
����������
�������

Citation: Liu, Y.; Zhu, C. Research on

Some Problems for Nonlinear

Operators in the Z-Z-B Space.

Mathematics 20212, 10, 2217.

https://doi.org/10.3390/

math10132217

Academic Editor: Christopher

Goodrich

Received: 16 May 2022

Accepted: 21 June 2022

Published: 24 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Research on Some Problems for Nonlinear Operators in the
Z-Z-B Space

Yiping Liu and Chuanxi Zhu *

School of Mathematics and Computer Science, Nanchang University, Nanchang 330031, China;
liuyipingywsh@163.com
* Correspondence: chuanxizhu@126.com

Abstract: In this paper, we first propose a new concept of Z-Z-B spaces, which is a generalization of
Z-C-X spaces. Meanwhile, the new concept of the superior cone is introduced. Secondly, we study
some new problems for semi-closed 1-set-contractive operators in the Z-Z-B space and obtain some
new results. These new theorems are proven by combining partial order theory with fixed point
index theory. Regarding these theorems, in the latter part of the paper, the proofs are omitted since
the methods of proving these theorems are similar. Moreover, two important inequality lemmas
are proven.
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1. Introduction and Preliminaries

The theory of fixed points and equations of nonlinear operators is an important
component of nonlinear functional analysis, and nonlinear functional analysis is one of the
most important research threads of modern mathematics. The effective theoretical tools for
studying nonlinear problems mainly include partial order theory, topological degree theory
and variational theory [1]. Among them, using partial order theory to deal with equations
is a very useful method, and the combination with topological degree theory has effectively
promoted the development of modern nonlinear functional analysis. In this respect, the
school represented by Dajun Guo has shown brilliant achievements in the fixed point theory
of cone expansion–compression [1]. In addition, the new concept of the fixed point index of
different operators was also obtained, and some theorems in the theory of the fixed point
index were proven [1,2]. In 1988, Guozhen Li proposed a new concept of the fixed point
index of 1-set-contractive operators and a new concept of the semi-closed 1-set-contractive
operator, and proved the fixed point theorems of 1-set-contractive operators in Banach
spaces [3].

Furthermore, Guozhen Li proposed a new concept of the random fixed point index
of random 1-set-contractive operators and a new concept of the random semi-closed
1-set-contractive operator, and proved the random fixed point theorems of random 1-
set-contractive operators in separable real Banach spaces [4]. For random fixed point
theorems for 1-set-contractive random operators, readers can also read article [5]. In [6],
the new concepts of the Z-C-X space and excellent cone were introduced. Meanwhile,
some problems of random semi-closed 1-set-contractive operators were investigated in the
Z-C-X space. In Article [7], Chuanxi Zhu and Zongben Xu investigated some problems for
semi-closed 1-set-contractive operators in real Banach spaces, and proved some fixed point
theorems with different boundary conditions. Chuanxi Zhu also studied some problems
of nonlinear operators in Menger PN-spaces, and proved some fixed point theorems in
Menger PN-spaces [8].
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The fixed points of nonlinear operators and their equation theory play an important
role in solving the existence and uniqueness of solutions of various differential equations
and integral equations. In this regard, readers can read articles [9,10]. Meanwhile, fixed
point theory also plays a great role in solving problems in the real world. Fixed point
theorems have proven to be a useful tool in many application fields, such as physics,
chemistry, biology, medicine, cybernetics, aerospace technology, mathematical economics,
non-cooperative game theory, dynamic optimization and stochastic games, functional
analysis, variational calculus, etc. For example, in the research of [11], the researchers
utilized the generalized integral transform and the Adomian decomposition method to
derive a fascinating explicit pattern for outcomes of the biological population model (BPM);
in [12], the researchers proved the existence of solutions to a new family of fractional
boundary value problems (FBVPs) on the methylpropane graph by means of Krasnoselskii’s
and Scheafer’s fixed point theorems; in addition, by using Banach fixed point theorem,
researchers have studied the existence and uniqueness of a solution of the proposed
traumatic avoidance learning model in [13].

Let R be the set of all real numbers and Q be the set of all rational numbers. Let E
be a real Banach space and P be a cone in E; thus, the partial order relation (�) in E is
determined as follows [1]:

∀x, y ∈ E, x � y⇔ y− x ∈ P

If x � y, x 6= y, then write it as x ≺ y.
Let U be an excellent cone in E, V be a bounded open subset of U, V be the closure

of V and ∂V be the boundary of V. A continuous operator T: V → U is said to be a semi-
closed 1-set-contractive operator if T is a 1-set-contraction operator and I − T is a closed
operator [3]. We know that α(TV) ≤ α(V), where α denotes the non-compact measure.

Definition 1 (See [6]). Suppose that a separable real Banach space E satisfies the following
conditions:

(H1) E is an algebra over the real number field R, namely:
(1◦) E is closed under multiplication; that is, ∀x, y ∈ E, x · y ∈ E.
(2◦) ∀a ∈ R, ∀x, y ∈ E, (ax)y = x(ay) = a(xy).
(H2) ∀x ∈ E and x 6= θ⇒ xn 6= θ, n ∈ N.
Then, E is called the Z− C− X space.

By (H1), we obtain the following formula:
(3◦) ∀a, λ ∈ R, ax · (λy) = (aλ)(x · y).
In the Z− C− X space, let x · x · · · x︸ ︷︷ ︸

n

= xn, where x ∈ E, n denotes a natural number,

which is n ∈ N.

Definition 2. Suppose that a separable real Banach space E satisfies the following conditions:
(H1) E is an algebra over the real number field R, namely:
(1◦) E is closed under multiplication; that is, ∀x, y ∈ E, x · y ∈ E.
(2◦) ∀a ∈ R, ∀x, y ∈ E, (ax)y = x(ay) = a(xy).
(H2) ∀x, y ∈ E, ∀m, n ∈ N+, by xm = yn ⇒ y = x

m
n , let β = m

n , then y = xβ, where
β > 0, β ∈ Q.

(H3) ∀x ∈ E, by x 6= θ⇒ xβ 6= θ, where β > 0, β ∈ Q.
Then, E is called the Z− Z− B space.

Therefore, Z-C-X space is a subspace of Z-Z-B space.

Example 1. A real number space is a Z− Z− B space.

Definition 3 (See [6]). Let X be a cone in the E, and suppose that X satisfies the following
conditions:
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(1) ∀x, y ∈ X, by θ ≺ x ≺ y⇒ 0 <‖ x ‖<‖ y ‖.
(2) X is closed under multiplication, and X is the subspace of E.
Then, X is called the excellent cone.

(E,�) is assumed to be a partial order derived from excellent cone X.
By Definition 3, we also obtain: ∀x, y ∈ X, by θ � x � y⇒ 0 ≤‖ x ‖≤‖ y ‖.
This is because θ = x = y, and we have ‖ x ‖=‖ y ‖= 0.

Example 2. Let E be an n-dimensional Euclidean space, X = x | x = (x1, x2, · · · , xn), xi ≥ 0,
(i = 1, 2, · · · , n), and then X is a cone in E. By ‖ x ‖=

√
(x1)2 + (x2)2 + · · ·+ (xn)2, then X

is obviously an excellent cone in E.

Definition 4. Let Y be a cone in the E, and suppose that Y satisfies the following conditions:
(1) ∀x, y ∈ Y,n ∈ N+, by θ ≺ x ≺ y⇒ 0 <‖ x ‖n<‖ y ‖n.
(2) Y is closed under multiplication, and Y is the subspace of E.
Then, Y is called the superior cone.

(E,�) is assumed to be a partial order derived from superior cone Y.
By Definition 4, we also obtain: ∀x, y ∈ Y,n ∈ N+, by θ � x � y⇒ 0 ≤‖ x ‖n≤‖ y ‖n.
This is because θ = x = y, and we have ‖ x ‖=‖ y ‖= 0, so ‖ x ‖n=‖ y ‖n= 0.

Example 3. Let E be an n-dimensional Euclidean space, X = x | x = (x1, x2, · · · , xn), xi ≥ 0,
(i = 1, 2, · · · , n), and then X is a cone in E. By ‖ x ‖=

√
(x1)2 + (x2)2 + · · ·+ (xn)2, then X

is also a superior cone in E.

Some new concepts in this article are taken from [1–6].
We obtain the following results.

2. Main Results

Theorem 1. Let E be a Z− Z− B space, U be an excellent cone of E, V be a bounded open subset
of U, and θ ∈ V. Let Q be the set of all rational numbers, V be the closure of V, and ∂V be the
boundary of V. Suppose that T: V → U is a semi-closed 1-set-contractive operator and satisfies the
following condition:

(Tx + µx)β+1 � (Tx)β · µx, f or every x ∈ ∂V, where β ≥ 1, β ∈ Q, µ ≥ 1. (1)

Then, the operator equation Tx = µx has a solution in V.

Proof. We can assume that Tx = µx has no solution on ∂V (otherwise, the result holds).
That is, 1

µ Tx 6= x, for every x ∈ ∂V, µ ≥ 1.

Let ls(x) = x − s
µ Tx, Ls(x) = s

µ (Tx), s ∈ [0, 1], for every x ∈ V, µ ≥ 1; then, Ls:

[0, 1]×V → U is a semi-closed 1-set-contractive operator.
In fact, T: V → U is a continuous operator, Ls: [0, 1]× V → U is also a continuous

operator. T: V → U is a semi-closed 1-set-contractive operator; let w = s
µ , because ∀s ∈

[0, 1], µ ≥ 1, so w ∈ [0, 1], and we have α(Ls(V)) = α( s
µ T(V)) = α(wT(V)) = wα(T(V)) ≤

α(T(V)) ≤ α(V), where α denotes a noncompact measure. Thus, Ls: [0, 1]× V → U is a
1-set-contractive operator.

At the same time, I− Ls = I− s
µ T = I−wT = I−wT + wI−wI = (1−w)I + w(I−

T), and we know that Ls: [0, 1]×V → U is a semi-closed operator. Thus, Ls: [0, 1]×V → U
is a semi-closed 1-set-contractive operator.

Moreover, Ls(·, x): [0, 1]→ U is uniformly continuous with respect to x ∈ V.
Below, we prove that

θ∈ls(∂V), s ∈ [0, 1]. (2)
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In fact, suppose that (2) is not true; then, there exist a s0 ∈ [0, 1] and an x0 ∈ ∂V, such
that θ = ls0(x0), that is,

x0 −
s0

µ
Tx0 = θ. (3)

That is, s0
µ Tx0 = x0; then, s0 6= 0 (otherwise s0 = 0, and we have x0 = θ ∈ ∂V; this is

in contradiction to θ ∈ V) and s0 6= 1 (otherwise, s0 = 1, and we have Tx0 = µx0; this is in
contradiction to the given condition Tx 6= µx, for every x ∈ ∂V); hence, s0 ∈ (0, 1). By (3),
we obtain Tx0 = µ

s0
x0, where x0 ∈ ∂V, s0 ∈ (0, 1), µ ≥ 1. Inserting Tx0 = µ

s0
x0 into (1), we

have
(

µ

s0
x0 + µx0)

β+1 � (
µ

s0
x0)

β · µx0.

Since E is a Z− Z− B space,

µβ+1(
1
s0

+ 1)β+1(x0)
β+1 � µβ+1(

1
s0
)β(x0)

β+1.

Because U is an excellent cone in E, we can write

‖ µβ+1(
1
s0

+ 1)β+1(x0)
β+1 ‖≤‖ µβ+1(

1
s0
)β(x0)

β+1 ‖ .

It follows that

µβ+1(
1
s0

+ 1)β+1 ‖ (x0)
β+1 ‖≤ µβ+1(

1
s0
)β ‖ (x0)

β+1 ‖ . (4)

Owing to the fact that E is a Z− Z− B space and x0 6= θ, we thus have (x0)
β+1 6= θ.

By (4), we have

(
1
s0

+ 1)β+1 ≤ (
1
s0
)β.

Since s0 ∈ (0, 1), thus 1
s0

> 1, β ≥ 1, β ∈ Q, that is,

(
1
s0

+ 1)β+1 > (
1
s0
)β.

Therefore, θ∈ls(∂V); that is, θ∈(I − Ls)(∂V). We obtain that x 6= Ls(s, x), for every
x ∈ ∂V,s ∈ [0, 1].

According to the homotopy invariance and normalization in [3], we have

i(
1
µ

T, V, U) = i(θ, V, U) = 1.

Moreover, according to the solution property in [3], we know that Tx = µx has a
solution in V.

The proof of Theorem 1 is completed.

Theorem 2. Let E be a Z− Z− B space, U be an excellent cone in E, V be a bounded open subset
of U, and θ ∈ V. Let Q be the set of all rational numbers, V be the closure of V, and ∂V be the
boundary of V. Suppose that T: V → U is a semi-closed 1-set-contractive operator and satisfies the
following condition:

(Tx + µx)β + (Tx− µx)β � (2Tx + µx)β, f or every x ∈ ∂V, where β ≥ 1, β ∈ Q, µ ≥ 1. (5)

Then, the operator equation Tx = µx has a solution in V.

Proof. We can assume that Tx = µx has no solution on ∂V (otherwise, the result holds).
That is, Tx 6= µx, for every x ∈ ∂V, µ ≥ 1.
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Let ls(x) = x − s
µ Tx, Ls(x) = s

µ (Tx), s ∈ [0, 1], for every x ∈ V, µ ≥ 1; then, Ls:

[0, 1]×V → U is a semi-closed 1-set-contractive operator.
In fact, T: V → U is a continuous operator, and Ls: [0, 1]×V → U is also a continuous

operator. T: V → U is a semi-closed 1-set-contractive operator; let w = s
µ , ∀s ∈ [0, 1],

µ ≥ 1; hence, w ∈ [0, 1], and we have α(Ls(V)) = α( s
µ T(V)) = α(wT(V)) = wα(T(V)) ≤

α(T(V)) ≤ α(V), where α denotes a noncompact measure. Thus, Ls: [0, 1]× V → U is a
1-set-contractive operator.

Meanwhile, I − Ls = I − s
µ T = I − wT = I − wT + wI − wI = (1− w)I + w(I − T),

and we know that Ls: [0, 1]×V → U is a semi-closed operator. Thus, Ls: [0, 1]×V → U is
a semi-closed 1-set-contractive operator.

Moreover, Ls(·, x): [0, 1]→ U is uniformly continuous with respect to x ∈ V.
Below, we prove that

θ∈ls(∂V), s ∈ [0, 1]. (6)

In fact, suppose that (1) is not true; then, there exist a s0 ∈ [0, 1] and an x0 ∈ ∂V, such
that θ = ls0(x0), that is,

x0 −
s0

µ
Tx0 = θ. (7)

That is, s0
µ Tx0 = x0; then, s0 6= 0 (otherwise, s0 = 0, and we have x0 = θ ∈ ∂V; this is

in contradiction to θ ∈ V) and s0 6= 1 (otherwise, s0 = 1, and we have Tx0 = µx0; this is
in contradiction to the given condition Tx 6= µx, for every x ∈ ∂V); hence, s0 ∈ (0, 1). By
(7), we obtain Tx0 = µ

s0
x0, where x0 ∈ ∂V, s0 ∈ (0, 1), µ ≥ 1. Inserting Tx0 = µ

s0
x0 into (5),

we have
(

µ

s0
x0 + µx0)

β + (
µ

s0
x0 − µx0)

β � (2
µ

s0
x0 + µx0)

β.

Since E is a Z− Z− B space,

µβ(
1
s0

+ 1)β(x0)
β + µβ(

1
s0
− 1)β(x0)

β � µβ(
2
s0

+ 1)β(x0)
β.

It follows that

µβ[(
1
s0

+ 1)β + (
1
s0
− 1)β](x0)

β � µβ(
2
s0

+ 1)β(s0)
β.

Because U is an excellent cone in E, that is,

‖ µβ[(
1
s0

+ 1)β + (
1
s0
− 1)β](x0)

β ‖≥‖ µβ(
2
s0

+ 1)β(x0)
β ‖ . (8)

Owing to the fact that E is a Z − Z − B space and x0 6= θ, we thus have (x0)
β 6= θ.

By (6), we have

(
1
s0

+ 1)β + (
1
s0
− 1)β ≥ (

2
s0

+ 1)β.

Since s0 ∈ (0, 1), thus 1
s0

> 1, β ≥ 1, β ∈ Q, that is,

(
1
s0

+ 1)β + (
1
s0
− 1)β < (

1
s0

+ 1 +
1
s0
− 1 + 1)β.

Therefore, θ∈ls(∂V), that is, θ∈(I − Ls)(∂V). We obtain that x 6= Ls(s, x), for every
x ∈ ∂V,s ∈ [0, 1].

According to the homotopy invariance and normalization in [3], we have

i(
1
µ

T, V, U) = i(θ, V, U) = 1.
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Moreover, according to the solution property in [3], we know that Tx = µx has a
solution in V.

The proof of Theorem 2 is completed.

Lemma 1. When η ∈ (0, 1
2 ), λ ∈ (0, 1),λ > η, η + λ = 1, t > 1, and γ ≥ 1, the following

inequality holds:
λtγ − η > (λ− η)(t− 1)γ.

Proof. Let
f (t) = λtγ − η − (λ− η)(t− 1)γ,

where η ∈ (0, 1
2 ), λ ∈ (0, 1), λ > η, η + λ = 1, t > 1, and γ ≥ 1.

Then,
f ′(t) = λγtγ−1 − (λ− η)γ(t− 1)γ−1

= λγtγ−1 − λγ(t− 1)γ−1 + ηγ(t− 1)γ−1

= λγ(tγ−1 − (t− 1)γ−1) + ηγ(t− 1)γ−1

when γ ≥ 1, tγ−1 − (t− 1)γ−1 ≥ 0, ηγ(t− 1)γ−1 > 0.
Thus, f ′(t) > 0; therefore, f (t) is a monotonous increasing function.
When t > 1, we have f (t) > f (1) and f (1) = λ− η > 0.
Hence f (t) > 0, that is,

λtγ − η > (λ− η)(t− 1)γ.

The proof of Lemma 1 is completed.

Theorem 3. Let E be a Z− Z− B space, U be an excellent cone in E, V be a bounded open subset
of U, and θ ∈ V. Let Q be the set of all rational numbers, V be the closure of V, and ∂V be the
boundary of V. Suppose that T:V → U is a semi-closed 1-set-contractive operator and satisfies the
following condition:

λ(Tx)β − η(µx)β � (λ− η)(Tx− µx)β, f or every x ∈ ∂V, (9)

where η ∈ (0, 1
2 ), λ ∈ (0, 1), λ > η, η + λ = 1, β ≥ 1, β ∈ Q, µ ≥ 1.

Then, the operator equation Tx = µx has a solution in V.

Proof. We can assume that Tx = µx has no solution on ∂V (otherwise, the result holds).
That is, 1

µ Tx 6= x, for every x ∈ ∂V, µ ≥ 1.

Let ls(x) = x − s
µ Tx, Ls(x) = s

µ (Tx), s ∈ [0, 1], for every x ∈ V, µ ≥ 1; then, Ls:

[0, 1]×V → U is a semi-closed 1-set-contractive operator.
In fact, T: V → U is a continuous operator, Ls: [0, 1]× V → U is also a continuous

operator. T: V → U is a semi-closed 1-set-contractive operator; let w = s
µ , by ∀s ∈ [0, 1],

µ ≥ 1, so w ∈ [0, 1], and we have α(Ls(V)) = α( s
µ T(V)) = α(wT(V)) = wα(T(V)) ≤

α(T(V)) ≤ α(V), where α denotes a noncompact measure. Thus, Ls: [0, 1]× V → U is a
1-set-contractive operator.

In the meantime, I − Ls = I − s
µ T = I −wT = I −wT + wI −wI = (1−w)I + w(I −

T), we know that Ls: [0, 1]×V → U is a semi-closed operator. Thus, Ls: [0, 1]×V → U is
a semi-closed 1-set-contractive operator.

Moreover, Ls(·, x): [0, 1]→ U is uniformly continuous with respect to x ∈ V.
Below, we prove that

θ∈ls(∂V), s ∈ [0, 1]. (10)



Mathematics 20212, 10, 2217 7 of 10

In fact, suppose that (10) is not true; then, there exist a s0 ∈ [0, 1] and an x0 ∈ ∂V, such that
θ = ls0(x0), that is,

x0 −
s0

µ
Tx0 = θ. (11)

That is, s0
µ Tx0 = x0; then, s0 6= 0 (otherwise, s0 = 0, and we have x0 = θ ∈ ∂V; this is

in contradiction to θ ∈ V) and s0 6= 1 (otherwise, s0 = 1, and we have Tx0 = µx0; this is in
contradiction to the given condition Tx 6= µx, for every x ∈ ∂V); hence, s0 ∈ (0, 1). By (11),
we obtain Tx0 = µ

s0
x0, where x0 ∈ ∂V, s0 ∈ (0, 1), µ ≥ 1. Inserting Tx0 = µ

s0
x0 into (9), we

have
λ(

µ

s0
x0)

β − η(µx0)
β � (λ− η)(

µ

s0
x0 − µx0)

β.

Since E is a Z− Z− B space,

µβ[λ(
1
s0
)β](x0)

β − µβ · η · (x0)
β � µβ[(λ− η)(

1
s0
− 1)β](x0)

β.

It follows that

µβ[λ(
1
s0
)β − η](x0)

β � µβ[(λ− η)(
1
s0
− 1)β](x0)

β.

Because U is an excellent cone in E, that is,

‖ µβ[λ(
1
s0
)β − η](x0)

β ‖≤‖ µβ[(λ− η)(
1
s0
− 1)β](x0)

β ‖ . (12)

Owing to the fact that E is a Z − Z − B space and x0 6= θ, we thus have (x0)
β 6= θ.

By (6), we have

λ(
1
s0
)β − η ≤ (λ− η)(

1
s0
− 1)β.

Since s0 ∈ (0, 1), thus 1
s0

> 1, β ≥ 1, β ∈ Q, by Lemma 1; that is,

λ(
1
s0
)β − η > (λ− η)(

1
s0
− 1)β.

Therefore, θ∈ls(∂V), that is, θ∈(I − Ls)(∂V). We obtain that x 6= Ls(s, x), for every
x ∈ ∂V, s ∈ [0, 1].

According to the homotopy invariance and normalization in [3], we have

i(
1
µ

T, V, U) = i(θ, V, U) = 1.

Moreover, according to the solution property in [3], we know that Tx = µx has a
solution in V.

The proof of Theorem 3 is completed.

Lemma 2 (See [8]). When δ ∈ [0, 1], µ ≥ 1, o ∈ (0, 1), the following inequality holds:

δ +
µ

o
>| µ− δ

o
µ | .

Lemma 3. When δ ∈ [0, 1], µ ≥ 1, o ∈ (0, 1), γ ≥ 1, the following inequality holds:

(δ +
µ

o
)γ > (| µ− δ

o
µ |)γ.

Proof. Because δ ∈ [0, 1], µ ≥ 1, o ∈ (0, 1), hence δ + µ
o > 1.
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By Lemma 2, γ ≥ 1, we have

(δ +
µ

o
)γ > (| µ− δ

o
µ |)γ.

The proof of Lemma 3 is completed.

Theorem 4. Let E be a Z− Z− B space, U be an excellent cone in E, V be a bounded open subset
of U, and θ ∈ V. Let Q be the set of all rational numbers, V be the closure of V, and ∂V be the
boundary of V. Suppose that T: V → U is a semi-closed 1-set-contractive operator and satisfies the
following condition:

(δx + Tx)β � (µx− δTx)β, f or every x ∈ ∂V, where δ ∈ [0, 1], β ≥ 1, β ∈ Q, µ ≥ 1. (13)

Then, the operator equation Tx = µx has a solution in V.

Proof. We can assume that Tx = µx has no solution on ∂V (otherwise, the result holds).
That is, Tx 6= µx, for every x ∈ ∂V, µ ≥ 1.

Let ls(x) = x − s
µ Tx, Ls(x) = s

µ (Tx), s ∈ [0, 1], for every x ∈ V, µ ≥ 1; then, Ls:

[0, 1]×V → U is a semi-closed 1-set-contractive operator.
In fact, T: V → U is a continuous operator, and Ls: [0, 1]×V → U is also a continuous

operator. T: V → U is a semi-closed 1-set-contractive operator; let w = s
µ , by ∀s ∈ [0, 1],

µ ≥ 1, so w ∈ [0, 1], and we have α(Ls(V)) = α( s
µ T(V)) = α(wT(V)) = wα(T(V)) ≤

α(T(V)) ≤ α(V), where α denotes a noncompact measure. Thus, Ls: [0, 1]× V → U is a
1-set-contractive operator.

By I − Ls = I − s
µ T = I − wT = I − wT + wI − wI = (1− w)I + w(I − T), we know

that Ls: [0, 1]×V → U is a semi-closed operator. Thus, Ls: [0, 1]×V → U is a semi-closed
1-set-contractive operator.

Moreover, Ls(·, x): [0, 1]→ U is uniformly continuous with respect to x ∈ V.
Below, we prove that

θ∈ls(∂V), s ∈ [0, 1]. (14)

In fact, suppose that (14) is not true; then, there exist a s0 ∈ [0, 1] and an x0 ∈ ∂V, such
that θ = ls0(x0), that is,

x0 −
s0

µ
Tx0 = θ. (15)

That is, s0
µ Tx0 = x0; then, s0 6= 0 (otherwise, s0 = 0, and we have x0 = θ ∈ ∂V; this is

in contradiction to θ ∈ V) and s0 6= 1 (otherwise, s0 = 1, and we have Tx0 = µx0; this is in
contradiction to the given condition Tx 6= µx, for every x ∈ ∂V); hence, s0 ∈ (0, 1). By (15),
we obtain Tx0 = µ

s0
x0, where x0 ∈ ∂V, s0 ∈ (0, 1), µ ≥ 1. Inserting Tx0 = µ

s0
x0 into (13), we

have
(δx0 +

µ

s0
x0)

β � (µx0 − δ
µ

s0
x0)

β.

Since E is a Z− Z− B space,

[(δ +
µ

s0
)x0]

β � [(µ− δ

s0
µ)x0]

β.

It follows that
(δ +

µ

s0
)β(x0)

β � (µ− δ

s0
µ)β(x0)

β.

Because U is an excellent cone in E, we can write

‖ (δ + µ

s0
)β(x0)

β ‖≤‖ (µ− δ

s0
µ)β(x0)

β ‖ .
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That is,

(δ +
µ

s0
)β ‖ (x0)

β ‖≤| (µ− δ

s0
µ)β |‖ (x0)

β ‖ . (16)

Owing to the fact that E is a Z − Z − B space and x0 6= θ, we thus have (x0)
β 6= θ,

β ≥ 1, β ∈ Q. By (16), we have

(δ +
µ

s0
)β ≤ (| µ− δ

s0
µ |)β.

Since s0 ∈ (0, 1), thus 1
s0

> 1, β ≥ 1, β ∈ Q, by Lemma 3, that is,

(δ +
µ

s0
)β > (| µ− δ

s0
µ |)β.

Therefore, θ∈ls(∂V), that is, θ∈(I − Ls)(∂V). We obtain that x 6= Ls(s, x), for every
x ∈ ∂V,s ∈ [0, 1].

According to the homotopy invariance and normalization in [3], we have

i(
1
µ

T, V, U) = i(θ, V, U) = 1.

Moreover, according to the solution property in [3], we know that Ax = µx has a
solution in V.

The proof of Theorem 4 is completed.

Remark 1. For the proof of the existence of the solution of an operator equation, the above
Theorems 1–4 may not be applicable. If they are not applicable, it does not mean that the solu-
tion of the operator equation does not exist. Moreover, the differences between Theorems 1–4 need to
be further studied. The examples of Theorems 1–4 also need to be further studied.

The following theorems can also be proven by the method of proving the above
theorems.

Theorem 5. Let E be a Z− Z− B space, U be an excellent cone in E, V be a bounded open subset
of U, and θ ∈ V. Let Q be the set of all rational numbers, V be the closure of V, and ∂V be the
boundary of V. Suppose that T: V → U is a semi-closed 1-set-contractive operator and satisfies the
following condition:

(Tx · µx)β � (Tx)2β + (µx)2β, f or every x ∈ ∂V, where β ≥ 1, β ∈ Q, µ ≥ 1.

Then, the operator equation Tx = µx has a solution in V.

Theorem 6. Let E be a Z− Z− B space, U be an excellent cone in E, V be a bounded open subset
of U, and θ ∈ V. Let Q be the set of all rational numbers, V be the closure of V, and ∂V be the
boundary of V. Suppose that T: V → U is a semi-closed 1-set-contractive operator and satisfies the
following condition:

(Tx− µx)β+1 � (µx)β(µx− Tx)− (Tx)β+1, f or every x ∈ ∂V, where β ≥ 1, β ∈ Q, µ ≥ 1.

Then, the operator equation Tx = µx has a solution in V.

Theorem 7. Let E be a Z− Z− B space, D be a bounded open convex subset of E, and θ ∈ D. Let
Q be the set of all rational numbers, D be the closure of D, and ∂D be the boundary of D. Suppose
that T: D → E is a semi-closed 1-set-contractive operator and satisfies the following condition:

‖ (Tx)β + (µx)β ‖ + ‖ xβ ‖≤‖ (Tx)β − (µx)β ‖, f or every x ∈ ∂D, where β > 0, β ∈ Q, µ ≥ 1.

Then, the operator equation Tx = µx has a solution in D.
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Theorem 8. Let E be a Z− Z− B space, D be a bounded open convex subset of E, and θ ∈ D. Let
Q be the set of all rational numbers, D be the closure of D, and ∂D be the boundary of D. Suppose
that T: D → E is a semi-closed 1-set-contractive operator and satisfies the following condition:

‖ (Tx + µx)β ‖ + ‖ xβ ‖≤‖ (Tx)β ‖ + ‖ (µx)β ‖, f or every x ∈ ∂D, where β ≥ 1, β ∈ Q, µ ≥ 1.

Then, the operator equation Tx = µx has a solution in D.

3. Conclusions

In this paper, we mainly study some nonlinear problems in Z-Z-B space, obtaining
the above theorems. The above theorems can be used to prove the existence of solutions of
different equations. We can also give those spaces that meet the conditions, and apply the
theorem to obtain the desired results under the given conditions of the theorem. This is a
future research direction. In addition, applying this article to various fields of reality is also
a research direction. It is also an important research direction to further extend the rational
numbers β in the theorem to real numbers.
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