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Abstract: This article proposes a heavy-tailed distribution for modeling positive data. The proposal
arises with the ratio of independent random variables, specifically, a Lindley distribution divided
by a beta distribution. This leads to a three-parameter extension of the Lindley distribution capable
of modeling high levels of kurtosis. The main structural properties of the proposed distribution
are derived. The skewness and kurtosis behavior of the distribution are described. Parameter
estimation is discussed under consideration of the moment and maximum likelihood methods.
Finally, in order to avoid the parameter non-identifiability problem, a two-parameter version of the
proposed distribution is derived. The usefulness of this special case is illustrated by fitting data in
two real scenarios.
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1. Introduction

The Lindley (L) distribution [1,2] is one of the alternatives commonly used to model the
lifetime of mechanical units. This distribution has various attractive properties, for example:
(1) Although it has a single parameter, its probability density function (pdf) can present
both monotonic decreasing and unimodal shapes; (2) like other classical distributions,
such as Weibull and gamma, the hazard rate function (hrf) of the L distribution exhibits
an increasing shape. However, unlike the Weibull and gamma hrf’s, the hrf of the L
distribution is different from 0 at time t = 0 and converges to a finite quantity (a function
of the parameter) as t→ ∞; and (3) many of its properties have closed forms, which makes
it easy to implement computationally.

A random variable Z has a L distribution with shape parameter θ > 0, denoted as
Z ∼ L(θ), if its pdf is given by

fZ(z; θ) =
θ2

(1 + θ)
(1 + z)e−θz, z > 0. (1)

Ghitany et al. [3] carry out a detailed study of the properties of the L distribution,
among which it is shown that Equation (1) corresponds to the pdf of a mixture distribu-
tion with exponential and gamma components. Although the L distribution can model
an important variety of data whose histograms exhibit decreasing or unimodal behavior,
performance can be poor when the data exhibit high levels of skewness and/or kurtosis.
In this sense, it is possible to find in the literature various extensions of the L distribution
capable of capturing high levels of skewness and/or kurtosis. Good examples of this are
the weighted-Lindley [4], generalized Lindley [5], power-Lindley [6], quasi-Lindley [7],
and two-parameter Lindley [8,9] distributions, which are more flexible than the L dis-
tribution, especially in terms of skewness. The three-parameter extensions proposed by

Mathematics 2022, 10, 2240. https://doi.org/10.3390/math10132240 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10132240
https://doi.org/10.3390/math10132240
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math10132240
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10132240?type=check_update&version=2


Mathematics 2022, 10, 2240 2 of 19

Zakerzadeh and Dolati [10], Shanker et al. [11], and Ekhosuehi and Opone [12] are more
flexible than the L distribution in both skewness and kurtosis.

An extension of the L distribution oriented especially to model data with high kurtosis
levels is the three-parameter Lindley slash (LS) distribution [13]. A random variable Y
follows a LS distribution with scale parameter σ > 0, shape parameter θ > 0 and kurtosis
parameter α > 0, denoted as X ∼ LS(σ, θ, α), if it can be represented as

Y = σ
Z

U1/α
, (2)

where Z ∼ L(θ) and U ∼ Uniform(0, 1) are independent.
From Equation (2), it follows that the LS distribution (when σ = 1) converges to the L

distribution as α→ ∞. The pdf of the LS distribution is given by

fY(y; σ, θ, α) =
αθ2

σ(1 + θ)

∫ 1

0

(
1 +

yu
σ

)
e−

θyu
σ uα du, y > 0.

The LS distribution has heavier tails than the L distribution, so it can be used to fit
positive data with outliers.

Iriarte and Rojas [14], assuming in Equation (2) that that Z has a power-Lindley
distribution, propose a new three-parameter heavy-tailed extension of the L distribution,
the slashed-power Lindley distribution. In the literature, it is possible to find a large amount
of information on slash-type distributions, which arise assuming certain distributions
for the random variables involved in the Equation (2). For some details of slash-type
distributions for positive data, see [15–20], among others.

In this article, we introduce a new heavy-tailed extension of the L distribution, the ex-
tended slash Lindley (ESL) distribution. Based on the results of Rojas et al. [21], the pro-
posed distribution arises from Equation (2) considering σ = α = 1 and that U has a beta
distribution with mean α/(α + β), α, β > 0. Thus, Equation (2) gives rise to a new dis-
tribution with one shape parameter controlling unimodality and two shape parameters
controlling kurtosis.

The fact that the ESL distribution has two parameters controlling kurtosis allows
this distribution to be able to capture extremely high levels of kurtosis. However, we
observe that this same fact generates a problem of non-identifiability of the parameters.
In this sense, we propose a two-parameter special case of the ESL distribution provided
with one parameter controlling unimodality and one parameter controlling kurtosis. We
emphasize that this special case has heavier tails than the L distribution, and even heavier
than the LS distribution, so it can be considered as a viable alternative to model positive
data with outliers.

The article is organized as follows. In Section 2, we propose the ESL distribution and
derive some of its main structural properties. In Section 3, we discuss parameter estimation
considering the moment and maximum likelihood methods. In addition, we carry out
a simulation study to evaluate the behavior of the moment and maximum likelihood
estimators under the two-parameter ESL distribution. Section 4 presents an application
with real data in order to illustrate the usefulness of the proposal. Some final comments are
considered in Section 5.

2. ESL Distribution

In this section, we propose the ESL distribution and derive its main structural properties.

2.1. Stochastic Representation

Definition 1. The random variable X follows the extended slash Lindley distribution, denoted as
X ∼ ESL(θ, α, β), if it can be represented as X = Y/U, where Y ∼ L(θ) and U ∼ Beta(α, β) are
independent random variables.
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From Definition 1, it is observed that: (1) If β = 1, then U has a power distribution [22]
on the interval (0, 1). Consequently, X has a nonscaled (σ = 1) LS distribution; (2) If β = 1
and α→ ∞, then the distribution of X converges to the L distribution.

The following proposition provides the pdf of the ESL distribution.

Proposition 1. Let X ∼ ESL(θ, α, β). Then, the pdf of X is given by

fX(x; θ, α, β) =
θ2

(θ + 1)B(α, β)

∫ 1

0
(1 + xw)wα(1− w)β−1 e−θxw dw, x > 0, (3)

where θ, α, β > 0 are shape parameters and B(a, b) =
∫ 1

0 ua−1(1− u)b−1 du is the beta function.

Proof. From Definition 1, we use the Jacobian method to compute the pdf of X. Specifically,
considering the transformations X = YU−1 and W = U, we have Y = XW and U = W.
Thus, the determinant of the Jacobian of the transformation is

J =
∣∣∣∣ ∂Y

∂X
∂Y
∂W

∂U
∂X

∂U
∂W

∣∣∣∣ = w.

Hence, the joint pdf of X and W is given by

fX,W(x, w) = fY(xw; θ) fU(w; α, β)w, x > 0, 0 < w < 1, (4)

where fY(·; θ) denotes the pdf of the L distribution with shape parameter θ > 0 and
fU(·; β, α) denotes the pdf of the beta distribution with shape parameters α, β > 0. Then,
the marginal distribution of X is obtained directly by integrating Equation (4), which leads
to Equation (3).

The following result shows that the pdf of the ESL distribution can be written in
closed form in terms of the gamma, beta and confluent hypergeometric functions. In this
sense, we recall the integral representations of these functions given in Andrews [23]. For
R(a) > 0 and R(b) > 0, the gamma and beta functions are given by Γ(a) =

∫ ∞
0 ua−1e−u du

and B(a, b) =
∫ 1

0 ua−1(1− u)b−1 du, respectively. For R(b) > R(a) > 0, the confluent hyper-

geometric function of the first kind is given by M(a, b, z) = Γ(b)/[Γ(a)Γ(b− a)]
∫ 1

0 ezuua−1

(1− u)b−a−1 du. It should be noted that the gamma, beta and confluent hypergeometric
functions are implemented in some computer algebra systems (such as MATLAB) and
programming languages (such as R [24]). From these functions, we establish the following.

Corollary 1. Let X ∼ ESL(θ, α, β). Then,

fX(x; θ, α, β) =
θ2Γ(β)

(1 + θ)B(α, β)

[
r1(x; θ, α, β) + xr2(x; θ, α, β)

]
, (5)

where

rj(x; θ, α, β) =
Γ(α + j)M(α + j, α + β + j,−θx)

Γ(α + β + j)
, j = 1, 2.

Proof. We note that Equation (3) can be written as

fX(x; θ, α, β) =
θ2

(1 + θ)B(α, β)

[∫ 1

0
wα(1− w)β−1e−θxw dw

+x
∫ 1

0
wα+1(1− w)β−1e−θxw dw

]
,
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and the result is obtained by recognizing the confluent hypergeometric function in the
previous integrals.

From Proposition 1 and Corollary 1, we see that

fX(x; θ, α, β = 1) =
αθ2

(1 + θ)

∫ 1

0

(
1 +

xu
σ

)
e−

θxu
σ uα du

=
αθ2

(1 + θ)

[
r1(x; θ, α, 1) + xr2(x; θ, α, 1)

]
,

which corresponds to the pdf of the non-scaled version of the LS distribution. Note that the
closed form above for the LS pdf is, to our knowledge, not known.

On the other hand, we observe that

lim
α→∞

fX(x; θ, α, β = 1) =
θ2

(1 + θ)
(1 + x)e−θx,

which corresponds to the pdf of the L distribution.
Figure 1 shows some curves for the ESL pdf considering different values of θ, α and

β. We use the function KUMMERM [25] of the R programming language to compute the
confluent hypergeometric function. We provide the R code in Appendix A.
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Figure 1. Some pdf curves for the ESL distribution with θ = 0.5 and β = 1 in the top left panel,
θ = 0.5 and α = 1 in the top right panel, θ = 5 and β = 1 in the bottom left panel, and with θ = 5
and α = 1 in the bottom right panel.
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In Figure 1, it can be seen that:

1. The ESL pdf exhibits a unimodal shape when θ is equal to 0.5 (see top panels) and a
monotonic decreasing shape when θ is equal to 5 (see bottom panels).

2. If θ and β are fixed (see left panels), it is observed that the unimodal and monotonic
shapes of the pdf are preserved with each choice of α. In this case, the different values
of α define a set of pdfs with different weights in the tails. The closer to 0 the value of
α is, the heavier the tail of the ESL pdf.

3. For fixed values of θ and α (see right panels), something similar is observed. The uni-
modal and monotonic shapes of the pdf are preserved even when the parameter β
varies. Here, different values for β also define a set of pdf’s with different weights in
the tails. The larger the value of β, the heavier the tail of the ESL pdf.

The above observations suggest that the unimodal and monotone shapes of the ESL
pdf depend exclusively on θ, while α and β control the kurtosis of the distribution. More
details on the behavior of the kurtosis of the ESL distribution are given in Section 2.3.

2.2. Reliability Analysis

The reliability function (rf) and the hazard rate function (hrf) play a central role in
the treatment of lifetime data in reliability studies. If X is a random variable representing
the failure time of mechanical units, the rf of X, defined as RX(x) := P(X > x), x > 0,
indicates the probability that mechanical units survive beyond the time x. On the other
hand, the hrf of X, defined as hX(x) := fX(x)/RX(x) (where fX(·) represents the pdf of
X), measures the propensity of a mechanical units to fail or die depending on the age it
has reached.

In what follows, we concentrate on deriving analytic expressions and some graphical
representations for the rf and the hrf of the ESL distribution. For this, we first calculate the
cdf of the ESL distribution.

Proposition 2. Let X ∼ ESL(θ, α, β). Then, the cdf of X is given by

FX(x; θ, α, β) = FY(x; θ)− θ2

(1 + θ)B(α, β)
E(x; θ, α, β),

where FY(·; ·) is the cdf of the L distribution and

E(x; θ, α, β) =
∫ x

0
(1 + v)B

( v
x

; α, β
)

e−θv dv.

such that B(z; a, b) =
∫ z

0 ua−1(1− u)b−1 du is the incomplete beta function.

Proof. Considering the change of variable v = xw, the pdf of X given in the Equation (3)
can be written as fX(x; θ, α, β) = θ2/[(1 + θ)B(α, β)]

∫ x
0 (1 + v)vα(1− v/x)β−1 dv. Then,

the cdf of X is given by

FX(x; θ, α, β) =
θ2

(1 + θ)B(α, β)

∫ x

0

1
uα+1

∫ u

0
(1 + v)vα

(
1− v

u

)β−1
e−θv dv du.

Now, exchanging the order of integration in the previous expression, we obtain that

FX(x; θ, α, β) =
θ2

(1 + θ)B(α, β)

∫ x

0

1 + v
v

e−θv
∫ x

v

( v
u

)α+1(
1− v

u

)β−1
du dv

= 1− (1 + θ + θx)e−θx

(1 + θ)
− θ2

(1 + θ)B(α, β)

∫ x

0
(1 + v)B

( v
x

; α, β
)

e−θv dv.

Finally, the result is obtained by establishing that E(x; θ, α, β) =
∫ x

0 (1 + v)B(v/x; α, β)

e−θv dv and recognizing the cdf of the L distribution in the previous expression.
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Corollary 2. Let X ∼ ESL(θ, α, β). Then, the rf of X is given by

RX(x; θ, α, β) = RY(x; θ) +
θ2

(1 + θ)B(α, β)
E(x; θ, α, β),

and the hrf of X is given by

hX(x; θ, α, β) =
θ2Γ(β)[r1(x; θ, α, β) + xr2(x; θ, α, β)]

(1 + θ)B(α, β)RY(x; θ) + θ2E(x; θ, α, β)
,

where RY(x; θ) = [(1 + θ + θx)/(1 + θ)]e−θx is the rf of the L distribution.

From the previous result, we see that

hX(x; θ, α, β = 1) =
θ2[r1(x; θ, α, 1) + xr2(x; θ, α, 1)]

α(1 + θ)RY(x; θ) + θ2E(x; θ, α, 1)
and

lim
α→∞

hX(x; θ, α, β = 1) =
θ2(1 + x)
1 + θ + θx

,

which correspond to the hrfs of the SL and L distributions, respectively.
We provide an R code for the computation of the cdf given in Proposition 2. Using this

code, together with the R code for the ESL pdf presented in the previous section, the ESL
hrf can be easily computed. Figure 2 presents some ESL hrf curves considering different
choices for θ, α and β. From the figure, the following can be noted:
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Figure 2. Some hrf curves for the ESL distribution with θ = 0.5 and β = 1 in the top left panel,
θ = 0.5 and α = 1 in the top right panel, θ = 5 and β = 1 in the bottom left panel, and with θ = 5
and α = 1 in the bottom right panel.
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1. The ESL hrf can present unimodal or monotonic decreasing shapes.
2. In the left panels (β = 1), the unimodal shape of the hrf of the ESL distribution

approaches the increasing shape of the hrf of the L distribution when α assumes a
sufficiently large value.

3. In the right panels, it is observed that the hrf of the ESL distribution is unimodal
when θ = 0.5 and decreasing when θ = 5. It is also observed that the unimodal or
increasing forms are preserved for the different choices of the parameters α and β.
Thus, the unimodal and monotonic decreasing shape seems to depend on θ.

2.3. Moments and Related Measurements

Proposition 3. Let X ∼ ESL(θ, α, β). Then, for r = 1, 2, . . . and α > r, it follows that rth raw
moment is given by

µr = E(Xr) =
r!(θ + r + 1)

θr(θ + 1)

r

∏
i=1

α + β− i
α− i

.

Proof. Using the representation given in Definition 1, we have that

µr = E(Xr) = E
((

Y
U

)r)
= E(Yr)E

(
U−r).

where it follows that E(U−r) =
n
∏
i=1

α+β−i
α−i , α > r and E(Yr) = r!(θ+r+1)

θr(θ+1) is the rth raw

moment of the L distribution.

Corollary 3. Let X ∼ ESL(θ, α, β). Then, it follows that

E(X) =
(θ + 2)(α + β− 1)

θ(θ + 1)(α− 1)
, α > 1 and

Var(X) =
α + β− 1

θ(θ + 1)(α− 1)

(
2(θ + 3)(α + β− 2)

θ(α− 2)
− θ − 2

)
, α > 2.

Corollary 4. Let X ∼ ESL(θ, α, β). Then, Fisher’s skewness (
√

β1) and kurtosis (β2) coefficients
are given by

√
β1 =

2(α− 2)1/2 A
(α + β− 1)1/2(α− 3)B3/2 , α > 3, and β2 =

3(α− 2)C
(α− 3)(α− 4)(α + β− 1)B2 , α > 4,

where

A = 3(θ + 1)2(θ + 4)(α− 1)2(α + β− 2)(α + β− 3)

−3(θ + 1)(θ + 2)(θ + 3)(α− 1)(α− 3)(α + β− 1)(α + β− 2)

+(θ + 2)3(α− 2)(α− 3)(α + β− 1)2,

B = 2(θ + 1)(θ + 3)(α− 1)(α + β− 2)− (θ + 2)2(α− 2)(α + β− 1) and

C = 8(θ + 1)3(θ + 5)(α− 1)3(α + β− 2)(α + β− 3)(α + β− 4)

−8(θ + 1)2(θ + 2)(θ + 4)(α− 1)2(α− 4)(α + β− 1)(α + β− 2)(α + β− 3)

+4(θ + 1)(θ + 2)2(θ + 3)(α− 1)(α− 3)(α− 4)(α + β− 1)2(α + β− 2)

−(θ + 2)4(α− 2)(α− 3)(α− 4)(α + β− 1)3.
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Figure 3 depicts plots of the Fisher’s skewness and kurtosis coefficients of the ESL
distribution. These plots show that the coefficients decrease as θ and α decrease and as β
increases. Although the coefficients depend on the three parameters, it can be seen that
θ has a slight impact on the skewness and kurtosis, while α and β have a great impact,
especially on kurtosis.
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Figure 3. Plot of the skewness and kurtosis coefficients for the ESL (θ, α, β) distribution with β = 1 in
the left panels and α = 1 in the right panels.

3. Parameter Estimation

This section discusses parameter estimation for the ESL distribution considering the
moment and maximum likelihood methods. In addition, we carry out a simulation study
that illustrates the behavior of the estimators under different sample sizes.

3.1. Moment Estimation

Proposition 4. Let X1, . . . , Xn be a random sample of the random variable X ∼ ESL(θ, α, β).
Then, for α > 3, the moment estimators θ̂M, α̂M and β̂M for θ, α and β are given by[

X2θ̂M(θ̂M + 2)
2X(θ̂M + 3)

− 1

][
α(θ̂M)− 2

]
− β(θ̂M) = 0, (6)

α̂M = α(θ̂M) and β̂M = β(θ̂M),

where

α(θ̂M) =
6[X(θ̂2

M + 7θ̂M + 12) + X2θ̂M(θ̂2
M + 6θ̂M + 8)− X3θ̂M(θ̂2

M + 6θ̂M + 9)]

θ̂M[3X2(θ̂2
M + 6θ̂M + 8)− 2X3(θ̂2

M + 6θ̂M + 9)]
, (7)

β(θ̂M) =

[
X3θ̂M(θ̂M + 3)

3X2(θ̂M + 4)
− 1

][
α(θ̂M)− 3

]
. (8)
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Proof. The first three equations in the method of moments are given by µj = X j, with
j = 1, 2, 3, where µj is as in Proposition 3. Thus, combining these equations, we obtain that

β(θ̂M) =

[
X2θ̂M(θ̂M + 2)

2X(θ̂M + 3)
− 1

][
α(θ̂M)− 2

]
,

β(θ̂M) =

[
X3θ̂M(θ̂M + 3)

3X2(θ̂M + 4)
− 1

][
α(θ̂M)− 3

]
,

where the last of these equations corresponds to the result given in Equation (8) and the
algebraic manipulation of the first gives rise to Equation (6). Finally, Equation (7) is obtained
by equating the previous equations under a suitable algebra.

3.2. Maximum Likelihood Estimation

Suppose X1, . . . , Xn is a random sample of the random variable X ∼ ESL(θ, α, β).
Then, from Equation (3), we have that the log-likelihood function can be written as

`(θ, α, β; xi) = log
n

∏
i=1

fX(xi; θ, α, β)

= 2n log(θ)− n log(θ + 1)− log[B(α, β)] +
n

∑
i=1

log[K(xi)], (9)

where

K(xi) =
∫ 1

0
(1 + xiw)wα(1− w)β−1 e−θxiw dw.

The maximum likelihood (ML) estimators θ̂ML, α̂ML and β̂ML for θ, α and β can be
obtained by taking the partial derivatives of Equation (9) and solving the corresponding
system of equations, which is given by the equations

2n
θ

+
n

θ + 1
+

n

∑
i=1

K1(xi)

K(xi)
= 0, (10)

nΨ(α)− nΨ(α + β) +
n

∑
i=1

K2(xi)

K(xi)
= 0, (11)

nΨ(β)− nΨ(α + β) +
n

∑
i=1

K3(xi)

K(xi)
= 0, (12)

where

K1(xi) = −xi

∫ 1

0
(1 + xiw)wα+1(1− w)β−1 e−θxiw dw,

K2(xi) =
∫ 1

0
(1 + xiw) log(w)wα(1− w)β−1 e−θxiw dw,

K3(xi) =
∫ 1

0
(1 + xiw) log(1− w)wα(1− w)β−1 e−θxiw dw,

such that Ψ(·) is the digamma function.
The asymptotic distribution (under regularity conditions) of the ML estimator of

δ = (θ, α, β)′ is N3(δ, I(δ)−1), where I(δ)−1 is the expected information matrix. Taking
into account the structure of Equation (9), we observe that it is not easy to derive the
analytical expression of this matrix. Thus, we consider an approximation from the observed
information matrix, where the elements of this matrix are computed as minus the second
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partial derivatives of the log-likelihood function with respect to each parameter (assessed
in the ML estimates). The observed information matrix is given by

I(δ) =

 Iθθ Iαθ Iβθ

Iαα Iβα

Iββ

,

where

Iθθ = −∂2`(θ, α, β; xi)

∂θ2 = −
n

∑
i=1

K11(xi)

K(xi)
+

n

∑
i=1

K2
1(xi)

K2(xi)
+

2n
θ2 −

n
(θ + 1)2 ,

Iαα = −∂2`(θ, α, β; xi)

∂α2 = −
n

∑
i=1

K22(xi)

K(xi)
+

n

∑
i=1

K2
2(xi)

K2(xi)
+ nΨ1(α)− nΨ1(α + β),

Iββ = −∂2`(θ, α, β; xi)

∂β2 = −
n

∑
i=1

K33(xi)

K(xi)
+

n

∑
i=1

K2
3(xi)

K2(xi)
+ nΨ1(β)− nΨ1(α + β)},

Iαθ = −∂2`(θ, α, β; xi)

∂α∂θ
= −

n

∑
i=1

K12(xi)

K(xi)
+

n

∑
i=1

K1(xi)K2(xi)

K2(xi)
,

Iβθ = −∂2`(θ, α, β; xi)

∂β∂θ
= −

n

∑
i=1

K13(xi)

K(xi)
+

n

∑
i=1

K1(xi)K3(xi)

K2(xi)
,

Iβα = −∂2`(θ, α, β; xi)

∂β∂α
= −

n

∑
i=1

K23(xi)

K(xi)
+

n

∑
i=1

K2(xi)K3(xi)

K2(xi)
+ Ψ1(α + β),

such that

K11(xi) = x2
i

∫ 1

0
(1 + xiw)wα+2(1− w)β−1e−θxiw dw,

K22(xi) =
∫ 1

0
(1 + xiw) log2(w)wα(1− w)β−1 e−θxiw dw,

K33(xi) =
∫ 1

0
(1 + xiw) log2(1− w)wα(1− w)β−1 e−θxiw dw,

K12(xi) = −xi

∫ 1

0
(1 + xiw) log(w)wα+1(1− w)β−1 e−θxiw dw,

K13(xi) = −xi

∫ 1

0
(1 + xiw) log(1− w)wα+1(1− w)β−1 e−θxiw dw,

K23(xi) =
∫ 1

0
(1 + xiw) log(w) log(1− w)wα(1− w)β−1 e−θxiw dw.

and Ψ1(·) is the trigamma function.
Then, approximate 100(1− ϕ)% confidence intervals for θ, α and β can be determined

by θ̂ ± zϕ/2sθ̂ , α̂ ± zϕ/2sα̂ and β̂ ± zϕ/2sβ̂, respectively, where zϕ/2 is the upper (ϕ/2)th
percentile of the standard normal distribution, and sθ̂ , sα̂ and sβ̂ are the diagonal elements

of the matrix [I(δ)]−1 (assessed in the ML estimates).

3.3. Practical Considerations

From Equation (6), we observe that the moment estimator θ̂M of θ does not have
an explicit analytical form, so it is necessary to solve Equation (6) numerically to obtain
the estimate. We use the function UNIROOT of the R programming language to solve
this problem.

From the system of Equations (10)–(12), we see that the ML estimators θ̂ML, α̂ML
and β̂ML for θ, α and β do not have closed forms. Therefore, the ML estimates must be
obtained by numerically solving the system of Equations (10)–(12), which can be quite a
complicated problem. In this case, we prefer to obtain the ML estimates by solving the
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optimization problem max(θ,α,β) `(θ, α, β; xi), subject to θ, α, β > 0, where `(θ, α, β; xi) is as
in Equation (9). We solve this problem using the function OPTIM of the R programming
language under consideration of the L-BFGS-B algorithm [26]. This algorithm requires
the declaration of initial values in the parameter space to initialize the iterative process.
Through simulation experiments, we observe that the estimates obtained are strongly
influenced by the initial value considered. The first alternative that we considered to
overcome this drawback was to use as initial values the moment estimates obtained from
the Proposition 4. However, these estimates present an important bias, so they cannot
be considered as good initial values. Finally, we note that this drawback occurs due
to the existence of two shape parameters that control the kurtosis of the distribution, α
and β, which leads to a problem of non-identifiability of the parameters. This problem
disappears if there is only one shape parameter that controls the kurtosis and, for this,
different solutions can be adopted. In particular, based on the kurtosis behavior described
in Section 2.3, we assume β = 1 + 100/α, obtaining a more parsimonious distribution with
extremely heavy tails. In this choice for β, the following can be verified:

1. The L distribution can be obtained as a limit case of the two-parameter ESL distribution
once β→ 1 as α→ ∞.

2. Taking into account the kurtosis of the ESL distribution increases as β grows, the two-
parameter ESL distribution has very heavy tails since β→ ∞ as α ↓ 0.

3. In the choice β = 1 + 100/α, the number 100 allows us to obtain a high value for β
when α assumes a value considered small. For example, we get β = 1 + 100/2 = 51
when α = 2. Thus, the representation of the ESL random variable given in Proposition
(1) assumes a Beta(α = 2, β = 51) distribution for the variable U in the denominator,
thus defining a distribution with extremely heavy tails.

For practical purposes, in accordance with the above, we recommend the reader to
use the two-parameter version of the ESL distribution.

3.4. Simulation Study

In this section, we carry out a simulation study to evaluate the behavior of the moment
and ML estimators assuming that β = 1 + 100/α. The study is developed considering the
following stages:

1. We choose the values 0.5 and 2 for the parameter θ and the values 3, 4 and 5 for
the parameter α. In this way, we establish three scenarios where the pdf of the ESL
distribution is unimodal (when θ = 0.5) and three other scenarios where the pdf is
decreasing (when θ = 2).

2. Under the consideration of the choices above, we generate 1,000 pseudo-random
samples of size n = 100, 200, 300, 400 and 500 from the two-parameter ESL distribution.
Samples are generated as follows:

(a) Generate Y having a L(θ) distribution.

i. Generate S ∼ Exponential(θ).
ii. Generate W ∼ Gamma(2, θ).

iii. Generate V ∼ Bernoulli
(

θ
1+θ

)
.

iv. Compute Y = VS + (1−V)W.

(b) Generate X having a ESL(θ, α) distribution.

i. Generate U ∼ Beta(α, 1 + 100/α).
ii. Compute X = YU−1.

Step (a) is based on the results proposed by Ghitany et al. [3] for the L distribution,
while step (b) is based on the representation of the ESL random variable given in
Definition 1. An R code is provided in Appendix A.

3. For each sample generated, we obtain the ML estimates by maximizing Equation (9)
using the OPTIM function of the R programming language.
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Table 1 reports the average estimate (AE), the average of the estimated bias (AB),
and the standard deviation (SD) of the estimates obtained in each scenario and each sample
size considered. Note that the AEs approach the true values of the parameters and the SDs
become small as the sample size increases, an expected result since the ML and moment
estimators are consistent.

Table 1. The average estimate (AE), the average of the estimated bias (AB) and the standard deviation
(SD) of the estimates obtained in each scenario and sample size considered in the study.

Parameter θ̂M α̂M θ̂ML α̂ML

θ α AE SD AB AE SD AB AE SD AB AE SD AB

n = 100

0.5 3 0.351 0.147 −0.149 3.965 1.103 0.965 0.495 0.189 −0.005 3.250 0.771 0.250
4 0.413 0.190 −0.087 5.035 1.602 1.035 0.506 0.201 0.006 4.354 1.206 0.354
5 0.451 0.216 −0.049 6.197 2.301 1.197 0.515 0.220 0.015 5.490 1.676 0.490

2 3 1.370 0.556 −0.630 4.041 1.123 1.041 2.110 0.897 0.110 3.299 0.895 0.299
4 1.662 0.835 −0.338 5.213 1.897 1.213 2.210 1.236 0.210 4.422 1.564 0.422
5 1.829 0.976 −0.171 6.420 2.691 1.420 2.229 1.321 0.229 5.686 2.496 0.686

n = 200

0.5 3 0.381 0.128 −0.119 3.637 0.681 0.637 0.499 0.134 −0.001 3.113 0.482 0.113
4 0.438 0.167 −0.062 4.623 1.025 0.623 0.501 0.138 0.001 4.160 0.736 0.160
5 0.465 0.172 −0.035 5.687 1.409 0.687 0.505 0.149 0.005 5.261 1.100 0.261

2 3 1.508 0.526 −0.492 3.699 0.756 0.699 2.043 0.688 0.043 3.131 0.595 0.131
4 1.778 0.744 −0.222 4.684 1.160 0.684 2.070 0.755 0.070 4.207 0.940 0.207
5 1.885 0.837 −0.115 5.840 1.771 0.840 2.084 0.795 0.084 5.382 1.550 0.382

n = 300

0.5 3 0.396 0.121 −0.104 3.521 0.576 0.521 0.499 0.108 −0.001 3.079 0.383 0.079
4 0.460 0.166 −0.040 4.432 0.821 0.432 0.501 0.116 0.001 4.077 0.581 0.077
5 0.478 0.157 −0.022 5.467 1.105 0.467 0.504 0.115 0.004 5.160 0.814 0.160

2 3 1.603 0.512 −0.397 3.529 0.632 0.329 2.024 0.549 0.024 3.089 0.479 0.089
4 1.836 0.678 −0.164 4.488 0.919 0.488 2.063 0.625 0.063 4.098 0.743 0.098
5 1.910 0.749 −0.090 5.581 1.270 0.581 2.075 0.667 0.075 5.213 1.118 0.213

n = 400

0.5 3 0.410 0.114 −0.090 3.424 0.508 0.424 0.500 0.095 0.000 3.045 0.329 0.045
4 0.460 0.144 −0.040 4.378 0.730 0.378 0.501 0.095 0.001 4.078 0.481 0.078
5 0.483 0.153 −0.017 5.359 0.946 0.359 0.502 0.104 0.002 5.112 0.699 0.112

2 3 1.653 0.486 −0.347 3.451 0.563 0.451 2.017 0.478 0.017 3.053 0.412 0.053
4 1.858 0.652 −0.142 4.406 0.794 0.406 2.030 0.516 0.030 4.083 0.625 0.083
5 1.911 0.643 −0.089 5.470 1.042 0.470 2.033 0.524 0.033 5.170 0.875 0.170

n = 500

0.5 3 0.418 0.112 −0.082 3.384 0.477 0.384 0.500 0.088 0.000 3.024 0.293 0.024
4 0.468 0.142 −0.032 4.334 0.716 0.334 0.500 0.091 0.000 4.012 0.473 0.012
5 0.492 0.138 −0.008 5.251 0.849 0.251 0.501 0.090 0.001 5.050 0.605 0.050

2 3 1.663 0.464 −0.337 3.434 0.520 0.434 2.015 0.426 0.015 3.051 0.364 0.051
4 1.869 0.601 −0.131 4.361 0.742 0.361 2.028 0.472 0.028 4.080 0.572 0.080
5 1.962 0.637 −0.038 5.349 0.964 0.349 2.031 0.463 0.031 5.122 0.776 0.122

Comparing the results obtained with each method, we can see that the ML method
provides estimates with less bias. It is also observed that the ML estimates for α are more
efficient in all the sample sizes considered. Finally, we observe that the SDs of the moment
estimates of θ are smaller than the corresponding SDs obtained with the ML method when
the sample size is less than or equal to 200. However, in this case, the AEs provided by the
moment method are much more distant from the real value of θ than the AEs provided by
the ML method. For sample sizes greater than 200, the ML estimates for θ are less biased
and more efficient.
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4. Real Data Analysis

In this section, by fitting data featuring outliers, we compare the performance of
the two-parameter ESL distribution with that of the L, power-Lindley (PL) [6], and LS
distributions. The pdfs of the L and LS distributions can be consulted in Section 1, while
the pdf of the PL distribution is given by f (x; θ, α) = [(αθ2)/(θ + 1)](1 + xα)xα−1e−θxα

,
with x > 0 and θ, α > 0. Note that the PL distribution is one of the most popular extensions
to the L distribution, also note that this distribution has the same parameter dimension as
the two-parameter ESL distribution.

We evaluate the comparative performance of the fitted distributions using the Akaike
Information Criterion (AIC) [27] and the Bayesian Information Criterion (BIC) [28]. On the
other hand, we consider the goodness-of-fit tests proposed by Chen and Balakrishnan [29] to
assess the quality of fit of the distributions. Specifically, based on the modified Cramer-von
Mises (W∗) and Anderson–Darling (A∗) statistics, we test the hypothesis H0 : x1, . . . , xn is
an observed random sample from a continuous distribution F(x; δ), where F(·; ·) is known,
but δ must be estimated efficiently. Here, H0 is rejected at significance level equal to 0.05 if
W∗ > 0.126 and A∗ > 0.752. Under a significance level equal to 0.10, H0 is rejected when
W∗ and A∗ are greater than 0.104 and 0.631, respectively.

For the analyzed data, we evidenced the presence of outliers by elaborating the
traditional box-plot and the adjusted box-plot [30] for skewed data. Note that the second
plot includes a robust measure of skewness in the determination of the whiskers, which
helps to avoid misreporting of outliers. We use the adjbox function [31] available in the R
programming language for the elaboration of this plot.

4.1. Time Failures Related to Pascal Programming

The data considered in this application were collected from a single-user workstation
at the Center for Software Reliability and represents the time failures related to Pascal
programming. Some descriptive statistics for these data are as follows: sample size, 104;
average, 147.8; standard deviation, 245.095; Fisher’s skewness coefficient, 3; Fisher’s
kurtosis coefficient, 14.579. Figure 4 presents the traditional box-plot and the adjusted
box-plot for the time failure data in which the existence of outliers can be observed.

● ●● ●● ●●● ●●● ●●

0 500 1000 1500

Time failure

●

0 500 1000 1500

Time failure

Figure 4. Box-plots for time failure data: Traditional box-plot in the left panel and adjusted box-plot
in the right panel.

Previous studies with these data can be found in Lyu [32] and Astorga et al. [33].
Computing initially the moment estimators under the ESL distribution, we have the

following estimates: θ̂M = 0.274 and α̂M = 2.730. Using the moment estimates as initial
values, the ML estimates are computed and presented in Table 2 with the standard errors
in parentheses. In addition, we also report the maximum value (`) of the corresponding
log-likelihood function for each fitted distribution. Note that the largest ` value is reported
for the ESL distribution.
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Table 2 also reports for each fitted distribution the values associated with the infor-
mation criteria and with the modified statistics. In the table, based on the A∗ statistic,
considering a level of significance equal to 0.05, it is observed that only the ESL distribution
adequately fits the time failure data. An analogous observation can be considered from the
values of both statistics under a level of significance equal to 0.10. On the other hand, also
in Table 2, it is observed that the ESL distribution is the one with the lowest AIC and BIC
values, suggesting that this distribution should be selected to model the time failure data.

Table 2. The ML estimates (with standard errors in parentheses), the maximum values of the
corresponding log-likelihood functions, the values associated with the information criteria (AIC and
BIC) and with the modified statistics (W∗ and A∗) for each fitted distribution to the time failure data.

Parameter L PL LS ESL

σ - - 2.735× 104 -
(1.046× 104)

θ 0.013 0.215 1.169× 103 1.819
(0.001) (0.034) (5.483× 102) (0.004)

α - 0.480 0.799 1.284
(0.030) 0.148 (0.003)

` −703.450 −600.236 −602.341 −599.780

AIC 1408.900 1204.472 1210.683 1203.561
BIC 1411.545 1209.761 1218.616 1208.850

W∗ 0.353 0.160 0.119 0.084
A∗ 2.087 0.978 0.808 0.566

Figure 5 depicts plots of the fitted L, PL, LS and ESL distributions using the ML
estimates. Notice that the fitted ESL distribution has heavier tails.

Time failure
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Figure 5. Histogram for the time failure data and curve of the pdf of each fitted distribution.

4.2. State Personal Income Data

We consider a set of annual observations on state personal income (total, nominal,
in millions of dollars) recorded in the 48 continental United States. Stock and Watson [34]
analyze these data in a study on the demand for tobacco. Some descriptive statistics for this
data are as follows: sample size, 104; average, 99.879; standard deviation, 120.541; Fisher’s
skewness coefficient, 2.817; Fisher’s kurtosis coefficient, 13.275. We provide this dataset in
Appendix B. Figure 6 presents the traditional box-plot and the adjusted box-plot for the
state personal income data in which the existence of outliers can be observed.
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●● ●●● ●● ●

0 200 400 600 800

State personal income

●

0 200 400 600 800

State personal income

Figure 6. Box-plots for state personal income data: traditional box-plot in the left panel and adjusted
box-plot in the right panel.

With these data, we obtain the following moment estimates: θ̂M = 0.207 and α̂M = 3.702.
Table 3 reports the ML estimates for the parameters of each distribution fitted to the state
personal income data. In addition, the maximum values of the corresponding log-likelihood
functions and the values associated with the information criteria and the modified statistics
are reported. In this table, based on the statistics modified under a level of significance
equal to 0.05, it can be seen that the L distribution is the only distribution that does not
properly fit the state personal income data. On the other hand, the ESL distribution is the
one with the lowest AIC and BIC values, which suggests that this distribution should be
selected to fit the state personal income data.

Table 3. The ML estimates (with standard errors in parentheses), the maximum values of the
corresponding log-likelihood functions, the values associated with the information criteria (AIC and
BIC) and with the modified statistics (W∗ and A∗) for each fitted distribution to the state personal
income data.

Parameter L PL LS ESL

σ - - 4.260× 104 -
(7.528× 103)

θ 0.019 0.083 682.380 0.312
(0.001) (0.019) 192.712 (0.089)

α - 0.705 2.614 3.033
(0.046) 1.147 (0.484)

` −553.170 −536.240 −536.596 −534.902

AIC 1108.341 1076.480 1079.193 1073.804
BIC 1110.906 1081.609 1086.886 1078.933

W∗ 0.140 0.084 0.074 0.051
A∗ 1.003 0.653 0.579 0.432

Figure 7 depicts plots of the fitted L, PL, LS and ESL distributions using the ML
estimates. Notice that the fitted ESL distribution has heavier tails.
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Figure 7. Histogram for the state personal income data and curve of the pdf of each fitted distribution.

5. Concluding Remarks

This article proposes a heavy-tailed extension of the Lindley distribution, the extended
slash Lindley (ESL) distribution. The proposal arises as the ratio of independent random
variables, specifically, a Lindley distribution divided by a beta distribution. In this way,
a three-parameter distribution with heavier tails than the classical Lindley distribution
is obtained.

The main structural properties such as the pdf, cdf, rf and hrf are derived. The pdf is
written in closed form in terms of the confluent hypergeometric function, which facilitates
its computational implementation. Both the pdf and the hrf can exhibit monotonically
decreasing or unimodal shapes. In addition, closed expressions are derived for the raw
moments of the ESL distribution, which are then used to describe the behavior of the
Fisher’s skewness and kurtosis coefficients. We note that two of the parameters of the
ESL distribution (α and β) control the kurtosis of the distribution, while the remaining
parameter (θ) controls the unimodal or monotonic shape of the pdf.

Although the presence of two shape parameters controlling the kurtosis allows the
ESL distribution to be able to capture high levels of kurtosis, we observe that this generates
a problem of non-identifiability of the parameters, which was evidenced by simulation
experiments. This problem disappears when there is a single parameter that controls the
kurtosis, so several solutions to this problem can be adopted. In particular, we propose
the special case obtained by considering β = 1 + 100/α, which results in a two-parameter
version capable of capturing high levels of kurtosis. We verify that the pdf and the hrf
of this special case, as in the three-parameter version, can have unimodal and monotonic
decreasing shapes. We also note that the classical Lindley distribution can be derived as a
limit case of this special case.

We discuss parameter estimation considering moment and ML methods. It is noted
that both methods require the use of numerical procedures. For the two-parameter ESL
distribution, through simulation experiments, we observe that the ML method provides
estimates with less bias than the estimates obtained with the moment method.

Finally, when fitting data that present a high level of kurtosis, we observe that the
two-parameter ESL distribution can present a better performance than the classical Lindley
distribution and some of its known extensions.
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Appendix A

This appendix provides the R codes for the computation of the pdf, the cdf, and the
generation of pseudorandom numbers for the ESL distribution.

Appendix A.1. First Option for the Computation of the ESL pdf

This code computes Equation (3) using the INTEGRATE function.

> dESL <- function(x,theta,alpha,beta){
+ n <- length(x)
+ f <- numeric(n)
+ for (i in 1:n){
+ f[i] <- integrate(function(w,x,t,a,b){
+ t^2/((t+1)*beta(a,b))*(1+x*w)*w^a*(1-w)^(b-1)*exp(-t*x*w)
+ },
+ lower=0,upper=1,x=x[i],t=theta,a=alpha,b=beta)$value
+ }
+ return(f)
+ }

Appendix A.2. Second Option for the Computation of the ESL pdf

This code computes Equation (5) using the KUMMERM function.

> library(fAsianOptions)
> fj <- function(x,theta,alpha,beta,j){
+ gamma(alpha+j)/gamma(alpha+beta+j)*Re(kummerM(x=-theta*x,
+ a=alpha+j,b=alpha+beta+j))
+ }
> dESL <- function(x,theta,alpha,beta){
+ theta^2*gamma(beta)/((theta+1)*beta(alpha,beta))*
+ (fj(x,theta,alpha,beta,1)+x*fj(x,theta,alpha,beta,2))
+ }

Appendix A.3. First Option for the Computation of the ESL cdf

This code computes the ESL cdf using the code provided in Appendix A.1.

> pESL <- function(x,theta,alpha,beta){
+ n <- length(x)
+ f <- numeric(n)
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+ for(i in 1:n){
+ f[i] <- integrate(dESL,lower=0,upper=x[i],theta=theta,
+ alpha=alpha,beta=beta)$value
+ }
+ return(f)
+ }

Appendix A.4. Second Option for the Computation of the ESL cdf

This code computes the cdf provided in Proposition 2.

> funE <- function(x,theta,alpha,beta){
+ n <- length(x)
+ f <- numeric(n)
+ for(i in 1:n){
+ f[i] <- integrate(function(x,v,t,a,b)(1+v)*pbeta(v/x,a,b)*exp(-t*v),
+ lower=0,upper=x[i],x=x[i],t=theta,a=alpha,b=beta)$value
+ }
+ return(theta^2/(theta+1)*f)
+ }
> pESL <- function(x,theta,alpha,beta){
+ 1-exp(-theta*x)*(1+theta+theta*x)/(1+theta)-funE(x,theta,alpha,beta)
+ }

Appendix A.5. Code to Generate a Pseudorandom Sample from the ESL Distribution

> rESL <- function(n,theta,alpha,beta){
+ s <- rexp(n,theta)
+ w <- rgamma(n,2,theta)
+ v <- rbinom(n,1,theta/(1+theta))
+ u <- rbeta(n,alpha,beta)
+ (v*s+(1-v)*w)/u
+ }
> x <- rESL(1000,0.01,6,5)

Appendix B

State Personal Income Data

Table A1. Set of 96 annual observations on state personal income (total, nominal, in millions of
dollars) recorded in the 48 continental United States.

10.293195 11.577261 12.243384 12.448607 14.229156 14.454129
14.575292 14.581495 15.767469 16.296835 17.258916 18.237436
19.462380 20.852964 21.778072 22.868920 23.786644 25.045934
25.678534 26.210736 28.649564 31.716160 32.611268 34.784360
36.205164 36.293064 37.278220 37.902896 38.536176 39.377292
42.703144 43.395580 43.956936 45.995496 46.014968 46.241956
49.466672 53.431900 56.626672 57.749668 60.063368 60.170928
63.152360 63.333300 64.846548 65.732720 69.341920 71.209312
71.751616 72.050072 74.079712 74.851664 78.364336 79.104656
83.903280 84.572688 87.361632 88.870496 92.946544 98.328688
104.315120 113.216856 114.259984 115.959680 117.639672 126.525008
129.680832 133.549208 133.728040 135.115456 153.455776 157.633568
159.800448 161.441792 166.919248 170.033840 170.051568 176.786352
231.003152 231.594240 233.208576 255.312928 285.923232 297.728512
304.767456 333.525344 402.096768 447.102816 503.163328 771.470144
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