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Abstract: Aldehyde dehydrogenase 2 (ALDH2) enzyme is required for alcohol detoxification. ALDH2
belongs to the aldehyde dehydrogenase family, the most important oxidative pathway of alcohol
digestion. Two main liver isoforms of aldehyde dehydrogenase are cytosolic and mitochondrial.
Approximately 50% of East Asians have ALDH2 deficiency (inactive mitochondrial isozyme), with
lysine (K) for glutamate (E) substitution at position 487 (E487K). ALDH2 deficiency is also known as
Alcohol Flushing Syndrome or Asian Glow. For people with an ALDH2 deficiency, their face turns
red after drinking alcohol, and they are more susceptible to various diseases than ALDH2-normal
people. This study performed a machine learning analysis of ALDH2 sequences of thirteen other
species by comparing them with the human ALDH2 sequence. Based on the various quantitative
metrics (physicochemical properties, secondary structure, Hurst exponent, Shannon entropy, and
fractal dimension), these fourteen species were clustered into four clusters using the unsupervised
machine learning (K-means clustering) algorithm. We also analyze these species using hierarchical
clustering (agglomerative clustering) and draw the phylogenetic trees. The results show that Homo
sapiens is more closely related to the Bos taurus and Sus scrofa species. Our experimental results
suggest that the testing for discovering medicines may be done on these species before being tested
in humans to alleviate the impacts of ALDH2 deficiency.

Keywords: aldehyde dehydrogenase 2; ethanol metabolism; machine learning; physicochemical
properties; secondary structure

MSC: 92B05

1. Introduction

Aldehyde dehydrogenase 2 is an enzyme coded by the ALDH2 gene and is needed
for alcohol detoxification. Aldehyde dehydrogenase 2 (ALDH2) proteins belong to the
aldehyde dehydrogenase family. Aldehyde dehydrogenase is the second enzyme of the
essential oxidative pathway of alcohol digestion. Two primary liver isozymes of aldehyde
dehydrogenase, cytosolic and mitochondrial, can be differentiated by their subcellular
localizations, kinetic properties, and electrophoretic mobilities. Almost all Caucasians
have two primary isozymes, while around 50% of East Asians have the cytosolic isozyme
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but not the mitochondrial isozyme. An astoundingly higher recurrence of intense liquor
intoxication among East Asians than among Caucasians can be associated with the absence
of a catalytically active type of the mitochondrial isozyme. The expanding exposure to
acetaldehyde in people with the catalytically inactive type may also experience more
significant susceptibility to various forms of cancer. ALDH2 removes acetaldehyde, a toxic
product from ethanol breakdown [1]. ALDH2 converts acetaldehyde to acetate, which the
body can easily digest. ALDH2 plays a crucial role in the pathogenesis of diabetes, cancer,
neurodegenerative diseases, and cardiovascular diseases [2]. ALDH2 deficient people have
a more significant risk of alcohol-related cancers such as breast cancer, liver cancer, neck
and head cancer, colorectal cancer, and esophageal cancer [3].

Alcohol metabolism in humans includes two main enzymes, aldehyde dehydrogenase
and alcohol dehydrogenase. First, the alcohol is oxidized to acetaldehyde by alcohol
dehydrogenase (ADH), and then acetaldehyde is oxidized to non-toxic acetic acid by
aldehyde dehydrogenase (ALDH) for evacuation. Amid various ALDH isoenzymes in
humans, a mitochondrial enzyme, ALDH2, is the primarily effective enzyme to get rid
of acetaldehyde [4]. Acetaldehyde is converted to acetate for people with the variant
ALDH2*1. ALDH2 deficiency is also called alcohol flushing syndrome, a genetic condition
that obstructs alcohol metabolism [5]. ALDH2 deficiency affects 8% of the world population,
mainly in East Asia, affecting 36% of the population in East Asia. People carrying the mutant
ALDH2*2 are more likely to have various types of cancer. People with ALDH2*2 variants
turn red and might have other symptoms like dizziness, headache, heart palpitation, and
hypertension after consuming alcohol [2,6]. ALDH2 dysfunction leads to various human
diseases like diabetes, cancer [7], stroke, neurodegenerative diseases, and cardiovascular
diseases. ALDH2*2 variant encodes a lysine (K) for glutamate (E) substitution at position
487 (E487K), named the ALDH2*2 allele [8].

Humans have 19 ALDH genes on distinct chromosomes, and among them, ALDH2
is important for ethanol metabolism. The ALDH2 gene is located at chromosome 12
in the locale of q24.2 [9]. Humans are exposed to acetaldehyde regularly via various
sources such as cigarettes, foods, the environment, and beverages, but the highest exposure
is due to alcohol consumption [10]. ALDH2 plays a crucial role in pathological and
physiological processes. Utilization of extreme amounts of alcohol impacts worldwide
DNA methylation [11,12]. DNA methylation gives biomarkers of alcohol consumption, so
recognizing epigenetic biomarkers helps diagnose alcohol-related diseases [13].

In this study, we chose fourteen different species (Homo Sapiens, Pongo abelii, Rattus
norvegicus, Amblyraja radiata, Sus scrofa, Meleagris gallopavo, Xenopus tropicalis, Mus pahari,
Arvicanthis niloticus, Cricetulus griseus, Danio rerio, Bos taurus, Grammomys surdaster, and Mus
musculus) and analyzed the ALDH2 sequence from thirteen non-human species concerning
the human ALDH2 sequence and found out the degree of changeability by which the
sequences vary from each other. Besides the phylogenetic analysis of these sequences, we
conducted a comprehensive study based on physicochemical properties, Shannon entropy,
Hurst exponent, secondary structure, and fractal dimension.
The main contributions of this study are as follows:

• A comprehensive analysis of ALDH2 gene sequences of various species, including
Homo sapiens (human).

• Fractal dimension leading to the discovery of the self-similarity within ALDH2 sequences.
• Identification of the auto-correlation between sequences by the Hurst exponent.
• Phylogenetic analysis of ALDH2 sequences of fourteen species.

The rest of the paper is organized as follows. Section 2 will illustrate the dataset,
feature representation, and methods used in this study. Section 3 will describe the result
and discussion based on various parameters. Finally, Section 4 will summarize the work
done in this paper.
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2. Materials and Methods

This section will discuss the dataset used in this study and various features extracted
from the ALDH2 sequences. We will also discuss the unsupervised machine learning
methods used in this study.

2.1. Dataset

The ALDH2 protein sequences from fourteen species Pongo abelii (sumatran orangutan),
Homo sapiens (human), Rattus norvegicus (brown rat), Amblyraja radiata (thorny skate), Sus
scrofa (domestic pig), Meleagris gallopavo (wild turkey), Xenopus tropicalis (western clawed
frog), Mus pahari (gairdner’s shrew-mouse), Arvicanthis niloticus (african grass rat), Crice-
tulus griseus (chinese hamster), Danio rerio (zebrafish), Bos taurus (aurochs), Grammomys
surdaster (african woodland thicket rat), and Mus musculus (house mouse) were obtained
from the NCBI (National Center for Biotechnology Information) database [14]. The fourteen
species with their respective length are given in Table 1.

Table 1. Fourteen species and their respective ALDH2 protein sequences.

Sequence ID Species Common Name of
Species

ALDH2
Accession ID Length (aa) *

S1 Pongo abelii Sumatran orangutan XP_024111823.1 436
S2 Homo sapiens Human NP_000681.2 517
S3 Rattus norvegicus Brown rat NP_115792.2 519
S4 Amblyraja radiata Thorny skate XP_032899607.1 516
S5 Sus scrofa Domestic pig NP_001038076.1 521

S6
Meleagris
gallopavo Wild turkey XP_010718484.1 422

S7 Xenopus tropicalis Western clawed frog NP_001004907.1 521

S8 Mus pahari Gairdner’s
shrew-mouse XP_021042739.1 519

S9
Arvicanthis
niloticus African grass rat XP_034345265.1 519

S10 Cricetulus griseus Chinese hamster XP_007625900.2 519
S11 Danio rerio Zebrafish XP_002662252 516
S12 Bos taurus Aurochs NP_001193787.1 520

S13
Grammomys
surdaster

African woodland
thicket rat XM_028765895.1 519

S14 Mus musculus House mouse NP_033786.1 519
* aa: amino acid.

2.2. Feature Representation

This section will describe the various features used in this study. The features for
all fourteen ALDH2 sequences were calculated using online web servers. We used the
following three features to represent a protein sequence:

1. Physicochemical properties;
2. Statistical measures;
3. Secondary structure prediction.

2.2.1. Physicochemical Properties

Several physicochemical properties such as extinction coefficients, theoretical pI, molec-
ular weight, instability index, aliphatic index, amino acid composition, negatively and
positively charged residues, grand average of hydropathicity (GRAVY), and the atomic
composition of carbon, hydrogen, nitrogen, oxygen, and sulfur for all fourteen species were
calculated using the online web server ProtParam [15].
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Instability index:The instability index estimates whether a protein is stable or unstable
in a test tube. A protein with an instability index smaller than 40 is considered stable, and
a value larger than 40 is considered unstable. It was estimated using the ProtParam
server [15]. There are 400 dipeptides, and a dipeptide instability weight value (DIWV) was
assigned to each dipeptide by Guruprasad et al. [16]. The instability index (II) for a protein
sequence was calculated using the following equation:

I I =
10
N

N−1

∑
i=1

DIWV(XiXi+1) (1)

where N is the length of the protein sequence and DIWV(XiXi+1) is the instability weight
value given to dipeptide XiXi+1.

Extinction coefficients: The extinction coefficients demonstrate how much light a
protein consumes at a specific wavelength. It is beneficial to evaluate this coefficient when
purifying a protein and estimate it by using ProtParam [15]. The molar extinction coefficient
can be estimated from the protein sequence [17]. From the molar extinction coefficient,
we can estimate the extinction coefficient (EC) of an essential protein in water using the
equation:

EC = N(Y) ∗ Ex(Y) + N(W) ∗ Ex(W) + N(Cy) ∗ Ex(Cy) (2)

where Ex(Y), Ex(Cy), and Ex(W) are the molar extinction coefficients of tyrosine, cys-
tine, and tryptophan, respectively. N(Y), N(W), and N(Cy) are the number of tyrosine,
tryptophan, and cystine residues per molecule, respectively.

Aliphatic index: The aliphatic index for a protein is described as the respective volume
collected by aliphatic side chains (leucine, isoleucine, valine, and alanine). It may be consid-
ered as a positive factor for the expansion of the thermostability of spheroproteins [15,18].
The aliphatic index (AI) of a protein sequence was calculated using the following equation:

AI = xala + a ∗ xval + b ∗ (xile + xleu) (3)

where xala, xile, xleu, and xval are the mole fraction of alanine, isoleucine, leucine, and valine,
respectively. a and b are coefficients of the relative volume of valine and isoleucine/leucine
side chains to the alanine side chains, respectively.

GRAVY: The value of GRAVY for a protein/peptide was estimated as the sum of
hydropathy values [19] of all amino acids, divided by the length of the protein/peptide
sequence. It was estimated using the online web server ProtParam [15].

Theoretical pI: The theoretical pI indicates the pH where the protein has a net zero
charge, i.e., the negative and positive charges are the same. The ProtParam server [15]
estimates the theoretical pI and molecular weight by using the pI/Mw tool. The theoretical
pI is affected by the buffer size of the protein.

2.2.2. Statistical Measures

We used three statistical measures, i.e., Shannon entropy, Hurst exponent, and fractal
dimension, to respectively find randomness, correlation, and self-similarity in a protein
sequence.

Shannon Entropy (SE): It estimates the degree of complexity in an ALDH2 sequence
and is calculated using the following equation [20]:

SE = −
20

∑
i=1

pilog2(pi) (4)

where pi indicates the probability of amino acid i in a protein sequence [21].
Hurst exponent (HE): The Hurst exponent measures the smoothness and degree of

similarity of a data set. It can be computed using rescaled range analysis (R/S analysis),
whose value lies between 0 and 1 [22–24]. If the value of HE lies between 0 and 0.5, then it
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indicates a negative autocorrelation, and if it lies between 0.5 and 1, it indicates a positive
autocorrelation of a time series. If the value of HE is 0.5, then it indicates the randomness of
a series, which means there is no correlation between the variable and its past values [25].
The HE of a sequence Xn is defined by the following equation:

R(n)
S(n)

= (
n
2
)HE (5)

where:

S(n) =

√
1
n

n

∑
i=1

(Xi −m)2 (6)

R(n) = max(Y1, Y2, ..., Yn)−min(Y1, Y2, ..., Yn) (7)

Yt =
t

∑
i=1

(Xi −m) f or t = 1, 2, 3, ..., n (8)

m =
1
n

n

∑
i=1

Xi (9)

The HE is evaluated by plotting the values of (R/S) versus n in a log–log plot. The
slant of the best fitting line approximates the HE. The HE specifies the amount of self-
similarity of a primary sequence. The HE for long-range dependence is between 0.5 and 1.
An expanding value of HE specifies a surge in the amount of long-range dependency and
self-similarity.

Indicator matrix and fractal dimension: Each protein sequence is encoded into indi-
cator matrices [26,27]. Let SN be a protein sequence with length N. The indicator function
is defined as:

F : SN × SN → {0, 1} (10)

such that the indicator matrix will be:

I(N, N) =

{
1, if si = sj

0, if si 6= sj
where si, sj ∈ SN (11)

Here, I(N, N) is a matrix with 0 and 1, giving a binary image of the protein sequence
as a 2D dot-plot. The binary image can conceptualize the distribution of zeros and ones
within the same sequence. It can be done by allocating a white dot to 0 and a black dot to
1. The fractal dimension (FD) from an indicator matrix can be estimated as the average
number of σ(n) of 1, randomly taken n× n from an N × N indicator matrix [28]. Using
σ(n), FD is given by the following equation:

FD = − 1
N

N

∑
n=2

log(σ(n))
logn

(12)

2.2.3. Secondary Structure Prediction

The online web-server CFSSP (Chou and Fasman Secondary Structure Prediction
Server) was utilized to predict the secondary structure of ALDH2 sequences of all fourteen
species [29]. This server predicts the protein sequences’ beta-sheet, alpha-helix, and turns.

2.3. Feature Extraction

Every ALDH2 sequence was represented using 22 features. These features were
denoted by F1 to F22. The features from F1 to F16 were computed using physicochemical
properties of all fourteen sequences, and these properties were computed using the online
web server ProtParam [15]. The features F17, F18, and F19 were calculated by using Shannon
entropy, Hurst exponent, and fractal dimension, respectively. The features F20 to F22 were
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computed by the secondary structure of protein sequences by using the online web server
CFSSP [29]. The characterization of feature extraction is shown in Figure 1.

Figure 1. Characterization of features used to represent ALDH2 sequences. SE: Shannon entropy. HE:
Hurst exponent. FD: fractal dimension.

2.4. Methods

Based on the physicochemical properties, Shannon entropy, fractal dimension, sec-
ondary structure, and Hurst exponent, the fourteen ALDH2 sequences of different species
were clustered using hierarchical and K-means clustering. The employed feature represen-
tations are physicochemical properties, secondary structure, and statistical measures. These
features have different importance in extracting the information from ALDH2 sequences.
Thus, there is no standard method to apply to the extracted information from the sequences
such that the generic information can be retrieved and that information can differentiate
different species. Due to the diverse importance of extracted importance, the problem is
applying unsupervised machine learning techniques for extracting informative patterns.
The well-known unsupervised machine learning technique is clustering, and for clustering,
K-means and hierarchical clustering are primarily used in practice. The motivation behind
using K-means clustering is to group the specific species into its proper class. K-means clus-
tering is used to find different clusters based on common characteristics of unlabeled data.
Further analysis has been carried out by using phylogeny trees. The motivation behind
using hierarchical clustering is to find the evolutionary relationships among these species.

K-means clustering: It is a well-known unsupervised machine learning algorithm
that partitions the unlabeled data into different groups or clusters based on similar charac-
teristics and common patterns. According to a distance measure such as Euclidean distance,
the data points in a cluster should be similar and dissimilar to those in different clusters.
K-means clustering is an iterative method that partitions the data points into K clusters
(pre-defined) where each data point should lie in only one cluster [20]. Let X1, X2, . . ., Xn
represent n data points. C1, C2, . . ., CK denote K clusters and µ1, µ2, . . ., µK represent
centroids of K clusters.

The K-means algorithm steps are as follows:

1. Decide the value of K, i.e., the desired number of clusters (in this study, K = 4).
2. Randomly select K data points as centroids (µ1, µ2, µ3, µ4).
3. Repeat the following steps until there is no change to the centroids.
4. Find the Euclidean distance between all centroids and data points.

d(Xi, µj) for i = 1, 2, ..., n and j = 1, 2, ..., K.
5. Assign every data point to the nearest centroid (cluster), i.e., Xi ∈ Cj and j is given by:

j = min
j

d(Xi, µj) f or j = 1, 2, ..., K (13)
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6. For each cluster, compute the centroid by averaging all data points belonging to that
cluster.

µj =
1
|Cj| ∑

∀Xi∈Cj

Xi f or j = 1, 2, ..., K (14)

Hierarchical clustering: Hierarchical clustering is a technique that partitions the
objects into homogeneous groups based on the similarity between objects [30]. Unlike
K-means clustering, hierarchical clustering does not depend on K (the number of clusters).
In this paper, we used agglomerative hierarchical clustering, which starts by taking each
object as a separate cluster and repeatedly follows the two steps below until there is a
single cluster:

1. Find the two closest clusters based on similarity measured by the Euclidean dis-
tance matrix.

2. Combine the two closest clusters to form a new cluster.

The hierarchical clustering output is shown as a dendrogram.

3. Results

All fourteen species were clustered based on the physicochemical properties, sec-
ondary structure, Shannon entropy, fractal dimension, and Hurst exponent. All fourteen
species were clustered using the K-means algorithm.

In this work, three feature representation techniques were considered for extracting
information from each sequence. Here, physicochemical properties derived 16 different
features, statistical techniques measured 3 different features, and secondary structure
techniques computed 3 different features. Hence, each sequence is represented by a 22-
dimensional feature vector. The values of these features are different. Thus, to preserve
these features’ dominance property, each feature will have an equal contribution to finding
the information from ALDH2 sequences. Thus, to make these features useful, a Z-score
data normalization technique was employed to scale them in [0, 1] intervals. Now, these
normalized features are differently employed for clustering analysis of ALDH2 sequences.
In this work, Euclidean distance calculation has been employed for clustering analysis to
find the similarity between two clusters. Hence, the raw score with the largest magnitude
has been preserved using Z-score normalization, while the dissimilarity between the
clusters was performed using Euclidean distance. For each species, a distance matrix was
calculated using the Euclidean distance:

d(S1, S2) =
22

∑
j=1

(pj − qj)
2 (15)

Here, pj and qj represent the jth feature for the species S1 and S2, respectively. The
distance matrix for all fourteen species is given in Figure 2.

After finding the distance matrix, we applied K-means clustering. The first step is to
find the value of K. We used the elbow method to find the optimal value of K (numbers of
clusters) [31]. For every value of K starting from 2, we computed WCSS (Within-Clusters
Sum of Squares), i.e., the sum of squared distance among every sample and its nearest
centroid of a cluster. As the value of K increases, the sum of squared distance decreases. To
find the optimal value of K, we chose the value of K at the elbow point where WCSS starts
decreasing linearly. Thus from Figure 3, we selected the value of K as 4. The following
equation calculates WCSS:

WCSS =
K

∑
k=1

∑
∀Sj∈Ck

(Sj − Cenk)
2 (16)
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where Sj represents samples in a cluster and C1, C2, . . . , Ck denote clusters. K is the
total number of clusters. Cen1, Cen2, . . . , Cenk represent the centroids for the respective
clusters.

Figure 2. Distance matrix of all species derived using Euclidean distance. The numbers on the top
and left denote the protein sequence ID (see Table 1).

Figure 3. Elbow method to find the value of K (number of clusters) for K-means clustering of all
fourteen species. WCSS denotes Within-Clusters Sum of Squares.
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3.1. Experiment Based on Physicochemical Properties

Homogeneity was derived based on physicochemical properties using K-means clus-
tering and hierarchical clustering among all fourteen species. The results of K-means
clustering and phylogenetic trees are shown in Figures 4 and 5, respectively. The fourteen
species were clustered into four clusters using the K-means algorithm based on physico-
chemical properties. The clusters of species {Pongo abelii, Meleagris gallopavo}, {Sus scrofa, Bos
taurus} and {Rattus norvegicus, Amblyraja radiata, Xenopus tropicalis, Mus pahari, Arvicanthis
niloticus, Cricetulus griseus, Danio rerio, Grammomys surdaster, Mus musculus} indicate that
these species are closely related. From the clusters based on physicochemical properties,
we observed that Homo sapiens was not clustered with any other species.

Figure 4. Clusters based on physicochemical properties using the K-means algorithm. Here, Si

indicates the species name as specified in Table 1.

Figure 5. Hierarchical clustering phylogenetic tree based on physicochemical properties.

Phylogenetic trees represent evolutionary relations between species, and the associ-
ated clusters are shown in Figure 6. We observed that Danio rerio, Grammomys surdaster,
Cricetulus griseus, Xenopus tropicalis, and Amblyraja radiata are closer based on the analysis of
physicochemical properties. Mus musculus, Rattus norvegicus, Arvicanthis niloticus, and Mus
pahari were grouped. It was a similar case for Meleagris gallopavo and Pongo abelii. Similarly,
Bos taurus and Sus scrofa were placed nearby. Homo sapiens was placed separately but bore
similarities to Pongo abelii and Meleagris gallopavo.
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Figure 6. Clusters drawn from hierarchical clustering phylogenetic tree based on physicochemical
properties. Here, Si represents the species name as specified in Table 1.

3.2. Experiment Based on Secondary Structure

Secondary structures for all fourteen species were predicted using the online web
server CFSSP (Chou and Fasman Secondary Structure Prediction Server) [29]. All of
the fourteen species were clustered using K-means clustering based on their secondary
structure, and clusters are shown in Figure 7. The groups of species {Pongo abelii, Xenopus
tropicalis, Danio rerio}, {Sus scrofa, Meleagris gallopavo, Bos taurus}, and {Homo sapiens, Rattus
norvegicus, Mus pahari, Arvicanthis niloticus, Cricetulus griseus, Grammomys surdaster, Mus
musculus} are closely related. From Figure 7, we observed that Amblyraja radiata was
not clustered with any other species. However, it was clustered with Rattus norvegicus,
Xenopus tropicalis, Mus pahari, Arvicanthis niloticus, Cricetulus griseus, Danio rerio, Grammomys
surdaster, and Mus musculus as per the physicochemical properties of ALDH2 sequences.

Figure 7. Clusters based on secondary structure using k-means algorithm. Here, Si indicates the
species name as specified in Table 1.

The phylogenetic tree based on the secondary structure and associated clusters are
shown in Figures 8 and 9, respectively. We observed that Mus pahari, Grammomys surdaster,
Cricetulus griseus, Arvicanthis niloticus, and Rattus norvegicus were closer according to the
secondary structure analysis. Homo sapiens and Mus musculus grouped along with the
above species. Again, the cases for Meleagris gallopavo, Sus scrofa and Bos taurus were similar.
Similarly, Danio rerio, Xenopus tropicalis and Pongo abelii were close. However, Amblyraja
radiata was placed separately because it did not show similarity based on the secondary
structure.
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Figure 8. Hierarchical clustering phylogenetic tree based on secondary structure.

Figure 9. Clusters drawn from Hierarchical clustering phylogenetic trees based on secondary struc-
ture. Here, Si represents the species name as specified in Table 1.

3.3. Experiment Based on Hurst Exponent

All fourteen species were clustered based on the Hurst exponent using the K-means
algorithm. The clusters of species {Homo sapiens, Amblyraja radiata, Bos taurus, Danio rerio,
Xenopus tropicalis} and {Rattus norvegicus, Meleagris gallopavo, Mus pahari, Arvicanthis niloticus,
Cricetulus griseus, Grammomys surdaster, Mus musculus} are closely related according to the
Hurst exponent. The species Pongo abelii formed a singleton cluster when the Hurst
exponent was taken into consideration even though it was clustered with Xenopus tropicalis
and Danio rerio as per the secondary structure and clustered with Meleagris gallopavo as per
the physicochemical properties. Sus scrofa formed a singleton cluster. Still, it was grouped
with Bos taurus as per the physicochemical properties and with Meleagris gallopavo and
Bos taurus as per the secondary structure of ALDH2 sequences. The results of K-means
clustering are shown in Figure 10.

The phylogenetic tree based on the Hurst exponent and associated clusters are shown
in Figures 11 and 12, respectively. From Figure 11, we observed that Danio rerio, Amblyraja
radiata, Xenopus tropicalis, Bos taurus and Homo sapiens were close. Similarly, the species
Arvicanthis niloticus, Mus pahari, Cricetulus griseus, Rattus norvegicus, Grammomys surdaster
were related to Mus musculus and Meleagris gallopavo. Pongo abelii was not grouped with
other species.
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Figure 10. Clusters based on the Hurst exponent using the K-means algorithm. Here, Si indicates the
species name as specified in Table 1.

Figure 11. Hierarchical clustering phylogenetic tree based on Hurst exponent.

Figure 12. Clusters drawn from phylogenetic tree based on Hurst exponent. Here, Si indicates the
species name as specified in Table 1.

3.4. Experiment Based on Fractal Dimension

All species were clustered based on the fractal dimension using K-means clustering.
The results of the four clusters are shown in Figure 13. The clusters of species {Bos taurus,
Homo sapiens}, {Amblyraja radiata, Mus pahari, Sus scrofa, Arvicanthis niloticus, Cricetulus
griseus, Rattus norvegicus, Grammomys surdaster, Mus musculus}, and {Meleagris gallopavo,
Xenopus tropicalis, Danio rerio} were placed together according to fractal dimension. Pongo
abelii formed a singleton cluster and not grouped with other species.
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Figure 13. Clusters based on fractal dimension using K-means algorithm. Here, Si indicates the
species name as specified in Table 1.

The phylogenetic tree based on fractal dimension and associated clusters are shown in
Figures 14 and 15, respectively. We found that Mus musculus, Rattus norvegicus, Cricetulus
griseus, Arvicanthis niloticus, Mus pahari, and Grammomys surdaster were closely related to
Sus scrofa and Amblyraja radiata and grouped. Similarly, Danio rerio, Meleagris gallopavo, and
Xenopus tropicalis were placed together. Due to the fractal dimension similarity between Bos
taurus and Homo sapiens, they were grouped. The species Pongo abelii was placed separately.

Figure 14. Hierarchical clustering phylogenetic tree based on fractal dimension.

Figure 15. Clusters drawn from hierarchical clustering phylogenetic tree based on fractal dimension.
Here, Si indicates the species name as specified in Table 1.
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3.5. Experiment Based on Shannon Entropy

All fourteen species were grouped based on their Shannon entropy. K-means clustering
was used to cluster these species; the results are shown in Figure 16. The groups of species
{Amblyraja radiata, Danio rerio}, {Rattus norvegicus, Sus scrofa, Mus pahari, Arvicanthis niloticus,
Cricetulus griseus, Grammomys surdaster}, and {Homo sapiens, Meleagris gallopavo, Xenopus
tropicalis, Bos taurus, Mus musculus} were closely related. We found that Pongo abelii was
clustered uniquely when Shannon entropy was considered. It did not form any cluster with
other species per the Hurst exponent and fractal dimension of ALDH2 protein sequences.

Figure 16. Clusters based on Shannon entropy using the K-means algorithm. Here, Si represents the
species name as specified in Table 1.

The phylogenetic tree based on Shannon entropy and its associated clusters are shown
in Figures 17 and 18, respectively. In this scenario, Cricetulus griseus, Rattus norvegicus, and
Grammomys surdaster are grouped under a single clade, and these species are closely related
to Sus scrofa, Mus pahari, and Arvicanthis niloticus. Similarly, Mus musculus and Xenopus
tropicalis are closely related to Bos taurus, Homo sapiens, and Meleagris gallopavo. The species
Pongo abelii formed a singleton cluster.

Figure 17. Hierarchical clustering phylogenetic tree based on Shannon entropy.
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Figure 18. Clusters drawn from Hierarchical clustering phylogenetic tree based on Shannon entropy.
Here, Si indicates the species name as specified in Table 1.

4. Discussion

This paper comprehensively analyzed ALDH2 sequences of fourteen species, includ-
ing Homo sapiens (human). The other species are Pongo abelii, Rattus norvegicus, Amblyraja
radiata, Sus scrofa, Meleagris gallopavo, Xenopus tropicalis, Mus pahari, Arvicanthis niloticus,
Cricetulus griseus, Danio rerio, Bos taurus, Grammomys surdaster, and Mus musculus.

ALDH2 is an enzyme needed for alcohol detoxification. ALDH2 removes acetalde-
hyde, a toxic product from ethanol breakdown [1]. According to recent research, the ALDH2
gene’s genetic polymorphism may be highly connected with the risk of developing human
cancers such as esophageal, colorectal, and liver cancer [32]. Alcohol-related cancers are
much more likely to occur in people with ALDH2 deficiencies. Alcohol flushing syndrome,
a hereditary disorder that affects alcohol metabolism, is another name for ALDH2 defi-
ciency. ALDH2 deficiency affects 8% of the global population, with 36% of the population
in East Asia being affected. People who have the mutant ALDH2*2 gene are more prone to
develop different cancers [33]. A study by Zhang et al. [34] found out the role of ALDH2
and its underlying processes in the progression and occurrence of cancer. A biomarker
for cancer stem cells called ALDH2 has been linked to cancer cells’ growth, metastasis,
and medication resistance. People with ALDH2 deficiency are linked with the chances
of cerebral stroke and cardiovascular diseases [35]. Targeting ALDH2 may be a potential
strategy to prevent stroke trauma and cancer. The proposed method carries out a feature
generation process based on several quantitative metrics that best depict the evolutionary
relationships among the species.

From the analysis of ALDH2 sequences of various species, from Figures 4, 7, 10, 13, and 16,
we observed that the species Rattus norvegicus, Mus pahari, Arvicanthis niloticus, Cricetulus
griseus, and Grammomys surdaster always belonged to the same cluster when K-means clustering
was applied based on physicochemical properties, Shannon entropy, Hurst exponent, fractal
dimension, and secondary structure. From Figures 10, 13 and 16, we found that some species
formed singleton clusters; for example, Pongo abelii was not grouped with other species in the
case of statistical measures, i.e., Shannon entropy, Hurst exponent, and fractal dimension.
From Figures 7 and 10, we observed that Amblyraja radiata and Sus scrofa species formed
a singleton cluster when clustering was done based on secondary structure and Hurst
exponent, respectively. As shown in Figure 4, we found that Homo sapiens also formed
a singleton cluster when all fourteen species were clustered based on physicochemical
properties. A more detailed analysis of the fourteen sequences is shown in Table 2.
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Table 2. Comprehensive analysis of ALDH2 sequences of fourteen species.

Sequence ID Summary

S1
∗ Pongo abelii forms a singleton cluster based on statistical measures, i.e., Shannon

entropy, Hurst exponent, and fractal dimension.

S2 Homo sapiens forms a singleton cluster based on physicochemical properties.
Homo sapiens is closely related to Rattus norvegicus, Mus pahari, Arvicanthis niloti-
cus, Cricetulus griseus, Grammomys surdaster, and Mus musculus based on sec-
ondary structure.

S3 Rattus norvegicus is more closely related to Mus pahari, Arvicanthis niloticus,
Cricetulus griseus, Mus musculus, and Grammomys surdaster.

S4 Based on secondary structure, Amblyraja radiata forms a singleton cluster. Based
on other features, Amblyraja radiata is closely related to Danio rerio.

S5 Sus scrofa forms a singleton cluster based on Hurst exponent. Based on physico-
chemical properties and secondary structure, Sus scrofa is more closely related to
Bos taurus.

S6 Meleagris gallopavo is closely related to Pongo abelii based on physicochemical
properties.

S7 Xenopus tropicalis is related to Danio rerio based on physicochemical properties,
secondary structure, and fractal dimension.

S8 Mus pahari is more closely related to Rattus norvegicus, Arvicanthis niloticus,
Cricetulus griseus, Mus musculus, and Grammomys surdaster.

S9 Arvicanthis niloticus is more closely related to Rattus norvegicus, Mus pahari,
Cricetulus griseus, Mus musculus, and Grammomys surdaster.

S10 Cricetulus griseus is more closely related to Rattus norvegicus, Mus pahari, Arvican-
this niloticus, Mus musculus, and Grammomys surdaster.

S11 Danio rerio is closely related to Xenopus tropicalis based on secondary structure,
fractal dimension, and Hurst exponent. It is closely related to Amblyraja radiata
based on physicochemical properties and Shannon entropy.

S12 Bos taurus is more closely related to Sus scrofa according to physicochemical
properties. Bos taurus is more closely related to Homo sapiens based on the
statistical measures.

S13 Grammomys surdaster is more closely related to Rattus norvegicus, Mus pahari,
Cricetulus griseus, Mus musculus, and Arvicanthis niloticus.

S14 Mus musculus is closely related to Rattus norvegicus, Mus pahari, Arvicanthis
niloticus, Cricetulus griseus, and Grammomys surdaster.

* Here, Si represents the species name as specified in Table 1.

In Section 3, we observed that all fourteen species were clustered based on various
parameters, i.e., physicochemical properties, secondary structure, Hurst exponent, fractal
dimension, and Shannon entropy. To conclude the final analysis, a consensus tree has been
built from multiple phylogeny trees generated by hierarchical clustering. Phylogeny trees
based on all parameters were combined to make a consensus tree. Figure 19 shows the
majority consensus tree. The consensus tree shows that the Homo sapiens species is more
closely related to the Bos taurus and Sus scrofa species.
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Figure 19. Majority consensus tree built from multiple trees generated using physicochemical
properties, secondary structure, fractal dimension, Shannon entropy, and Hurst exponent.

A simple neighbor-joining tree with 1000-times bootstrap analysis was built for the
phylogenetic analysis of the primary sequences. The bootstrap tree is shown in Figure 20.
The tree was built using MEGA 11 (Molecular Evolutionary Genetics Analysis) software [36].
The consensus tree was compared with the bootstrap tree to find the evolutionary analysis
of the proposed model. From Figure 20, we could observe that Homo sapiens is more closely
related to the Pongo abelii, Bos taurus, and Sus scrofa species. Our results from Figure 19 show
that Homo sapiens is closely related to Bos taurus and Sus scrofa, which can be verified from
the standard results of the bootstrap analysis of the primary sequences. The hierarchical
clustering phylogenetic tree results based on physicochemical properties shared similarities
with standard bootstrap analysis. As shown in Figure 6, Bos taurus and Sus scrofa are closely
related to each other and then also grouped with Pongo abelii and Homo sapiens.

The statistical parameters were used for feature extraction and for the classification
point of view; they are also used in other papers [20,24,25] for biological evolutionary
analysis of the species. In the near future, other available ALDH2 genes can be studied
and will strengthen the observations reported here. Our results show that Homo sapiens
is more closely related to the Bos taurus and Sus scrofa species, which can be seen from
the consensus tree. Experimentally it has been concluded that the testing for discovering
medicines may be done on these species before testing in humans to alleviate the impacts
of ALDH2 deficiency. It was observed that they share evolutionary closeness.
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Figure 20. A neighbor-joining tree with 1000-times bootstrap analysis of the primary sequences by
using MEGA 11 software [36].

5. Conclusions

This research aimed to develop an efficient alignment-free tool in protein sequence
comparison and phylogenetic study. A comprehensive analysis of ALDH2 sequences
of fourteen species, including Homo sapiens (human), was carried out. The proposed
method performs a feature generation process based on the various quantitative metrics
(physicochemical properties, secondary structure, Hurst exponent, Shannon entropy, and
fractal dimension) properties of amino acids that best describe the evolutionary relationship
among the species in these protein families. The results show that some species always
belong to the same cluster even if we consider secondary structure, physicochemical
properties, Shannon entropy, fractal dimension, or Hurst exponent. These species are Mus
pahari, Rattus norvegicus, Arvicanthis niloticus, Cricetulus griseus, and Grammomys surdaster.
Homo sapiens shows similarity to Amblyraja radiata, Xenopus tropicalis, Danio rerio, and Bos
taurus when all species are clustered with the Hurst exponent using the K-means algorithm.
If we consider Shannon entropy, then Homo sapiens shows similarity to Meleagris gallopavo,
Mus musculus, Bos taurus, and Xenopus tropicalis. Homo sapiens is clustered with Bos taurus
in the case of fractal dimension, but if we consider secondary structure, then Homo sapiens
forms a cluster with Rattus norvegicus, Mus pahari, Arvicanthis niloticus, Cricetulus griseus,
Grammomys surdaster, and Mus musculus. Using all phylogenetic trees generated by various
features, i.e., physicochemical properties, secondary structure, and statistical measures, a
consensus tree was built to summarize the results. Homo sapiens is more closely related to
the Bos taurus and Sus scrofa species as supported by the consensus tree. Experimentally
it has been concluded that the Bos taurus and Sus scrofa species are the best options for
testing for discovering medicines before they are applied to humans to alleviate the impacts
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of ALDH2 deficiency. The physicochemical properties clusters share similarities with
bootstrap standard results.
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