-1 I -2 I | I
I I I I | | I I I |
0.2 } } 0.5 | | |
| i h
d2 o d5 ob— -
1 —1 w
—0. | | —-05 | | |
I I I I I | I I I I
1} t t t i 0.2 } }
d3 0 a5 0 l
R
-1} -0.2 | |
k-2 ale ele %2 k== k = % 2 % 2
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Figure 4. The MRA of current signal. (a) Normal motor, (b) bearing fault, (c) interturn short circuit,
(d) broken rotor bar.
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Figure 5. Feature distribution of the MRA. (a) Normal motor, (b) bearing fault, (c) interturn short

circuit, (d) broken rotor bar.

Table 1. Feature extraction of the MRA.

a5 d5

d4

d3

d2

d1

Tmax F1 F2
Tmin F7 F8
Tmean F13 F14
Tmse F19 F20

Tstd F25 F26

F3
F9
F15
F21
F27

F4
F10
F16
F22
F28

F5
F11
F17
F23
F29

F6
F12
F18
F24
F30

Fmax F31 F32
Fmin F37 F38
Fmean F43 F44
Fmse F49 F50
Fstd F55 F56

F33
F39
F45
F51
F57

F34
F40
F46
F52
F58

F35
F41
F47
F53
F59

F36
F42
F48
F54
F60

2.2. Hilbert—-Huang Transform and Feature Distribution of Current Signals

This study uses Hilbert-Huang transform (HHT) to analyze the current signals of
four classes of motors. According to [39], the HHT decomposes the signal into several
intrinsic mode functions (IMF) c; by empirical mode decomposition (EMD) and calculates
H;(t) from ¢; with Hilbert transform (HT) in (4), as shown. (5) and (6) calculate the instanta-
neous amplitude 4;(f) and instantaneous phase angle 6;(t). Finally, (7) differentiates the

instantaneous phase angle 6;(t) and obtains instantaneous frequency w;(t).

wi(t) =

= tan

¢ () + HF (1)

—1 Hi(t)

d6; (t)

4)

©)
(6)

@)

Firstly, the HHT decomposes the signal into seven (limitation of the signal) intrinsic
mode functions, IMF1 (c1) to IMF7 (c7) by EMD, as shown in Figure 6, where x-axis is the
amplitude, y-axis is the time. Then, instantaneous frequencies w1 to w7 are calculated with
c1 to ¢7, as shown in Figure 7, where x-axis is the time, y-axis is the frequency. In w1, most
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of the bandwidths are around 60 Hz (fundamental frequency), and some of the bandwidths
are close to 1 kHz, because the value of AC current emerged close to zero has a great slope.
Furthermore, 70 features are extracted from c1 to c¢7 and w1l to w7, as shown in Table 2,
namely (1) max; (2) min; (3) mean; (4) mse; (5) std. Features are summarily presented below.
Finally, Figure 8. shows the feature distribution of IM.

(1) max: maximum of wl to w7 and c1 to c7;

(2) min: minimum of w1 to w7 and c1 to ¢7;

(3) mean: average of wl to w7 and cl to c7;

(4) mse: root mean square of wl to w7 and c1 to c7;
(5) std: standard of w1 to w7 and c1 to c7.
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1 5
o I o\ \ ]
ettt 5 e
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20 } t €6 O\ I NN A
4 I I I 5 | I I
N N
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S e = e Sy
N
cd o~~~y
-5 ot
K22 52 52y
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Figure 6. The EMD of current signal. (a) Normal motor, (b) bearing fault, (c) interturn short circuit,
(d) broken rotor bar.
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Figure 7. Instantaneous frequency of EMD. (a) Normal motor, (b) bearing fault, (c) interturn short
circuit, (d) broken rotor bar.

Table 2. Feature extraction of the HHT.

max min mean mse std
cl F1 F2 F3 F4 F5
c2 F6 F7 F8 Fo F10
c3 F11 F12 F13 F14 F15
EMD c4 F16 F17 F18 F19 F20
c5 F21 F22 F23 F24 F25
c6 F26 F27 F28 F29 F30

c7 F31 F32 F33 F34 F35
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Table 2. Cont.

max min mean mse std

wil F36 F37 F38 F39 F40

w2 F41 F42 F43 F44 F45

w3 F46 F47 F48 F49 F50

HT w4 F51 F52 F53 F54 F55

wb F56 F57 F58 F59 F60

wb F61 F62 F63 Fo4 F65

w7 F66 F67 Fo68 F69 F70

Observation

Figure 8. Feature distribution of the HHT. (a) Normal motor, (b) bearing fault, (c) interturn short
circuit, (d) broken rotor bar.

3. Feature-Selection Approaches for Features of the MRA and HHT
3.1. ReliefF

The ReliefF algorithm shows as Algorithm 1. ReliefF is improved for multiclass
classification situations. This study uses ReliefF to calculate the correlation between feature
and classification. The algorithm selects the feature (F,) from all of the features, and F;, is
selected as one value of the set. Then, the feature (Fj,) chooses the nearest values of the
same classification and other classifications. In addition, function (8) is used to calculate
the correlation, and features with greater correlation will be considered more important.

Algorithm 1: ReliefF

1: repeat

2: Choose one of the features Fy;

3: Choose one value fj, randomly from Fy;

4: Choose the nearest values f,;, and f;,;, with fy;
5: Calculate the F, correlation R ¢py, in (8);

6: until obtain all correlations R sp with ReliefF for feature selection
7: Choose the best performance of feature set for establish ANN

(mzn) , 1

Ry = Wi = (o diff Ui fu) + () (o) < diff o fo) — ®)
where
Rip
RfF R}Fi )
Rf.Fm

is the correlation between feature and classification.
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3.2. CFS

The CFS algorithm is shown as Algorithm 2. CFS calculates the Merit value for
selecting the features under three conditions: (I) feature correlation and (II) correlation
between feature and classification. The algorithm calculates the correlation Rf between
features with Relief that is shown in (9). Next, ReliefF is used to calculate the correlation R
between feature and classification in (8). In addition, (II) calculates the Merit value in (10).

Algorithm 2: CFS

1: (I) The feature correlation:

2: repeat

3: Choose two of the features F;, and F;;

4 Choose one value fj, randomly from Fj;;

5: Choose the nearest values f,;, and f;; with fy;

6 Calculate the correlation between F;, and F; with (9);

7: until obtain all correlation Rp with Relief.

8: (IT) The correlation between feature and classification:

9: Use ReliefF to calculate Rgr in (8);

10: (III) Calculate the Merit value:

11: repeat

14: Calculate the Merit value in (10);

15: until obtain the whole Merit value.

16: Choose the best performance of feature set for establish ANN.

1., 1 .
Ry = Wi = ()dif f(fi ) + () X diff (Fi fom)® ©)

where

1 Rf12 Rf13 e Rflm

0 1 Ry :

0 0 .- :

: : : 0 1 :

0 - e .. 0 1

is the correlation between features;
n f X R FEi

Merit = —
\/nf +np(k=1)xR,,

(10)

3.3. CFFS

The CFFS algorithm is shown as Algorithm 3. CFFS is the feature-selection approach
improved by CFS, which is proposed in our previous study [28]. CFFS selects the features
under four conditions. The algorithm calculates (I) correlation between features in (9),
(IT) correlation between features and classification in (8), (III) Merit value in (10). Then,
(IV) fitness value Wy is calculated for Merit_new value in (11).

Merit_new = Merit x W; (11)

The fitness value was calculated by PSO. The PSO is used to optimize the weights
of features [40,41] and selects the best-known solution in swarms. Therefore, this study
could establish the best induction-motor fault-detection system with the features selected
by CFFS and the weights of these features after training ANN.

To compare the feature-selection approach’s performance, this study chooses the 1st to
the 10th feature-selection approach orders through the MRA and the HHT, which are shown



Mathematics 2022, 10, 2250

90f17

in Table 3. The MRA-ReliefF, MRA-CFS, and MRA-CFFS have the same 9 features (F35,
F24, F54, F60, F27, F57, F30, F51, and F58). The HHT-ReliefF, HHT-CFS, and HHT-CFFS
only have the same 2 features (F5 and F4). The important features mentioned above are
marked in Figures 5 and 8 (the red dot e). Inferring to Table 3, the features extracted from
the MRA with feature-selection approaches are more similar than the HHT. According to
the result, the performance of feature selection is affected by the features extracted from
signal processing.

Algorithm 3: CFFS

1: (I) The correlation between features:

2: Use Relief to calculate the correlation;

3: (IT) The correlation between feature and classification:
4: Use ReliefF to calculate the correlation;

5: (III) Calculate the Merit value:

6: Use CFS to calculate the Merit value;

7: (IV) Calculate the Merit_new value:

8: repeat

9: Select the feature set to training ANN with PSO;
10: Calculate the fitness value Wy from PSO;

11: Calculate the Merit_new value in (11);

12: until obtain all the Merit_new value.

13: Choose the best performance of feature set for establish ANN.

Table 3. Features order.

Signal Processing  Feature-Selection Approach

Features Order of 1st to 10th
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

ReliefF F35 F24 F54 F60 F27 F57 F30 F21 F51 F58

MRA CFS F35 F54 F60 F24 F57 F51 F58 F30 F27 F21
CFFS F35 F57 F58 F27 F24 F51 Fe0 F30 F22 F54

ReliefF F5 F4 Fel F32 F56 F12 F40 F58 F44 F10

HHT CFS F39 F40 F38 F5 F4 F13 Fo4 F65 F14 F45
CFFS F39 F5 F4 F13 Fo4 F43 F25 F46 F24 F45

4. The Result of Induction-Motor Fault Detection

This section demonstrates the results of the fault-detection system and analyzes the
current signals using MRA and HHT. As shown in Figure 9, the feature-selection method
is used to reduce the number of features to test the efficiency of IMFD with noise current
signals (including SNR: 40 dB, 30 dB, 20 dB, and 10 dB): (a) Use Matlab to add the AWGN
into current signals; (b) analyze the data; (c) select the features. The feature order after
adding noise is the same as the feature-selection method applied to the original signal.
(d) Training the fault-detection system. (e) Finally, obtain the accuracy of this fault-detection
system. ReliefF and CFS both select features based on feature correlation, whereby the
feature orders of ReliefF and CFS are the same. CFFS selects the features based on feature
correlation and the performance of the fault-detection system, whereby feature orders will
change every time according to accuracy. Therefore, the accuracies of the MRA-ReliefF,
MRA-CFS, HHT-ReliefF, and HHT-CEFS are at an average level through 50 rounds of
training and testing. The MRA—CFFS and HHT-CFFS only undergo the training and
testing process once, whereby the accuracy curves are more unstable than the accuracy
curves of the MRA—-ReliefF, MRA-CFS, HHT-ReliefF, and HHT-CFS. In conclusion, this
study compares the accuracy curve of all results and proposed the best model to establish
the fault-detection system.
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d SNR =40,30,20,10dB |
R

(a) | Current signal |-- ll»'L . _Cln:‘eilt_siorzai o _:
v v
®) || MRA, HHT ||l MRA, HHT |

v v

©||  ReliefF, CFS,CFFS ~ {- —  Order gi_feftl_lrfs_ |
@ ANN jith LM | | ANN with LM |
(Original current signal) (Current signal with noise)

Figure 9. Schematic diagram of current signal added the noise to establish fault-detection system.
(a) capture the observations, (b) build fault detection dataset, (c) feature selection, (d) train the ANN,
(e) classification result.

4.1. Parameter Setting of ANN

The ANN is composed of the input layer, hidden layer, output layer, and neurons.
In the hidden layer, the input is computed via weights, biases, and activation functions.
The classification result is computed by the output layer. In ANN, the weight and bias
of each neuron are adjusted by calculating the error between the output and the target.
Updating the weights and biases during the iteration will reduce the cross-entropy loss.
The parameter settings of the ANN used in this study are shown in Table 4.

Table 4. Parameter setting of ANN.

Parameters Value
Hidden layer size 10
Output layer size 4
Training ratio 75/100
Testing ratio 25/100
Training function Levenberg-Marquardt
Learning rate 0.007
Iteration 50
Activation function Softmax
Performance function Cross-Entropy
Transfer function Hyperbolic tangent sigmod

4.2. Compare the Signal-Processing Aproaches: The MRA, and the HHT

The accuracies of the MRA-ReliefF (Figure 10) are displayed at 60 feature numbers and
the accuracies of the HHT-ReliefF (Figure 11) are displayed at 70 feature numbers under
different noise conditions. The comparison results are summarized below. The accuracies
under different noise conditions of the MRA-ReliefF is higher than the accuracies of
the HHT-ReliefF.

(1) Inco dB, MRA: 94.8%, HHT: 85.8%;
() In40 dB, MRA: 92.2%, HHT: 84.4%;
(3) In30dB, MRA: 92%, HHT: 81.9%;

(4) In 20 dB, MRA: 88.2%, HHT: 68.4%;
(5) In 10 dB, MRA: 69.2%, HHT: 43.9%.

The accuracies of the MRA-CFS (Figure 12) are displayed at 60 feature numbers and the
accuracies of the HHT-CFS (Figure 13) are displayed at 70 feature numbers under different
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noise conditions. The comparison results are summarized below. The accuracies under
different noise conditions of the MRA—CFS are higher than the accuracy of the HHT-CFS.

(1) IncodB, MRA: 94.8%, HHT: 85.9%;
(2) In40dB, MRA: 94.5%, HHT: 83.4%;
(3) In30dB, MRA: 93.7%, HHT: 81.9%;
(4) In20dB, MRA: 87.7%, HHT: 68%;

(5) In10dB, MRA: 70.3%, HHT: 44.1%.

The accuracies of the MRA-CFFS (Figure 14) are displayed at 60 feature numbers
and the accuracies of the HHT-CFFS (Figure 15) are displayed at 70 feature numbers
under different noise conditions. The comparison results are summarized below. The

accuracies under different noise conditions of the MRA-CFFS are higher than the accuracy
of the HHT-CFFS.

@
@)
®)
4)
)

In co dB, MRA: 92%, HHT: 83.5%;
In 40 dB, MRA: 91.8%, HHT: 82.7%;
In 30 dB, MRA: 91.3%, HHT: 81.5%;
In 20 dB, MRA: 91%, HHT: 73.3%;
In 10 dB, MRA: 89.8%, HHT: 66%.
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4.3. Compare the Feature-Selection Approaches: ReliefF, CFS, and CFFS

The highest efficiencies of the MRA with different feature-selection approaches under
different noise conditions are shown in Tables 5-7. The comparison is summarized as below.
The accuracies of the CFFS are slightly higher than the accuracy of ReliefF and the CFS
under oo dB, 40 dB, and 30 dB. Under severe noise conditions such as 20 dB and 10 dB, the
CFFS achieves a better performance than ReliefF and the CFS.

@
@
®)
4)
©)

=1
(=]

In oo dB, ReliefF: 10 features and 92.8%, CFS: 7 features aFnd 92.02%, CFFS: 3 features

and 93%;

In 40 dB, ReliefF: 10 features and 92.7%, CFS: 7 features and 91.9%, CFFS: 3 features

and 93%;

In 30 dB, ReliefF: 10 features and 90.4%, CFS: 7 features and 90.7%, CFFS: 3 features

and 93%;

In 20 dB, ReliefF: 14 features and 87.6%, CFS: 11 features and 88.3%, CFFS: 4 features

and 92.8%;

In 10 dB, ReliefF: 22 features and 70.3%, CFS: 20 features and 70.3%, CFFS: 6 features

and 92%.

The highest efficiencies of the HHT with different feature-selection approaches under
different noise conditions are shown in Tables 8-10. The comparison is summarized below.
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The accuracies of the CFFS are slightly lower than the accuracy of ReliefF and the CFS
under oo dB, 40 dB, and 30 dB. Under severe noise conditions such as 20 dB and 10 dB, the
CFFS achieves a better performance than ReliefF and the CFS.

@
@
®)
4)
©)

In oo dB, ReliefF: 9 features and 78.2%, CFS: 13 feature and 81.3%, CFFS: 7 features
and 74.8%;

In 40 dB, ReliefF: 9 features and 77.6%, CFS: 13 features and 79.6%, CFFS: 6 features
and 73.5%;

In 30 dB, ReliefF: 9 features and 72.9%, CFS: 13 features and 75.2%, CFFS: 6 features
and 73%;

In 20 dB, ReliefF: 9 features and 60.4%, CFS: 13 features and 62.9%, CFFS: 6 features
and 72.3%;

In 10 dB, ReliefF: 9 features and 43.8%, CFS: 13 features and 44.6%, CFFS: 6 features
and 71.5%.

According to the comparison of the signal-processing approaches and feature-selection

approaches, the performance of the MRA is better than the HHT, and the CFFS can establish
an effective fault-detection system than ReliefF and CFS. The result could be inferred by
the feature distribution of MRA (Figure 5) and the HHT (Figure 8). The features of MRA
(Figure 5) have more significant features than the HHT (Figure 8). For establishing the fault-
detection system, the selected signal-processing approach has an impact on the system, and
the system established with the feature-selection approach could reduce the considerable
feature numbers.

Table 5. Result of the MRA-ReliefF.

SNR Feature Numbers Accuracy (%) The Elements of the Feature Vector
oo 10 92.8 F35, F24, F54, F60, F27, F57, F30, F21, F51, F58
40 10 92.7 F35, F24, F54, F60, F27, F57, F30, F21, F51, F58
30 10 90.4 F35, F24, F54, F60, F27, F57, F30, F21, F51, F58
20 14 87.6 F35, F24, F54, F60, F27, F57, F30, F21, F51, F58, F34, F36, F28, F22
10 ” 703 F35, F24, F54, F60, F27, F57, F30, F21, F51, F58, F34, F36, F28, F22, F52, F33,
F9, F3, F49, F19, F31, F13
Table 6. Result of the MRA-CFS.
SNR Feature Numbers Accuracy (%) The Elements of the Feature Vector
oo 7 92.02 F35, F54, F60, F24, F57, F51, F58
40 7 91.9 F35, F54, F60, F24, F57, F51, F58
30 7 90.7 F35, F54, F60, F24, F57, F51, F58
20 11 88.3 F35, F54, F60, F24, F57, F51, F58, F30, F27, F21, F52
10 20 70.3 F35, F54, F60, F24, F57, F51, F58, F30, F27, F21, F52, F34, F36, F28, F22, F33,
F49, F59, F55, F31
Table 7. Result of the MRA-CFFS.
SNR Feature Numbers Accuracy (%) The Elements of the Feature Vector
o0 3 93 F35, F57, F58
40 3 93 F35, F57, F58
30 3 93 F35, F57, F58
20 4 92.8 F35, F57, F58, F27
10 6 92 F35, F57, F58, F27, F24, F51
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Table 8. Result of the HHT-ReliefF.

SNR Feature Numbers Accuracy (%) The Elements of the Feature Vector
00 9 78.2 F5, F4, F6l, F32, F56, F12, F40, F58, F44
40 9 77.6 F5, F4, Fo1, F32, F56, F12, F40, F58, F44
30 9 72.9 F5, F4, Fo1, F32, F56, F12, F40, F58, F44
20 9 60.4 F5, F4, F61, F32, F56, F12, F40, F58, F44
10 9 43.8 F5, F4, Fol, F32, F56, F12, F40, F58, F44

Table 9. Result of the HHT-CFS.

SNR Feature Numbers Accuracy (%) The Elements of the Feature Vector
o0 13 81.3 F39, F40, F38, F5, F4, F13, Fo4, F65, F14, F45, F63, F15, F46
40 13 79.6 F39, F40, F38, F5, F4, F13, F64, F65, F14, F45, F63, F15, F46
30 13 75.2 F39, F40, F38, F5, F4, F13, Fo4, F65, F14, F45, F63, F15, F46
20 13 62.9 F39, F40, F38, F5, F4, F13, F64, F65, F14, F45, F63, F15, F46
10 13 44.6 F39, F40, F38, F5, F4, F13, F64, F65, F14, F45, F63, F15, F46

Table 10. Result of the HHT-CFFS.

SNR Feature Numbers Accuracy (%) The Elements of the feature Vector
00 7 74.8 F39, F5, F4, F13, Fo4, F43, F25
40 6 73.5 F39, F5, F4, F13, F64, F43
30 6 73 F39, F5, F4, F13, F64, F43
20 6 72.3 F39, F5, F4, F13, Fo4, F43
10 6 715 F39, F5, F4, F13, F64, F43

5. Conclusions

The study proposes the CFFS with the advantage of filter and wrapper; therefore,
the CFFS has significant performance in the fault-detection system. According to the
results of this research, the choice of signal processing and feature-selection approach is a
crucial influence on the accuracy of the fault-detection system. MRA is one useful method
to analyze the faulty motor in this paper, which provides good features for the CFEFS,
which has a significant effect on the system, reducing 57 (95%) of the features from MRA
and achieving 93% accuracy. The system established with CFFS also achieves excellent
performance under 40 to 10 dB AWGN, reducing about 54 to 57 (90% to 95%) features and
maintaining an accuracy of about 92% to 93%. In this research, the low-dimensional feature
is suitable to use CFFS. In other words, CFFS uses in other cases with high-dimensional
features could have higher operating costs; this factor is the limitation for CFFS. Therefore,
this study establishes the fault-detection system with MRA and CFFS for the faulty motors
in this study.
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Nomenclature

a; approximation coefficient
a;(t) instantaneous amplitude
¢ intrinsic mode function
di detail coefficient

diff(fu, fum)  distance between fj, and f
dif f(fn, fum)  distance between f}, and fy,
dif f(fn, fump) sum of the distance between fj, and f,,,,;

fn one value of F,

fun nearest values of F;, with f,

fum nearest values of F; with f,

fumb nearest values of other classification different with fj,
90 filter coefficients 1

hy filter coefficients 2

k maximum times of sampling

n the class belong f},

ng number of features

m the all classification

R¢r correlation between feature and classification
Rypi the average of Re;

Ryri the average of Rg;

W; initial value of correlation

P(t) wavelet function

@(t) scaling function

0;(t) instantaneous phase angle

wi(t) instantaneous frequency
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