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Abstract: The use of computerized formative assessments in K–12 classrooms has yielded valuable
data that can be utilized by learning analytics (LA) systems to produce actionable insights for teachers
and other school-based professionals. For example, LA systems utilizing computerized formative
assessments can be used for monitoring students’ progress in reading and identifying struggling
readers. Using such LA systems, teachers can also determine whether progress is adequate as the
student works towards their instructional goal. However, due to the lack of guidelines on the timing,
number, and frequency of computerized formative assessments, teachers often follow a one-size-
fits-all approach by testing all students together on pre-determined dates. This approach leads to a
rigid test scheduling that ignores the pace at which students improve their reading skills. In some
cases, the consequence is testing that yields little to no useful data, while increasing the amount of
instructional time that students miss. In this study, we propose an intelligent recommender system
(IRS) based on Dijkstra’s shortest path algorithm that can produce an optimal assessment schedule
for each student based on their reading progress throughout the school year. We demonstrated
the feasibility of the IRS using real data from a large sample of students in grade two (n = 668,324)
and grade four (n = 727,147) who participated in a series of computerized reading assessments.
Also, we conducted a Monte Carlo simulation study to evaluate the performance of the IRS in the
presence of unusual growth trajectories in reading (e.g., negative growth, no growth, and plateau).
Our results showed that the IRS could reduce the number of test administrations required at both
grade levels by eliminating test administrations in which students’ reading growth did not change
substantially. In addition, the simulation results indicated that the IRS could yield robust results with
meaningful recommendations under relatively extreme growth trajectories. Implications for the use
of recommender systems in K–12 education and recommendations for future research are discussed.

Keywords: recommender system; shortest path; Dijkstra; reading; formative assessment; personalized
learning

MSC: 05C12

1. Introduction

Over the past few decades, the paradigm shift from assessment of learning to as-
sessment for learning has transformed teaching, learning, and assessment practices at all
levels of education [1]. Today’s modern educational systems emphasize the importance of
improving student learning by using formative assessments that gauge students’ academic
progress rather than how much students know at a certain point in time [2]. In other words,
the acquisition of academic skills is now viewed as a process, instead of an outcome. To this
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end, results from formative assessments administered throughout the school year can help
teachers document each student’s academic progress, identify students who are in need of
extra supports, and make appropriate instructional adjustments. Moreover, assessments ad-
ministered earlier in the school year can be used for the purpose of screening students who
are at risk of significant learning difficulties. Notably, the numerous benefits of formative
assessments rely on a strong commitment to frequent, albeit relatively brief, assessments
being administered to students. Therefore, to optimize the symbiotic relationship between
instruction and assessment, teachers have increased their use of digital assessment tools,
such as computerized formative assessments, in K–12 classrooms. This is, perhaps, un-
surprising given their ability to efficiently generate and score meaningful assessments of
student learning in a variety of academic domains and sub-domains.

In a broader educational context, data from computerized formative assessments
can also be used for establishing a learning analytics (LA) framework where teachers can
implement data-informed (or data-driven) decision making and optimize student learning
in real time [3–5]. The primary goal of LA is to “exploit data generated in educational
settings for purposes of optimizing learning and the environments in which it occurs” [6].
Researchers often build predictive LA models based on historical student data to help
teachers make predictions about future educational outcomes (e.g., students’ final course
grades or course failure) and take appropriate actions [7]. However, predictive LA models
can also be used more dynamically for making instructional decisions based on students’
strengths and challenges. For example, the teacher can review how students’ scores in
computerized formative assessments change over time and generate timely feedback for
individual students [8,9].

Although the increasing use of computerized formative assessments has improved
the quality and quantity of data going into predictive LA models, it has also led to practical
challenges, such as identifying which students need to be assessed, when they should be
assessed, and how frequently computerized formative assessments should be administered.
Generally, teachers are responsible for monitoring growth trajectories for all students and
deciding the necessity of a future test administration and the optimal timing of the next
assessment. However, in classroom settings, this task can be practically very challenging
for teachers. Thus, teachers may have to follow a one-size-fits-all approach (e.g., monthly
testing for all students) that disregards the pace at which each student acquires knowledge.
In addition, following a frequent testing approach (e.g., weekly testing) would reduce the
instructional time that students would receive in the classroom.

Results from previous studies suggested that teachers may need systematic guidance to
determine an optimal assessment schedule based on each student’s unique progress [10,11].
Although several researchers shared practical guidelines regarding the number, timing,
and frequency of computerized formative assessments focusing on reading [8,12,13], there
is no consensus on the number of test administrations and the testing frequency for com-
puterized formative assessments. Furthermore, grade-level guidelines for administrating
computerized formative assessments focus on students achieving expected growth and
thereby fail to consider students with unique learning needs [10]. Therefore, either placing
the onus on teachers to make all scheduling decisions or following general guidelines
about assessment schedules may not be effective solutions for maximizing the benefits of
computerized formative assessments.

Recent studies showed that intelligent recommender systems (IRSs) can be used to
generate a personalized assessment schedule based on each student’s progress [10,11].
The main goal of the IRS is to exploit existing information about items (or users) to provide
suggestions of new items for users (e.g., what products to buy, what videos to watch,
or what online news to follow) [14]. In the context of computerized formative assessments,
“item” refers to test administrations to be recommended and “user” refers to students.
The IRS could harness historical assessment data to learn about different growth trajec-
tories among students and then use this information to recommend test administrations.
As students participate in computerized formative assessments throughout the school
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year, the IRS could predict the number, frequency, and time of future test administrations
for each student. There are two key benefits of developing this type of system. First, it
addresses concerns from parents and teachers by potentially reducing the amount of time
that is dedicated to testing over the course of a school year (i.e., increasing instructional
time while minimizing the possibility of over-testing). Second, it helps teachers to ensure
that all assessment data collected from students are of high quality and are useful in the
decision-making process.

In this study, we aim to demonstrate how to develop a recommender system that
can produce optimal test administration schedules by minimizing the number of test
administrations without sacrificing the quality of the data collected (i.e., minimizing the
influence of error on the decision-making process). To develop the IRS, we propose a
user-based collaborative filtering approach based on Dijkstra’s shortest path first (SPF)
algorithm [15]. The SPF is a greedy algorithm for solving single-source, shortest path
problems (e.g., finding the shortest route to take from one city to another). We selected the
SPF algorithm due to its lower computational cost and scalability within a large-scale LA
ecosystem. In the following sections, we describe the mathematical model underlying our
recommender system and then demonstrate the feasibility of our proposed IRS approach
using real and simulated assessment data.

2. Intelligent Recommender System
2.1. Recommender Systems for Educational Assessments

A recommender system is a program that uses existing data to learn different character-
istics of users (e.g., students) and items (e.g., course materials) and then recommend items
or actions to new users [16]. To date, various recommender systems have been introduced
by educational researchers and computing science communities to support instructional
practices and promote student learning. Researchers have mostly attempted to use recom-
mender systems for providing individualized guidance to students on educational content
(e.g., courses, course modules, and learning resources). Manouselis et al. [17]’s edited book
on recommender systems provides examples of innovative recommender system applications
in the context of technology-enhanced learning (TEL), such as learning plan recommenda-
tions in gamed-based learning, learning resource recommendations, and learning object
recommendations in adaptive learning systems. Some researchers also used recommender
systems as a predictive modeling technique. For example, Thai-Nghe et al. [18] used rec-
ommender system techniques for predicting student performance (i.e., whether students
successfully completed a particular step of the item on their first attempt) in intelligent
tutoring systems. The authors found that recommender system techniques such as matrix
factorization and collaborative filtering outperformed the traditional regression methods
in predicting student performance. Recently, more advanced algorithms and approaches
such as reinforcement learning [11,19] have been proposed to improve the capacity, archi-
tectural flexibility, and performance accuracy of the recommender systems adopted within
educational contexts.

Despite their popularity in educational applications focusing on TEL, recommender
systems have not been widely utilized in educational assessment contexts. To date, few
studies have investigated how recommender systems could enhance formative and sum-
mative assessment practices in education. For example, de Oliveira et al. [20] proposed
a recommender system for students participating in a computer programming course.
The system created a user profile for each student based on their performance in formative
assessments and recommended different classes of activities that students had to solve
to improve their performance. Some researchers also integrated psychometric modeling
approaches (e.g., item response theory (IRT)) into recommender systems to create person-
alized learning environments for students. For example, Baylari and Montazer [21] built
a multi-agent e-learning system based on IRT and artificial neural networks. The system
delivers a review assessment, analyzes the student’s responses, diagnoses the student’s
potential learning problems, and then recommends the appropriate learning materials to
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the student. The results of this study showed that the proposed system could recommend
appropriate course materials with high degree of accuracy. Chen et al. [22] also proposed
a personalized e-learning system combining IRT and recommender systems to provide
adaptive learning opportunities to students. Their proposed system contained a course
recommendation engine that dynamically selected appropriate course materials based on
each student’s ability level. Experimental results showed that the proposed system could
improve students’ learning efficiency and effectiveness by recommending course materials
based on their ability levels.

To enhance the delivery and use of educational assessments in the classroom, de Schip-
per et al. [23] built and implemented a recommender system that provided automated and
personalized feedback to secondary school students in the Netherlands. Using techniques
such as singular value decomposition and collaborative filtering, the system recommended
a set of personalized practice questions to students following a high-stakes summative
assessment. The findings of this study showed that the recommender system could provide
useful feedback to students in the form of personalized practice materials by making use
of readily available data from summative assessments. Bulut et al. [10] proposed an IRS
approach to optimize the scheduling of test administrations for a computerized formative
assessment focusing on the mathematical abilities of students in grades K–12. The findings
of their study indicated that the IRS could yield a significant reduction in the total number
of test administrations required to make accurate decisions on students’ academic growth.
Similarly, Shin and Bulut [11] also proposed a recommender system using a reinforce-
ment learning algorithm that aimed to optimize test administration schedules for students.
The proposed system could identify the critical time points for students to demonstrate their
academic growth. The results indicated that the algorithm could successfully reduce the
number of test administrations without compromising the amount of information gathered
about the students’ learning progress. Furthermore, Kundu et al. [24] provided a compre-
hensive overview of how the big data in education, especially in educational assessments,
enabled the adoption of recommender systems with various applicable examples.

In this study, we propose to use recommender systems to produce personalized test
administration schedules for students participating in computerized formative assessments.
Using data from computerized formative assessments (i.e., students’ scores), our system
aims to produce a test administration schedule that could enable students to demonstrate
sufficient academic growth with the minimum number of test administrations. In the
following sections, we describe the mathematical modeling approach (i.e., Dijkstra’s SPF
algorithm) underlying our recommender system.

2.2. Directed Graph to Represent the Test Administration Sequence

In mathematics, graph theory refers to the study of graphs to learn pairwise relations
between the two or more entities. In our study, we used students’ test performance
history with the finite set of testing window as an individual entity in a directed graph.
A directed graph, G = (V, E), consists of a non-empty finite set V of elements called
vertices or nodes. A finite set of E represents the edges with or without the weight to
demonstrate the relationships between two nodes, V and V′. In our recommender system,
we let G = (V, E) to represent a directed graph for a personalized path to participate in
a sequence of computerized formative assessments. Each node represents a single test
administration within a particular testing window. For example, the following sequences
(S) in Equation (1) represent students’ test administration records (T) for a total of n students
within k testing windows (e.g., semi-monthly testing windows throughout a school year):

A =


S1 = T1 → T2 → T3 → T4 → · · · → Tk
S2 = T1 → T3 → T4 → T5 → · · · → Tk−1
Sn = T3 → T4 → T5 → T12 → · · · → Tk−2

. (1)

To identify the pairwise relationship between two nodes, we could define the edges
and their association weights in multiple ways. The connecting edges represent the direct
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sequence that students are involved in their test participation. For example, T1 → T3
represents a student who participated in the computerized formative assessment in the
first and third testing windows. To define a directed graph with respect to students’
learning progress (i.e., academic growth based on their scores), the strength of the pairwise
relationship between the two entities should represent how closely the assessment scores
are related to each other. Hence, we used the average positive score change observed
between the two entities (testing windows) to represent their relationship. Assuming that i
and i′ are two connected entities for student j, m is the highest assessment score, and u is
the lowest assessment score that student j could achieve in a series of test administrations;
the relationship between the two test administrations (Wii′ ) can be expressed as follows:

Wii′ = log(Lii′), (2)

where Lii′ can be computed as

Lii′ =
1

1
(m−u)Σn

j=1|Tji − Tji′ |
. (3)

In Equation (2), we transform the probability value (Lii′ ) into a log value (Wii′ ) for
two reasons. First, since the probability values of Lii′ are always between zero and one,
the weights calculated in the log space will be negative values so that the shortest path can
be assigned to the highest weight. Second, the inverse of the assessment scores was used to
represent a “closer” connection between the two nodes when there is a significant academic
growth (i.e., a large, positive or negative change between two assessment scores). Therefore,
test administrations with sufficiently high (or low) assessment scores will be critical points to
understand students’ overall learning progress. Figure 1 illustrates how a test administration
sequence could be transformed into a directed graph. The figure at the bottom provides a
simple demonstration of how the association weights for the edges can be computed.

Figure 1. A directed graph representation based on the test administration sequence.

2.3. Shortest Path Similarity as Recommendations

In this study, we utilized shortest path similarity to identify the most efficient test se-
quences (or paths) that could be recommendable to other students. The SPF algorithm [15]
identifies the shortest path from a starting entity to the target entity in a weighted graph.
The algorithm creates a tree that examines the distance (i.e., path) from the starting entity
to all other points (i.e., nodes) in the graph and then selects the shortest path as a solution.
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In our case, the SPF algorithm is adopted to identify the shortest path between test admin-
istrations to produce an optimal test administration schedule for each student. We define
the optimal test administration based on two criteria: the number of test administrations
and the score change between test administrations (i.e., academic growth). We aim to select
the minimum number of test administrations to reduce the instructional time that students
are likely to miss while participating in a computerized formative assessment outside the
classroom. Additionally, we aim to avoid test administrations in which students are not
likely to demonstrate a significant score change from the previous test administration. That
is, students should not be required to participate in any test administration until they are
able to demonstrate adequate improvement.

To identify the shortest path between test administrations, we set the distance from
one entity to another connected entity (i.e., test administrations from two testing windows)
to zero for the initial node and to ∞ for all other nodes. This will serve as a tentative
distance value between the entities (see step 1 in Figure 2). The SPF algorithm attempts
to iteratively update this distance value starting from the initial node with the randomly
assigned distance between the other nodes (i.e., {2, 4, 3, 5, . . .} in Figure 2). The algorithm
updates the value until it is represented by the smallest weight. For example, the randomly
assigned distance value between the first and the second node in Figure 2 is set to two.
Hence, the SPF algorithm updates the distance value of the second node to two (i.e.,
0 + 2 = 2). In the second step, the third node’s distance value is updated to six (i.e.,
2 + 4 = 6), but then it is corrected to have the smallest distance of value two due to its
shorter distance relationship with the first node. The order of updating this rule for every
entity (i.e., testing window) in the graph is controlled by a concept called a priority queue.
The priority queue ranks the entities in a specific order based on their initial connecting
weights. This helps identify which path needs to be updated first in order for effective
iterations (for more information about the priority queue, see Chen et al. [25]).

As explained above, the SPF algorithm iteratively finds the paths that have the min-
imum weight, in other words, the shortest distance (see Figure 2). In our proposed IRS,
the SPF algorithm updates the solution based on the relationship between different test
administrations. That is, the algorithm finds the test administrations where the change in
students’ scores in the computerized formative assessment was the most significant. Note
that we use the inverse value of the score change to represent their relationships so that
the shortest distance corresponds to the largest score change. The SPF algorithm identifies
a list of test administration paths connecting from one node to another with minimized
weights. As more information on students (i.e., new scores in the computerized formative
assessment) becomes available, the SPF algorithm adapts accordingly and continues to
look for the shortest path (i.e., the test administration schedule with the smallest number of
test administrations and maximum score change).

Figure 2. A conceptual representation of the shortest-path similarity update with the test sequence X
(pseudo-code on the right).
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In our study, we adopted the SPF algorithm to identify a set of test administrations that
would be suitable for students who are at increased risk for reading difficulties based on
their performance in a computerized formative assessment. The shortest path recommenda-
tions were derived from the assessment history of exemplary students who demonstrated
sufficient academic growth throughout the school year (details of the exemplary and at-risk
categorizations are available in the Methods section). First, we applied the SPF algorithm
based on a directed graph generated using students’ test administration sequences (i.e., stu-
dents’ assessment scores over multiple testing windows) and calculated the edge weights.
Second, we mapped the shortest path results onto students’ test performance information.
In the final step (i.e., recommendation phase), we matched at-risk students and exemplary
students who demonstrated a similar assessment performance within the same testing
window using the Euclidean distance. Given two students, one from the exemplary group
who followed the shortest paths, Su = (s1u, s2u, . . . , smu), and another from the at-risk
group, Sl = (s1l , s2l , . . . , snu), we iteratively identify the students by evaluating their Eu-
clidean distance of their test score. That is, the nth student in the at-risk group, snu, is
compared to the mth student sm,l from the exemplary group with the shortest path, and
then a test administration recommendation is made by locating the testing sequence of the
mth student that maximizes the Euclidean distance:

argmax
x

=
√

Σk
i=1(Tsnu ,i − Tsml ,i)

2. (4)

Using the SPF algorithm, we designed an IRS that could recommend individualized
progress monitoring schedules, minimizing the number of test administrations without
sacrificing the quality of the data collected (i.e., minimizing the influence of error on the
decision-making process). To demonstrate how our IRS produces optimal test administra-
tion schedules for at-risk students, we conducted two studies: a real-data study and a Monte
Carlo simulation study. In the real-data study, we used existing test scores from a large
group of students who participated in a series of computerized reading assessments. Using
the longitudinal assessment data obtained from the students, we considered a hypothetical
scenario in which we explored which test administrations the IRS would recommend to
at-risk students, compared with standard practice (i.e., actual test administration decisions
made by the teachers). In the simulation study, we examined the performance of the IRS
when students demonstrated unusual growth trajectories (i.e., negative growth, no growth,
and positive growth followed by a plateau). The following research questions guided the
real data and simulation studies:

1. Does the IRS yield optimal test administration schedules with the minimum number
of test administrations?

2. Does the IRS produce robust recommendations for students with unusual growth
trajectories (e.g., decreasing trajectory, flat growth trajectory)?

In the following sections, we explain the details of each study, summarize the results,
and discuss the implications of our findings.

3. Methods
3.1. Real Data Study
3.1.1. Sample and Instrument

The sample of the real-data study consisted of students in grade 2 (n = 668,324)
and grade 4 (n = 727,147) in the United States who participated in a number of Star
Reading assessments during the 2017–2018 school year. Star Reading [26] is a computerized
adaptive test that measures a variety of reading skills, such as vocabulary knowledge,
comprehension strategies, and literary text analysis. The purpose of Star Reading is to
provide meaningful information to teachers to inform their classroom instruction. It can
also provide information about the likelihood that a student will progress well in response
to classroom instruction throughout the year and perform well on the state test at the end
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of the school year. Each administration of Star Reading consists of 34 multiple-choice items
that can be completed within an average administration time of approximately 20 min.
Star Reading can be administered to students with a sight-word vocabulary of at least
100 words from kindergarten to grade 12. Strong evidence of reliability and validity are
described in detail in the Star Reading technical manual [26].

In the data, the total number and frequency of Star Reading administrations varied by
students because teachers could determine the test schedule for their students. For example,
a large number of students participated in Star Reading several times at the beginning
of the school year and during the last couple of weeks of the school year. In addition,
some students participated in the assessment very frequently (e.g., multiple times within
a week). To make test scheduling recommendations based on this dataset, we decided
to determine a reasonable testing window based on the amount of time required for
students to demonstrate enough growth in reading. With a monthly testing window, there
would be too much time for some students, especially those who may be struggling to
demonstrate reasonable growth in reading. Similarly, a weekly testing window would not
provide enough time for students to receive an adequate amount of instruction to be able
to improve their reading skills. In addition, when recommendations are made from these
testing windows, giving teachers a specific day or week for testing each student might
pose a significant logistical challenge for them. Therefore, we decided that a two-week
testing window would be a reasonable duration and organized students’ test participation
history as nineteen testing windows from the start (August 2017) until the end (June 2018)
of the school year, with roughly two testing windows per month. The number of individual
administrations of the Star Reading assessment are displayed in Figure 3.

Figure 3. The total number of test administrations by testing window.

Star Reading scores are reported on a unified scale score metric ranging from 600 to
1400. Higher scores indicate better performance in reading. Figure 4 shows the average
scale scores in Star Reading by testing window. For both grades 2 and 4, the average Star
Reading score gradually increased as students acquired more knowledge and skills in
reading. It should be noted that although students are expected to show a linear growth
pattern throughout the school year, this does not necessarily occur for all students. Some
students’ scores may show a nonlinear pattern, a flat pattern (i.e., no improvement), or a
decreasing pattern. Students with such growth patterns need to be closely monitored and
provided interventions or remedial reading programs to improve their reading skills.
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Figure 4. The average Star Reading scores in each test window.

3.1.2. Data Preprocessing

To build the IRS using the Dijkstra’s SPF algorithm, we applied a data preprocessing
procedure. First, we calculated students’ academic growth in reading during the 2017–2018
school year. To estimate students’ growth (i.e., slopes), we used the Theil–Sen estimation
method [27]. The Theil–Sen estimator is similar to traditional regression approaches such
as ordinary least-squares, but it is robust to outliers [8]. The following formula shows the
slope calculation using the Theil–Sen method:

Slope =
Star Reading ScoreTime2 − Star Reading ScoreTime1

DateTime2 −DateTime1
, (5)

where Star Reading ScoreTime 1 and Star Reading ScoreTime 2 are the student’s Star Reading
scores from two administrations, DateTime 1 and DateTime 2 are are the dates that the test
administrations occurred, and Slope is the growth estimated based on the average daily
change between the two scores. This calculation is repeated for all possible slopes for
a given student, and then the median value of the calculated slopes is used as the best
estimate of student growth.

Next, we split the sample for each grade level into two samples: training and test.
The training set consisted of students who showed adequate growth in the assessments
(hereinafter referred to as the exemplary group). To identify adequate growth, we used
2 rules: the student’s Theil–Sen slope must be larger than the median value of all slope
estimates in the sample and the student’s final Star Reading score must be above the 25th
percentile, which is considered a cut-off for identifying at-risk students in reading [11].
After applying these selection criteria, the grade 2 training sample included 276,087 stu-
dents and the remaining 392,237 students were included in the test sample. For grade 4,
the training sample included 278,442 students while the test sample included the remain-
ing 448,705 students. The training set was used to train the IRS based on the exemplary
students and to make recommendations for the students in the test set for whom either the
number of test administrations or the timing of the test administrations might not be ideal
(hereinafter referred to as the at-risk students).
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3.1.3. Data Analysis

As explained earlier, we trained the IRS using Dijkstra’s SPF algorithm with a priority
queue [15]. The primary goal of the IRS was to find an optimal test schedule with the least
number of test administrations and the maximum positive score change in Star Reading
across the test windows. After a target student (i.e., students in the test dataset) participated
in two administrations of Star Reading, the student’s academic growth (i.e., Theil–Sen
slope) in reading was calculated. Then, the Euclidean distance was used to identify a
list of exemplary students who indicated similar growth trajectories as the target student
within the same testing window. For the identified exemplary students, the positive score
difference between subsequent testing windows was calculated. The larger the score
difference, the shorter the distance between the testing windows. In the recommendation
phase, the student whose test schedule yielded the largest positive score change was
identified as the shortest path and their test schedule was recommended to the target
student. After each test administration, the IRS recalculated the target student’s growth
trajectory and determined whether the student should stay in the current test schedule or
switch to an alternative test schedule that is more aligned with their growth trajectory. In
the real-data study, we established a hypothetical scenario in which we examined which
test administrations the IRS would recommend to students in the test dataset. Since the
number of test administrations varied by students, students did not have a valid score for
each of the nineteen testing windows. Therefore, we used linear interpolation to estimate
missing scores for the testing windows that the students did not participate in Star Reading.
Our goal was to compare the number of test administrations in standard practice (i.e.,
testing decisions being made by the teachers) against the number of test administrations
recommended by the IRS. Using the complete dataset, we evaluated the performance of the
IRS based on three criteria: (1) the average number of test administrations, (2) the average
positive score change between test windows, and (3) the minimum and maximum number
of recommended test administrations. All of the analyses were conducted using Python
version 3.8.0 [28].

3.2. Simulation Study

In the Monte Carlo simulation study, we aimed to evaluate the performance of the IRS
in the presence of unusual growth trajectories in the data. We considered three unusual
patterns of growth trajectories: negative slopes (i.e., learning loss), zero slopes (i.e., no
growth), and plateau slopes (i.e., academic growth or loss tapering off gradually). For each
pattern, we considered a variety of scenarios. The negative slope condition assumed that
there was either a linear or quadratic decay (i.e., learning loss) in the data. The zero
slope condition assumed that the students’ slopes were either zero or very close to zero.
The plateau slope condition assumed that the students’ trajectory (either negative or
positive) became flat after the 14th, 15th, or 17th test administration. Figure 5 illustrates the
three growth trajectories considered in the simulation study.

A linear regression model was used to simulate assessment scores based on the
aforementioned growth trajectories:

y = a0 + a1 ∗ d + ε, (6)

where y is the assessment score, a0 represents the intercept (fixed to 600 for all simulation
conditions), a1 represents the slope, d represents the number of test administrations, and ε
is the residual. We set d = 20 to obtain a full dataset (i.e., scores available for all testing
windows) and d < 20 to obtain a sparse dataset (i.e., assessment scores available only for
some testing windows). The negative slope condition involved a single negative slope
(linear) or a mix of gradually decreasing, negative slope values (quadratic). The minimal
slope condition was based on a mix of slope values close to zero. The plateau condition
involved scores following either a positive or negative slope until the 14th, 15th, or 17th
test administration, and then a slope close to zero. Table 1 presents the specification of the
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data simulated using the linear and quadratic regression models. For each condition, we
simulated 1000 students using the mblm package [29] in R [30]. Then, the IRS from the real
data study was applied to the simulated dataset to generate test administration schedules
for simulated students.

Figure 5. Academic growth trajectories in the simulated datasets.

The simulation study was conducted in four stages. First, for the sparse data (see
Table 1), we attempted to generate the data points (students’ scores) in randomly selected
windows of d ∈ {3, 5, 10, 15}. For the full data, d was set to 20. The initial slope value was
selected based on the three slope categories (i.e., negative, minimal changes, and plateau).
For instance, for the negative slope category, the initial slope value was drawn from a
uniform distribution following a selected range of (−1.1, 0; see Table 1). The residual
was drawn from a Gaussian distribution, N(0, d2). Second, the linear regression model in
Equation (6) was used to simulate the data. We first gathered the residual εd as the uniform
deviated within the interval of εd ∈ min(y− ŷ), max(y− ŷ). Then, the residual εd was
added to the predicted value, ŷd. Third, the Theil–Sen estimation method was performed to
obtain the intercept, slope, ŷ, and ε in Equation (6). Lastly, we repeated the same simulation
procedure for a total number of 1000 samples (i.e., 1000 simulated students).
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We evaluated the performance of the IRS under different simulation conditions based
on the same three criteria: (1) the average number of test administrations, (2) the aver-
age positive score change between test windows, and (3) the number of recommended
test administrations.

Table 1. A summary of the simulation parameters.

Slope Type Sparse Data Full Data
Slope Range Number of Tests * Slope Range Number of Tests Sample Size

Linear (−1.1, 0) 5.86 (−0.6, −0.3) 20 1000Negative Slope
Quadratic (−1.1, 0) 5.80 (−0.6, −0.4) 20 1000

Minimal Change Zero slope (−0.01, 0.0) 5.09 (−0.01, 0.0) 20 1000

After 14 (−0.1, 0.1) 9.32 (−0.1, 0.1) 20 1000
After 15 (−0.1, 0.1) 7.58 (−0.1, 0.1) 20 1000Plateau
After 17 (−0.1, 0.1) 7.07 (−0.1, 0.1) 20 1000

* This refers to the average number of test administrations.

4. Results
4.1. Results of the Real-Data Study

Table 2 shows a comparison between the performance of the IRS and standard practice.
As explained earlier, standard practice refers to the assessment practices followed by the
teachers who were able to select the number, timing, and frequency of test administrations
for their students. The results indicate that the IRS recommended significantly fewer test
administrations while maximizing the positive score change between test administrations
for both grade levels. Furthermore, the IRS was able to reduce the number of tests ad-
ministered to as few as 5 tests per student in grade 2, and 6 tests per student in grade 4,
compared with a maximum of 17 tests per student in standard practice. Previous research
utilizing Star Reading suggests that at least five tests should be administered to students
for accurate decision making [8]. However, the results of our study show that the IRS could
produce personalized test administration schedules with fewer tests by maximizing the
score change between test administrations.

Table 2. Results of the intelligent recommender system (IRS) compared to standard practice (SP).

Evaluation Criteria Grade 2 Grade 4
SP IRS SP IRS

Average number of tests 5.42 3.51 5.37 3.84
Average positive score change 8.32 12.25 3.49 4.63
Minimum number of test administrations * 1 1 1 1
Maximum number of test administrations * 17 5 17 6

* It excludes the first two test administrations necessary for the slope estimation.

Figure 6 shows a grade two student with a positive growth trajectory in reading (top
panel) and a grade four student who seems to be struggling to make adequate growth in
reading (bottom panel). The grade 2 student participated in Star Reading 18 times and the
grade 4 student (bottom panel) participated in Star Reading 17 times over the course of
the academic year. The dashed line in each panel shows the students’ growth trajectories
based on their scores in Star Reading. The points with green shadowing represent the
test administrations recommended by the IRS. Based on the recommended tests from the
IRS, the total number of test administrations would reduce to three for both students.
Unlike standard practice (i.e., test administration decisions made by teachers), the IRS
monitored the students’ progress and selected testing windows where they were most
likely to demonstrate a significant score change. The first testing window was the starting
point for both students, followed by a mid-year assessment in the 12th testing window,
and an end-of-year assessment around the 18th or 19th testing window. Moreover, with the
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tests recommended by the IRS, the positive score change per test would increase from 7.47
to 43.33 for the grade 2 student with a positive growth trajectory and from −0.29 to −1.67
for the grade 4 student with a negligible growth trajectory.

Figure 6. Original and recommended test administrations for two students.

Although the IRS produced testing schedule recommendations for the vast majority
of the students, it was not able to generate a test administration schedule for less than 0.1%
of the students at each grade level. To better understand the reasons for the inability of
the IRS to generate a recommendation, we looked at these cases more carefully. At both
grade levels, there appeared to be three reasons that no recommendation was made. First,
students who only had a single test administration did not receive a recommendation. This
is due to the fact that the system requires two data points before it will begin to generate
a recommendation. This accounted for 0.02% and 0.01% of the cases in grade two and
grade four, respectively. Second, when the number of test administrations increased and
the observed score change did not increase significantly, no recommendation was produced
by the IRS. In this case, the student should likely be tested more often because their growth
is atypical. This group accounted for 0.02% of both the grade two and grade four cases.
Finally, the third reason is that for some students, the number of test administrations
decreased, but the observed score change did not change significantly. This group of cases
represents an optimization of the testing schedule without greatly affecting the observed
score change. For example, a student who originally participated in 4 tests with a relatively
strong observed score change of 70 points was recommended to only take 3 tests, but this
modification led the observed score change between the remaining data points to be 65.
Although this difference could be considered a decrease in score, it is not necessarily large
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enough to justify a change in the testing schedule. Thus, standard practice might be more
suitable for such non-recommendable cases.

4.2. Results of the Simulation Study

Tables 3 and 4 present the results of the Monte Carlo simulation study for the sparse-
and full-data conditions, respectively. Three patterns deserve to be scrutinized to better
understand the results of the simulation study. First, we found that the IRS could re-
duce the number of test administrations significantly. This pattern remained consistent
across all types of datasets simulated based on our three growth patterns (i.e., negative
slope, minimal change, and plateau). In the sparse-data condition, the largest adjust-
ment in the number of test administrations was observed for the plateau condition (i.e.,
9.32− 3.26 = 6.06 difference). This finding suggests that, on average, the IRS identified
six out of nine test administrations as redundant and, thus, did not recommend these test
administrations. By contrast, the smallest adjustment in the number of test administrations
occurred for the minimal change condition (i.e., 5.09− 3.90 = 1.19 difference). This finding
indicates that, on average, the IRS identified only one test administration as redundant
and, thus, did not recommend it. This was not a surprising finding because the simulated
dataset for the sparse-data condition included the least number of test administrations
under the minimal change condition.

Second, we found that the test administration schedules recommended by the IRS
yielded a significant increase in the observed score change (see “Test Score Change” in
Tables 3 and 4). The most noticeable changes were observed for the negative, linear and
negative, quadratic slope conditions (i.e, roughly 19.12 difference in the sparse data and
60.67 difference in the full data). This finding suggests that the IRS could maximize the
score change between different test administrations by selecting the testing windows where
students were most likely to demonstrate a significant score change (either positive or
negative). This is particularly important for the negative slope condition because following
the test administration schedules recommended by the IRS would enable teachers to spend
more instructional time for at-risk students who experience learning loss, instead of testing
these students repeatedly.

Third, the superiority of the IRS in terms of the number of test administrations and
observed score changes became more apparent in the full-data condition. In other words,
generating a personalized test administration schedule would be most beneficial for class-
rooms where teachers are likely to follow a frequent testing approach to gauge academic
growth for at-risk students. Our results showed that if significant score changes were not
expected to be observed between subsequent test administrations, the IRS did not recom-
mend new test administrations for at-risk students. This would help teachers focus on
implementing differentiated instruction (or an academic intervention) that at-risk students
often require to be able to show adequate growth in reading and other core subject areas.

Table 3. Results of the simulation study for the sparse-data condition.

Slope Type
Simulated Data IRS

Number
of Tests *

Test Score
Change

Number
of Tests

Test Score
Change

Linear 5.86 −44.66 3.75 −55.41Negative Slope
Quadratic 5.80 −52.87 3.50 −71.99

Minimal Change Zero slope 5.09 −3.22 3.90 −4.14

After 14 9.32 −0.65 3.26 −1.92
After 15 7.58 −0.54 3.23 −1.29Plateau
After 17 7.07 −0.68 3.20 −1.38

* This refers to the average number of test administrations.
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Table 4. Results of the simulation study for the full-data condition.

Slope Type
Simulated Data IRS

Number
of Tests

Test Score
Change

Number
of Tests

Test Score
Change

Linear 18 −14.59 4.65 −55.41Negative Slope
Quadratic 18 −17.57 3.55 −78.24

Minimal Change Zero slope 18 −1.41 4.30 −4.68

After 14 18 −0.38 5.01 −1.36
After 15 18 −0.28 4.98 −1.01Plateau
After 17 18 −0.27 4.87 −0.97

5. Discussion

To date, many studies have discussed the importance of data-driven decision making
to improve student learning and the quality of instruction in schools [31–34]. School-
based professionals, such as classroom teachers and school psychologists, often collect
qualitative and quantitative data on student learning through observations and classroom
assessments. Then, they use the information to make decisions (e.g., applying academic
interventions and tailoring the instruction to address students’ learning needs). However,
early applications of data-driven decision making were mostly limited to making one-size-
fits-all decisions (e.g., making instructional adjustments based on grade-level guidelines
produced by researchers) rather than personalized, student-level decisions. The evolution
of big data and advanced data analytics approaches over the last two decades has resulted
in the introduction of new educational frameworks such as LA [35] and educational data
mining (EDM; [36]), which emphasize the use of data to provide personalized learning
opportunities to students. Ongoing research in EDM and LA indicate that harnessing the
power of data analytics helps educators improve the effectiveness of educational decision
making in various areas such as personalizing teaching and learning, generating feedback
for students, and individualized goal setting for students [37–39].

With a gradual shift towards digital learning in K–12 education, the increasing volume
and variety of educational data have also posed practical challenges for school-based
professionals. One of these challenges has been developing guidelines for teachers to help
them determine an optimal administration schedule for formative assessments used for
monitoring students’ academic growth in core subject areas such as reading and mathemat-
ics. An optimal test administration schedule requires a balance between having enough
data to make good decisions and minimizing the effects of sacrificing instructional time to
have students complete a formative assessment. Previous research suggests that teachers
often follow a one-size-fits-all testing procedure (e.g., monthly testing for all students) that
overlooks individual differences in student progress [10]. This is not necessarily surprising
because finding an optimal assessment schedule for each student requires considerable time
and effort, as well as knowledge of many technical concepts such as measurement error
in assessments. Moreover, teachers should arguably prioritize developing and delivering
high-quality instruction, instead of dealing with scheduling formative assessments. There-
fore, it is important to provide teachers with the most simplified approach to identifying
an optimized testing schedule based on each student’s progress. This would minimize the
time and expertise required to make these decisions.

In this study, we proposed an IRS approach to generate personalized assessment
schedules for students who participate in computerized formative assessments focusing on
reading skills. The IRS utilizes Dijkstra’s SPF algorithm [15] to find an optimal testing path
for each student by minimizing the number of test administrations and maximizing the
observed score change between subsequent test administrations. The goal of the algorithm
is to calculate the distance (i.e., observed score change between test administrations) and
recommend the shortest path (i.e., the schedule that yields the maximum score change) as
a solution. We trained the IRS using a large sample of exemplary students in grades two
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and four who participated in Star Reading and demonstrated adequate growth in reading.
Then, we tested the performance of the IRS using a sample of at-risk students who either
experienced learning loss or failed to demonstrate adequate academic growth in reading
during the 2017–2018 academic year. In addition to the real data study, we conducted a
Monte Carlo simulation study to evaluate the performance of the IRS in recommending
optimal test administrations for students with unusual growth trajectories (e.g., negative
growth, no growth, and plateau).

The results from the real-data study showed that there was a drastic difference between
the number of assessments completed during standard practices (i.e., test administration
schedules followed by teachers) and the optimized number of tests recommended by
the IRS. Based on the data used for this study, it appears that there are a number of
additional tests being administered to students (i.e., over-testing), which takes away from
instructional time and increases the likelihood of students experiencing testing fatigue.
Despite the potentially negative consequences of this practice, researchers have generally
continued to advocate for a relatively large number of tests be administered over a long
period [13,40]. The fact that the IRS only requires two data points to make a strong
assessment scheduling recommendation radically changes the way computerized formative
assessments are conducted in schools. With the use of the IRS, the assessment scheduling
process has become entirely automated, which frees up precious teacher resources so they
can focus on other tasks—such as delivering high-quality instruction. Consequently, the use
of an IRS represents a significant paradigm shift in educational assessment. The results
from the simulation study also provided additional evidence regarding the robustness
of the IRS in the presence of unusual growth trajectories. Regarding the number of test
administrations and observed score changes, the advantage of the IRS was most apparent
for the negative slope condition (i.e., students experiencing learning loss) and the full-data
condition (i.e., students being over-tested). These findings suggested that the IRS served
its purpose by optimizing the assessment schedules, especially for students who need
increased instructional time instead of being tested needlessly.

5.1. Practical Implications

The results of our study suggest that it is possible to generate personalized test sched-
ules for computerized formative assessments using an IRS. This innovative approach
represents a significant step forward in data-based decision-making based on computer-
ized formative assessments within an LA ecosystem. Namely, it comes with many benefits
and it avoids many of the challenges associated with standard practice followed by teachers
in the classroom. One of the primary benefits is that the IRS has the ability to produce an in-
dividualized pathway to successful educational growth for students. This positive framing
of educational goals is likely to increase student motivation for growth in core curricular
areas such as reading, regardless of their current level of performance. Furthermore, the IRS
reduces the number of assessments required for strong decision making, which leads to less
instructional time being sacrificed for administering computerized formative assessments.
The added benefit is that it should also reduce the likelihood of student burn-out with
respect to assessments. Finally, the IRS produces an efficient and relatively care-free test
administration process for the teachers by giving them a two-week testing window for
every single student in their classroom. This is not only a flexible approach to monitoring
students’ progress regularly, but it also reduces the need for the teachers to try to optimize
their students’ assessment schedules themselves. Lastly, the IRS approach presented in this
study emphasizes the value of LA for K–12 education. K–12 schools and school authorities
can use our IRS approach as a starting point for developing further LA applications that
generate actionable insights for teachers and other stakeholders in education [41].

5.2. Limitations and Future Directions

This study has several limitations. First, we built and tested the IRS using existing
data for two grades (grades two and four) in reading. Although the data were split and
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the model testing represents what would likely happen if the IRS were to be implemented,
the process has yet to be validated using real, on-the-fly recommendations in schools.
In other words, we developed a system that is intended to be dynamic using static data.
Therefore, it will be important to monitor, and potentially tweak, the IRS if it is implemented
for generating personalized assessment schedules in schools. Future studies can evaluate
the feasibility of the proposed IRS approach using real data from different grade levels,
as well as different subject areas such as mathematics and science.

Second, the IRS proposed in this study is limited to producing test administration
recommendations but does not necessarily make decisions about student progress. This
means that the decision to provide differentiated instruction, implement an academic
intervention, or refer a student for a psycho-educational assessment based on the results
of computerized formative assessments are still left to teachers and other school-based
professionals (e.g., school psychologists). Nonetheless, the data produced by the IRS should
allow these professionals to make these decisions with more confidence, given that the
trend lines produced from the relatively fewer test administrations would likely be very
close to the trend line produced with the previously large number of test administrations.

Third, although the IRS essentially optimizes the assessment schedule based on its
best prediction of what a student’s growth trajectory is likely to be, it is not necessarily
designed to be predictive of end-of-year academic performance. The individual assessment
schedules would continuously be updated as students take more tests (i.e., as more data
are collected). This means that predictions about students’ long-term educational outcomes
from one or more data points should be considered in addition to using the IRS. Future
studies can expand our IRS approach by incorporating additional predictive algorithms
that would prioritize the prediction of end-of-year academic performance after a certain
point within a school year (e.g., after the start of the second semester).
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