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Abstract: A new class of regulators on the basis of the second-order sliding mode control is proposed.
For the second-order system with smooth disturbances, special feedback is chosen with a discontinu-
ous component and a radical function component. The synthesized control law provides a transient
oscillatory process with decaying amplitudes, which converge to zero in finite time. In contrast to
existing algorithms, the condition of homogeneity of the closed-loop system differential equations
is omitted. In comparison to the “twisting”-algorithm, which is well known, designed feedback pro-
vides an invariance property with respect to smooth external perturbation with less relay amplitude.
With the help of a special Lyapunov function, the convergence proof is considered by using the
averaging approach. It is shown that the average oscillation period convergence speed is strictly
negative, and the estimation of the convergence time is presented. The simulation results of the
designed control law for the one link robot-manipulator are presented, which shows less steady-state
oscillations in comparison to existing approaches.

Keywords: finite time convergence; invariance; second-order sliding mode; discontinuous control;
external perturbation

MSC: 37N35; 93C10; 93D05

1. Introduction

The sliding mode technique is a well-known method suitable for solving control
and observation problems for systems under the influence of external perturbations and
mathematical model uncertainties [1,2]. There are three main properties concerned with
the sliding mode control approach:

• finite time convergence to the sliding manifold;
• full suppression of bounded external perturbations, which belong to the control space;
• reduction of the dynamical order of the system during motion along the sliding manifold.

The conventional sliding mode technique implies that the control input appears after
the first differentiation of the sliding manifold [1,2]; in other words, the relative degree of
the sliding manifold is equal to one. For the systems where the relative degree is greater
than one, higher-order sliding mode methods have been developed, which have attracted
considerable research interest in the last three decades [3–8]. In this paper, the new second-
order sliding mode control law is developed. According to the definitions [5,8,9], for the
second-order sliding mode, the relative degree is equal to two and the trajectories of the
system converge to the intersection of the sliding manifold and its derivative in finite
time. It is proposed to modify the, so called, “twisting” algorithm [5] by excluding one
of the discontinuous components from the control law. This can be done with the help
of the recent results in the invariance theory [10,11], with the help of the “vortex” algo-
rithm. The proposed class of regulators is not a combination of any algorithm. We propose
another paradigm. The designed control input includes continuous and discontinuous
components. The discontinuous one provides nonlinear oscillations in the closed-loop
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system as it was done in “twisting” [12] or ”super-twisting” algorithms [13–16] and their
modifications [12,17,18]. The continuous component yields the amplitudes of the oscil-
lations to zero in finite time. The continuous term is the sum of the linear function and
non-Lipschitz function [19]. In this paper, the radical function with power from zero to
one is chosen as the non-Lipschitz candidate function. The continuous component has
an infinite gain coefficient in origin, and this feature causes the finite time convergence
property of the closed-loop system. It is necessary to note that using feedback with an
arbitrary radical function has not been considered previously in the second-order sliding
mode controllers, and the convergence proof for such a type of function is the challenge.
From other points of view, the super-twisting algorithm supposes that the control input
appears after the first differentiation of the sliding manifold. In our problem statement,
the sliding surface must be twice differentiated to get the control input on the right-hand
side. This is the main distinction with respect to the super-twisting algorithm and all its
modifications, and it corresponds to the restriction on the class of the control plants for
the super-twisting control methodology. The main advantage of the proposed controller is
the reduction of the discontinuous term amplitude, which can be chosen as two times less in
comparison to the ”twisting” algorithm. This is a very valuable result for adaptive [12,16] or
modified [17] ”twisting” controllers, where the tuning relay bounds may be twice reduced
from below.

It is necessary to note that all properties discussed above are valid only for the “ideal
sliding mode”, which implies infinite switching frequency of the discontinuous control
input [1]. In real practice, application designers and engineers must consider the “real
sliding mode” with a finite switching frequency when the trajectories of the system belong
to some small ∆-vicinity of the sliding manifold. This phenomenon is called the “chattering”
effect [1,7], and it is concerned with imperfections of the discontinuous functions in the
real world. During “chattering”, the small amplitude oscillations appear in the output
variable, which causes extra heat losses, time life reduction of the mechanical parts of the
plant and low control accuracy. The steady-state oscillations amplitude strictly depends on
the discontinuous control bounds, and one of the direct ways to decrease “chattering” is to
reduce these. This idea is realized for the “twisting” second-order sliding mode algorithm,
which is modified by the approach proposed above.

This paper is organized as follows. In Section 2, the basic definitions are introduced,
and the main methods used in the paper are described. The problem statement and main
idea of the synthesis of the proposed control law are presented in Section 3, and the
properties of the radical function are also discussed. In Section 4, the convergence of the
closed-loop system with the combined control law containing arbitrary radical function and
discontinuous components is proven by qualitative analysis of the transient process and the
Lyapunov function method is applied to prove the finite time reaching of the second-order
sliding mode set and to get its reaching time estimation. The efficiency of the designed control
laws is demonstrated in Section 5 for the one-link robot manipulator regulation. Finally, in
Section 6, some concluding comments about the presented results are given and further
investigation directions are discussed.

2. Basic Definitions and Methods

Consider the dynamical system

ẋ = f (t, x) (1)

where x ∈ Rn is the state space vector, t is the time, f (t, x) = ( f1, f2, ..., fn)T, f (t, x) is the
piece-wise continuous vector function in a finite domain G of an (n + 1)-dimensional space
that undergoes discontinuities on the manifold

s(t, x) = 0, s ∈ R.
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Definition 1 ([20]). The solution of (1) is a continuous vector function x(t) determined in the
time interval I, for which the differential inclusion is fulfilled almost everywhere.

ẋ ∈ F(t, x), (2)

where set F(t, x) contains one point if f (t, x) is continuous, and if f (t, x) is discontinuous, the set
F(t, x) is given by

F = convF0(t, x), (3)

where F0(t, x) is the set of all possible limits of f (t, x) as x∗(t) /∈ s(x, t) = 0, x∗ → x, where x∗ is
the continuity point of f (t, x); conv means convex closure.

Definition 2 ([5]). Let Γ be a smooth manifold. The set Γ itself is called the first-order sliding
point set. The second-order sliding point set is defined as the set of points x ∈ Γ, where F(x) lies in
the tangential space TyΓ of manifold Γ at the point x.

Definition 3 ([5]). It can is said that there exists the first (or the second)-order sliding mode on
the manifold Γ in the vicinity of a first (or second)-order sliding point x0 if, in the vicinity of the
point x0, the first (or second)-order sliding set is an integral set, i.e., consists of the Filippov’s sense
solutions.

Consider the closed-loop control system

ẋ = f (t, x, u), (4)

u = U(t, x, ζ), (5)

ζ̇ = Ψ(t, x, ζ), (6)

where u ∈ R1 is a control input, which may be chosen in an appropriate way, U is a feedback
operator, ζ is a special auxiliary parameter. The initial value of ζ may be defined by a special function
ζ(t0) = ζ0(t0, x0) or considered to be arbitrary.

Let s(t, x) = 0, s ∈ R1 be the desirable constraint s ∈ C1, ∇xs 6= 0.

Definition 4 ([1]). With the help of an equivalent control method, the motion of system (4) with
s(t, x) = 0 is described by the equation

ẋ = f (t, x, ueq(t, x)),

where ueq(t, x) is the equivalent control that is evaluated from the equation

ṡ = s′t(t, x) + s′x(t, x) f (t, x, ueq(t, x)) = 0, (7)

where s′t, s′x are the corresponding derivatives.

Definition 5 ([5]). Equations (5) and (6) are called the first and second-order sliding algorithms on
constraint s(x, t) = 0 if a stable sliding mode of the first (second)-order on the manifold s(x, t) = 0
is achieved, and with every initial condition (t0, x0) the state x is transformed to the sliding mode
in finite time.

Definition 6 ([5]). Let (t, x(t, ε)) from (4) be a family of trajectories indexed by ε ∈ R with the
common initial condition (t0, x0), and let t ≥ t0 (or t ∈ [t0, T]). Assume that there exists t1 ≥ t0
(or t1 ∈ [t0, T]) such that on every segment [t′, t′′], where t′ ≥ t1 (or on [t1, T]), the function
s(t, x(t, ε)) tends uniformly to zero with ε tending to zero. In this case, we call such a family a real
sliding family on the constraint s(x, t) = 0. We call the motion on the interval [t0, t1] a transient
process and the motion on the interval [t1, ∞] (or [t1, T]) a steady-state process.

Definition 7 ([5]). Let γ(ε) be a real-valued function such that γ(ε)→ 0 as ε→ 0. A real sliding
algorithm on the constraint s = 0 is said to be of the second-order with respect to γ(ε) if, for any
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compact set of initial conditions, and for any time interval [T1, T2], there exists a constant C, such
that the steady-state process satisfies

|s(t, x(t, ε))| ≤ C|γ(ε)|2

for t ∈ [T1, T2].
Let (t, x(t, ε)) be a real sliding family with ε→ 0, t belongs to a bounded interval. Let s(t, x)

be a smooth constraint function, and r = 2 be the real sliding order with respect to τ(ε), where
τ(ε) > 0 is the smallest time interval of smoothness of the piecewise smooth function x(t, ε).

Proposition 1 ([5]). If the derivative ṡ(t, x(t, ε)) is uniformly bounded in ε for the steady-state
part of x(t, ε), then there exists a positive constant C1 such that for the steady-state process, the
following inequality holds

|ṡ(x, t)| ≤ C1ε.

There are not so many methods for investigation of the systems with higher-order
sliding modes. One of the most used approaches is to provide, if it is possible, the ho-
mogeneity property of the closed-loop system with an appropriate choice of the control
input [6,21,22]. In particular, if an asymptotic convergence of the closed-loop system
is proven, then for the system of homogeneous differential equations, it leads to finite
time convergence. The homogeneity requirement restricts the class of systems and control
algorithms that can be used during feedback design.

The classical Lyapunov functions method [23] has been extended for the systems with
differential inclusions (2) in [24,25]. In [26], a non-smooth Lyapunov function is used to
prove the finite-time convergence of the closed-loop system with one of the second-order
sliding mode control algorithms.

The modification of V.I. Zubov’s method [27–29] for finding the appropriate Lyapunov
function for the second-order sliding mode algorithm is proposed in [30–32].

The difficulties of the evaluation of a suitable Lyapunov function are slightly relaxed
in [33], where an alternative approach on the basis of the combination of the Lyapunov
method and the averaging approach [34] is introduced for the stability proof. This can be
performed by evaluating the average decaying rate of a positive semi-definite function of
the state space variables. If the upper negative bound is found for the average decaying
speed, then it yields to the second-order sliding mode. This method is used in this paper for
the finite time convergence proof and its estimation. The benefit of this approach is that only the
upper bound of the average descending speed of some positive semi-definite function must be
estimated, and only the functions for which this estimation is negative must be found. Due to
this methodology, in the oscillation period, the derivative of the Lyapunov candidate function
may be positive for some time interval, and in this period, only the averaged derivative must
be negative. This alternative way sufficiently simplifies the search for the Lyapunov candidate
function.

The methods of the classical mathematical analysis [19] are used as an auxiliary tool
during each proof step.

3. Problem Statement

Consider the system
ṡ1 = s2,
ṡ2 = u + ξ(t),

(8)

where s1, s2 ∈ R are the measured state variables, u ∈ R is the control input,
|ξ(t)| < Ξ = const > 0 is an unknown function of external perturbations of the sys-
tem, which is assumed to be bounded and differentiable with respect to time:

|ξ̇(t)| ≤ Ξ = const > 0, (9)

the constants Ξ and Ξ are known.
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The problem of the stabilization of state variables in a finite time is stated in

s1(t) = s2(t) = 0, ∀t > tr (10)

by synthesis, the static feedback u = U(s1, s2). The constant tr is not predetermined, and
only its existence and evaluation are investigated.

4. Main Result
4.1. Motivation

There exists the well-known “twisting”, algorithm [3–5], which solves the stated
problem (10). According to this feedback law, the control input is chosen in the form

u = −M2 sign(s2)−M1 sign(s1), (11)

where M1 = const > 0, M2 = const > 0, (·) is the sign function

sign(y) =
{

1, y > 0;
−1, y < 0,

for y = 0 the solutions of the closed-loop system are (8), (9) and (11) are understood in
Filippov’s sense of (2) and (3), sign(y) ∈ [−1, 1].

In [1,5,21,30,31], it was proven that “twisting” is a second-order sliding mode algo-
rithm (Definition 5) under conditions

M1 > M2 + Ξ, M2 > Ξ. (12)

All second-order sliding mode algorithms are based on relay feedback [7,9], which pro-
vides an oscillatory character of the transient process for system variables. Adding to relay
some signal that dissipates the energy, the asymptotic or finite-time convergence of controlled
variables to zero can be established. In [10,11], it was shown that using the static feedback

u = −αs2 −Msign(s1), M > Ξ, α(M− Ξ) > Ξ, (13)

in (8) leads to asymptotic convergence of the variables s1 and s2 to the origin. The control
algorithm (13) was named “vortex” due to the image of the transient process. Moreover, if
the twice differentiable disturbance is included on the right-hand side of the equation for
s1, then the asymptotic convergence is provided for the “unmatched” perturbation (out of
control space).

The nonlinear oscillator is organized by the relay component −Msign(s1), and
the −αs2 component, such as viscous friction, ensures energy dissipation in the closed-
loop system. According to the stated problem, the dissipation component may be chosen
in such a way to provide finite time convergence. In this paper, it is proposed to add a
radical function to the feedback. It is well known [35–37] that the differential equation for
scalar variable y with the square root function

ẏ = −
√
|y|sign(y)

has the property of finite-time convergence. In the next subsection, a radical function will
be used in the control law to provide the finite time convergence property.

4.2. Control Algorithm Choice

In this subsection, the following control input is introduced

u = −αs2 − α|s2|βsign(s2)−Msign(s1), β = const > 0, 0 < β < 1;
α(M− Ξ) > Ξ, M > Ξ, α = const > 0, M = const > 0.

(14)
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Further, it will be proven that (14) is the second-order sliding mode control algorithm
(Definition 5), and this result for systems (8) and (9) is achieved with two times less relay
amplitude in comparison to (11).

For further considerations, the following comparison system is used

ẏ1 = y2,
ẏ2 = −αy2 −Msign(y1) + Ξ sign(y2).

(15)

The component−Msign(s1) provides the oscillating behavior of the phase trajectories,
and the phase portrait methods analysis is one of the main methods that can be used for
convergence proof. However, for different initial conditions, the transient process for the
closed-loop system can vary significantly. Further analysis will show that after one or
two times switching the relay function, the state variables are involved in the oscillating
character of the convergence process. In this regime, the previous results [10,11] may be
used for asymptotical convergence proof. Let us clarify this idea. The following area is
introduced into consideration

|s2|+ |s2|β ≤
M− Ξ

α
. (16)

It is obvious that (the formula was changed from |s2|+ |s2|βsign(s2) ≥ |s2|)

|s2|+ |s2|β ≥ |s2|. (17)

In this area, it was shown in [10,11] that for identical initial conditions, phase portraits
of (8), (14) and (15) have the form depicted in Figure 1. It can be seen from (8), (14) and (15) that

∂y2

∂y1
=
−αy2 −Msign(y1) + ξ(t)

y2
,

∂s2

∂s1
=
−αs2 − α|s2|βsign(s2)−Msign(s1) + ξ(t)

s2
.

(18)

Figure 1. Phase portraits of systems (8), (14) and (15).

For example, if the third quadrant is investigated, for any points of the phase portrait
s2− = y2 < 0, and the time instant t in the third quadrant is according to (14), (15) and (17)

∂y2

∂y1
=

α|s2−|+ M− Ξ
s2−

< 0,
∂s2

∂s1
=

α(|s2−|+ |s2−|β) + M + ξ(t)
s2−

< 0;(
∂y2
∂y1

)
(

∂s2
∂s1

) =
α|s2−|+ M− Ξ

α(|s2−|+ |s2−|β) + M + ξ(t)
< 1.
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This means that curve b corresponding to the phase portrait of system (15) covers the
phase portrait a of (8) and (14).

By analogy, in the second quadrant, curve b corresponding to the phase portrait of (15),
covers the phase portrait a of (8) and (14), because from (16) and (18) the variable growth
rate s2(t) for any point of the phase portrait s2+ = y2 > 0 is less than the growth rate of the
variable y2(t) (the following formula was added to the paper’s text)

∂y2

∂y1
=
−α|s2+|+ M + Ξ

s2+
> 0,

∂s2

∂s1
=
−α(|s2+|+ |s2+|β) + M + ξ(t)

s2+
> 0;(

∂y2
∂y1

)
(

∂s2
∂s1

) =
−α|s2+|+ M + Ξ

−α(|s2+|+ |s2+|β) + M + ξ(t)
> 1.

Of course, these arguments only are valid in space and not in time, but the phase portrait
of (15) is majorant for the phase curve of (8) and (14) in the area (16). From the asymptotic
stability of (15) it follows that the variables of (8) and (14) converge to zero asymptotically also

lim
t→+∞

|s1(t)| = 0, lim
t→+∞

|s2(t)| = 0.

Convergence to the zone (16) must be considered more carefully due to different
images of the phase portrait depending on the initial conditions. For further analysis, the
full transient process for (8) and (14) is separated into three main stages:

(1) hitting the area

|s2(t)| ≤ ε1 =
M + Ξ

α
;

(2) convergence to the zone

ε2 ≤ |s2(t)| ≤
M + Ξ

α
,

where ε2 is some positive constant, which will be introduced below;
(3) movement in the vicinity of the origin

|s2(t)| ≤ ε2

to zero in finite time.

During the proof, the following notations are used, which correspond to different
stages of the convergence process:

(1) t0 is the initial moment of time;

(2) t1 is the time instant at which s1(t1) = 0, |s2(t1)|+ |s2(t1)|β >
M + Ξ

α
;

(3) t
′
1 is the time instant at which s2(t

′
1) = 0;

(4) t2 is the time instant at which s1(t2) = 0, |s2(t2)| ≤ ε1;
(5) t3 is the time instant at which s1(t3) = 0, |s2(t3)| ≤ ε2;
(6) t

′
3 is the time instant at which |s2(t

′
3)| ≤ ε2, s1(t′3) = 0;

(7) tr is the time instant of second-order sliding mode arising.

Note that depending on the initial conditions, not all of the listed stages occur in reality.
Further, all possible scenarios for the events evolution will be considered in detail.

4.3. Estimation of the Time to Hit ε1-Area

Situation 1. Consider the case with the following initial conditions (see Figure 2)

α(|s2(t0)|+ |s2(t0)|β) > M + Ξ, s1(t0)s2(t0) < 0. (19)
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This situation corresponds to the case when the initial point of the phase portrait is
in the second and the fourth quadrants of the phase plane. Let us show that the greater
the decreasing rate of the variable s2(t), then the larger the estimation of the time interval
t1 − t0 (stages 1–2). For this, we consider the system

ṡ∗1 = s∗2 ,
ṡ∗2 = −v sign(s∗1),
s∗1(t0) = s1(t0), s∗2(t0) = s2(t0), v = const > 0

and introduce some value s′1 = const > 0, 0 < s′1 < |s1(t0)|.

Figure 2. Phase portraits under initial conditions from the second and fourth quadrants (Situation 1).

After integration, the solution of this system is |s
∗
2(t)| = |s∗2(t0)| − v(t− t0),

|s∗1(t)| = |s∗1(t0)| − |s∗2(t0)|(t− t0) sign(s∗1) +
(t− t0)

2

2
v sign(s∗1),

t ≥ t0

and the estimation of the time interval t′0− t0 (t′0 corresponds |s∗1(t′0)| = s′1) can be computed
from the second equality of this system by solving quadratic equation:

t′0 − t0 ≤
2(|s1(t0)| − s′1)

|s2(t0)|+
√

s2
2(t0)− 2v(|s1(t0)| − s′1)

. (20)

It can be seen from the last estimation that the larger value of v leads to a longer
transient time. This expression has sense if the radical expression is positive. Two variants
must be considered.

The first one corresponds to the phase portrait a in Figure 2, and for the maximum
transient time we choose s′1 = 0⇒ t′0 = t1. In this case, the initial conditions are

s2
2(t0)− 2vmax|s1(t0)| ≥ 0, vmax = α(|s2(t0)|+ |s2(t0)|β)−M + Ξ, (21)

and for (8) and (14) with the help of (20) the following inequality is valid

∆1 = t1 − t0 ≤
2|s1(t0)|

|s2(t0)|+
√

s2
2(t0)− 2vmax|s1(t0)|

, (22)

the value vmax is chosen to get the maximum possible bound for the time interval estimation,
because under condition (19) according to (8) and (14)

|ṡ2| ≤ vmax.
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For the second variant (the phase portrait b in Figure 2), the initial conditions
correspond to

s2
2(t0)− 2vmax|s1(t0)| < 0, (23)

and the estimation of the time interval t1 − t0 with the help of (22) is not possible.
The part 00′′1 of the curve b (see Figure 2) corresponds to the majorant of the phase

portrait of (8) and (14) (it lies below the real curve), and s2min is computed according to

α(|s2min|+ |s2min|β) = M− Ξ. (24)

The value of smin can be found by using numerical methods. smin is the minimal
possible speed of the variable s1(t) growth under conditions (19) and (23), and the interval
t1 − t0 estimation under (23) is

∆1 = t1 − t0 ≤
|s1(t0)|
s2min

, s2
2(t0)− 2vmax|s1(t0)| < 0. (25)

Further, the time interval t2 − t1 is investigated (stages 2–4).
It was mentioned earlier that the time of motion in the first and third quadrants for (8)

and (14) is less than for (15) (for the parts 11′ of the curves a, b see Figure 2). Taking into
account that |s2(t1)| ≤ |s2(t0)|, one can write the interval estimation t′1 − t1 from (15) (see
also [11])

t′1 − t1 ≤
1
α

ln
(

α|s2(t0)|+ M− Ξ
M− Ξ

)
,

|s1(t′1)| ≤
∣∣∣∣−M− Ξ

α2 ln
(

α|s2(t0)|+ M− Ξ
M− Ξ

)
+
|s2(t0)|

α

∣∣∣∣.
(26)

In order to formalize the growth rate of |s2(t)| in the interval t2 − t′1 (stages 3–4, see
Figure 2), the following comparison system is considered (s̃2(t′1) = s2(t′1) = 0)

˙̃s2 = −αs̃2 + α|s2min|β − (M− Ξ)sign(s1),

|s2(t)| ≥ |s̃2(t)| =
[

M− Ξ
α
− |s2min|β

](
1− e−α(t−t′1)

)
, t ≥ t′1,

(27)

where s2min is from (24).
The interval t2 − t′1 can be separated by two subintervals [t∗1 − t

′
1], [t2 − t∗1 ]. In the first

subinterval [t∗1 − t
′
1] |s2(t)| is bounded from below according to (27), and the the minimum

transient time for the worst case is computed with the help of (8) and (14)

|ṡ2(t)| ≤ M− Ξ, t2 − t′1 ≥
√

2|s1(t′1)|
M− Ξ

.

Therefore, one can chose the estimation of the first subinterval and the value of |s2(t∗1)|
concerned with it

t∗1 − t′1 =

√
2|s1(t′1)|
M− Ξ

, |s2(t∗1)| ≥
[

M− Ξ
α
− |s2min|β

]1− e−α

√
2|s1(t

′
1)|

M−Ξ

. (28)

In the second subinterval [t2 − t∗1 ] (see Figure 2)

|ṡ1(t)| ≥ |s2(t∗1)|, t2 − t∗1 ≤
|s1(t′1)|
|s2(t∗1)|

. (29)
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Combining (28) and (29), the following estimation can be written

t2 − t′1 ≤
√

2|s1(t′1)|
M− Ξ

+
|s1(t′1)|[

M− Ξ
α
− |s2min|β

]1− e−α

√
2|s1(t

′
1)|

M−Ξ

 .
(30)

For the second time interval, one can write the inequality taking into account (26) and (30)

∆2 = t2 − t1 ≤
1
α

ln
(

α|s2(t0)|+ M− Ξ
M− Ξ

)
+

√
2|s1(t′1)|
M− Ξ

+

+
|s1(t′1)|[

M− Ξ
α
− |s2min|β

]1− e−α

√
2|s1(t

′
1)|

M−Ξ

 ;

|s1(t′1)| ≤
∣∣∣∣−M− Ξ

α2 ln
(

α|s2(t0)|+ M− Ξ
M− Ξ

)
+
|s2(t0)|

α

∣∣∣∣.

(31)

Situation 2. Similar reasoning can be given for the case s1(t0)s2(t0) > 0 (see Figure 3). In this
scenario, according to (26), the estimate of the time interval t′1 − t0 is

t′1 − t0 ≤
1
α

ln
(

α|s2(t0)|+ M− Ξ
M− Ξ

)
,

|s1(t′1)| ≤ |s1(t0)|+
∣∣∣∣−M− Ξ

α2 ln
(

α|s2(t0)|+ M− Ξ
M− Ξ

)
+
|s2(t0)|

α

∣∣∣∣.
(32)

and the full time interval t2 − t0 can be written from inequalities (30) and (32)

∆2 = t2 − t0 ≤
1
α

ln
(

α|s2(t0)|+ M− Ξ
M− Ξ

)
+

√
2|s1(t′1)|
M− Ξ

+

+
|s1(t′1)|[

M− Ξ
α
− |s2min|β

]1− e−α

√
2|s1(t

′
1)|

M−Ξ

 ;

|s1(t′1)| ≤ |s1(t0)|+
∣∣∣∣−M− Ξ

α2 ln
(

α|s2(t0)|+ M− Ξ
M− Ξ

)
+
|s2(t0)|

α

∣∣∣∣.

(33)
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Figure 3. Phase portraits under initial conditions from the first and third quadrants (Situation 2).

4.4. Special Case of Motion in ε1-Area

Situation 3. The initial conditions are (see Figure 4)

α(|s2(t0) + |s2(t0)|β) < M + Ξ, s1(t0)s2(t0) < 0.

Two scenarios are considered for this situation.
The first one corresponds to the following initial conditions (phase portraits a and b in

Figure 4, stage 2–3 is absent)

α(|s2(t0) + |s2(t0)|β) > M− Ξ,

∆2 = t2 − t0 ≤
2|s1(t0)|

|s2(t0)|+
√

s2
2(t0)− 2vmax|s1(t0)|

), s2
2(t0)− 2vmax|s1(t0)| ≥ 0;

∆2 = t2 − t0 ≤
|s1(t0)|
s2min

, s2
2(t0)− 2vmax|s1(t0)| < 0.

(34)

Figure 4. Phase portraits under initial conditions from the second and fourth quadrants (Situation 3).
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Let us consider in more detail the case when the initial conditions for s2(t) are
α(|s2(t0) + |s2(t0)|β) < M − Ξ (see the c phase portrait in Figure 4). Like it was previ-
ously done in (27), the value of |s2(t)| is bounded from below by function s̃2(t)

˙̃s2 = −αs̃2 + α|s2min|β − (M− Ξ)sign(s1), |s̃2(t0)| = |s2(t0)|,

|s2(t)| ≥ |s̃2(t)| = |s2(t0)|e−α(t−t0) +

[
M− Ξ

α
− |s2min|β

](
1− e−α(t−t0)

)
, t0 ≤ t ≤ t2.

(35)
For the minimal transient time

t∗1 − t0 =

√
2|s1(t0)|
M− Ξ

,

the value |s2(t∗1)| is

|s2(t∗1)| ≥ |s2(t0)|e−α

√
2|s1(t0)|

M−Ξ +

[
M− Ξ

α
− |s2min|β

](
1− e−α

√
2|s1(t0)|

M−Ξ

)
.

Therefore, the time interval t2 − t0 is bounded by

∆2 = t2 − t0 ≤
|s1(t0)|

|s2(t0)|e−α

√
2|s1(t0)|

M−Ξ +
[

M−Ξ
α − |s2min|β

](
1− e−α

√
2|s1(t0)|

M−Ξ

)+

+

√
2|s1(t0)|
M− Ξ

.

(36)

4.5. Estimated Time to Hit ε2-Area

It was shown in [10] that for y2(t) from (15) in the ε1-domain (t ≥ t2) there is an
exponential majorant

|y2(t)| ≤
M + Ξ

α
e−

γ0
2 (t−t2), t ≥ t2, (37)

where

γ0 =
α(M− Ξ)
2(M + Ξ)

ln
(

1
1− 0.533c

)
, c =

M− Ξ− Ξ
α

M + Ξ
.

Using this inequality, the majorant for s2(t) can be written, and the estimation of the
time reaching from ε1-area into some ε2-domain can be computed. To do this, the time
instants are introduced t2s > t2, t2y > t2

s1(t2s) = 0, y1(t2y) = 0.

It was discussed above that |s2(t2s)| ≤ |y2(t2y)|. Inequality (37) was obtained for the
following time interval estimates [11]:

t2y − t2 ≤
2ε1

M− Ξ
.

Let us find an estimate of the time interval t2s − t2 for (8) and (14) and, by entering a
correction factor, write the resulting majorant for s2(t). Denote t′2 (t

′
2 > t2) as the nearest

point in time at which s2(t′2) = 0. Then, the estimation of the time interval t
′
2− t2 and value

|s1(t′2)| computed from (8) and (14) are

|ṡ2(t)| ≥ M− Ξ, t
′
2 − t2 =

ε1

M− Ξ
, |s1(t′2)| ≤

ε2
1

2(M− Ξ)
. (38)
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The bound for the interval t2s − t
′
2 can be calculated from (30) by substitution estima-

tion |s1(t′2)| instead of |s1(t′1)|

t2s − t′2 ≤
ε1

M− Ξ
+

ε2
1

2(M− Ξ)
[

M− Ξ
α
− |s2min|β

](
1− e−α

ε1
M−Ξ

) . (39)

Combining (38) and (39), one can get

t2s − t2 ≤ c(ε1)
ε1

M− Ξ
, (40)

where c(ε1) is

c(ε1) =

2 +
ε1

2
[

M− Ξ
α
− |s2min|β

](
1− e−α

ε1
M−Ξ

)
.

According to (37) and (40) and inequality |s2(t2s)| ≤ |y2(t2y)|, the majorant for |s2(t)|,
t ≥ t2 is

|s2(t)| ≤ ε1eγ(t−t2), γ =
α(M− Ξ)

2c(ε1)(M + Ξ)
ln
(

1
1− 0.533c

)
. (41)

Then, the following estimation is valid for the time interval of reaching |s2(t)| from
the ε1-region in some ε2-neighborhood

∆3 = t3 − t2 ≤
1
γ

ln
ε1

ε2
. (42)

The size of the ε2-area will be chosen in the next subsection.

4.6. Estimation of Motion Time in ε2-Domain

To estimate the time of motion at the last stage, consider the Lyapunov candidate function

V =

(
|s1| −

ξ

M
s1 +

(αs1 + s2)
2

2M

) 1−β
2

, (43)

whose derivative along the trajectories of the system (8) and (14) has the form

V̇ ≤
−α|s1| −

α2

M
|s2|βs1sign(s2)−

α

M
|s2|1+β

(
|s1| −

ξ

M
s1 +

(αs1 + s2)
2

2M

) 1+β
2

, (44)

where α = α

(
1− Ξ

M

)
− Ξ

M
. The trajectories of (8) and (14) are investigated on a half-cycle

of oscillation under the initial conditions

s1(t3) = 0, s2(t3) = −ε2. (45)

The sign of the variable s2(t) is chosen for determinacy. In this case, on the phase
plane, the system motions occur in the third and the second quadrants. Let us introduce
time instant t4 > t3 such that

s1(t4) = 0.
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Let us show that for a certain choice of parameters of (14) and size of ε2-domains, the
derivative of the Lyapunov function (44) is not positive. For this, the fraction numerator
of (44) is considered

z = −α|s1| −
α2

M
|s2|βs1sign(s2)−

α

M
|s2|1+β. (46)

Its partial derivatives with respect to s1 and s2 are

∂z
∂s1

= −α sign(s1)−
α2

M
|s2|βsign(s2),

∂z
∂s2

= −α2βs1|s2|β−1

M
− α(1 + β)

M
|s2|β.

(47)

Let us study function z in the domain bounded by the straight lines

s1 = −cs = const < 0, s1 = 0, s2 = 0, s2 = ε2.

It is well known [19] that the smallest and the largest value of a function of two
variables can be found from its local extremum points and from the study of the function at
the boundaries of the region and in the “corner points”.

It is seen on the boundaries s1 = 0 and s2 = 0 and in the third quadrant (s1 < 0 s2 < 0)
the z is negative.

The behavior of z on the boundary s1 = −cs is studied using the second partial
derivative from (47), and there is a maximum point on the level line s1 = −cs at

s2 =
αcsβ

β + 1
.

The substitution of the obtained extremum value into (46) leads to

z = −cs

(
α− α2

M
|s2|β

(β + 1)

)
.

Taking into account the exponential convergence in the ε1-region, we introduce the
size of the ε2-region, in which z is negative on the level lines s1 = −cs

ε2 =

(
αM(β + 1)

α2

) 1
β

. (48)

On the other hand, in the second quadrant on the bound s2 = ε2, the function z is
negative under condition

z ≤ −|s1|(α−
α2

M
ε

β
2) ≤ 0, ∀ε2 ≤

(
αM
α2

) 1
β

. (49)

Thereforee, comparing (48) and (49), the value of ε2 is chosen according to (49).
Now z is investigated for the local extrema. By equaling the partial derivatives (47) to

zero, the suspicious points for extremums can be found

s1 = −1 + β

αβ

(
αM
α2

) 1
β

, s2 =

(
αM
α2

) 1
β

.
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The test of sufficient conditions

∂2z
∂s2

1
= 0,

∂2z
∂s1∂s2

= −α2β|s2|β−1

M
;

∂2z
∂s2

2
= − (β− 1)α2βs1|s2|β−2

M
− αβ(1 + β)

M
|s2|β−1;∣∣∣∣∣∣∣∣∣

∂2z
∂s2

1

∂2z
∂s1∂s2

∂2z
∂s1∂s2

∂2z
∂s1∂s2

∣∣∣∣∣∣∣∣∣ = −
(

∂2z
∂s1∂s2

)2

< 0,

shows that this is the saddle point.
Finally, the choice of the ε2-area size according to (49) guarantees that the derivative

of the Lyapunov function (44) is negative in the second and third quadrants.
The asymptotic convergence of the variables of the system (8) and (14) to zero implies

the inequality
|s2(t4)| < |s2(t3)| = ε2,

using which the upper bound for (44) can be rewritten in the third quadrant (s1 < 0, s2 < 0):

V̇ ≤ −(2M)
1+β

2

α|s1|+
α2

M
|s2|βs1sign(s2) +

α

M
|s2|1+β

ε2
1+β

≤ −2
β
2
√

2αM
β−1

2
|s2|1+β

ε2
1+β

. (50)

The time interval t4 − t3 is estimated like in (40)

t4 − t3 ≤

2 +
ε2

2
[

M− Ξ
α
− |s2min|β

](
1− e−α

ε2
M−Ξ

)
 ε2

M− Ξ
. (51)

The average value of (50) is in the time interval t ∈ [t3, t4], taking into account that for
the second quadrant V̇ ≤ 0 (t′3 ≤ t ≤ t4)

V̇av =
1

t4 − t3

t4∫
t3

V̇ ≤ −2
β
2
√

2αM
β−1

2

ε
1+β
2 (t4 − t3)

t′3∫
t3

|s2(τ)|1+βdτ. (52)

In the third quadrant, the inequalities are valid

ṡ2 ≤ v, s2(t) ≤ −ε2 + v(t− t3), t3 ≤ t ≤ t3r;

v = α(ε2 + ε
β
2) + M + Ξ ≤ 2(M + Ξ), t3r − t3 =

ε2

v
.

This majorant is chosen to get the minimal value of the integral from the right-hand
side of (52)

t′3∫
t3

|s2(τ)|1+βdτ ≥
t3r∫

t3

| − ε2 + v(τ − t3)|1+βdτ ≤
ε

2+β
2

2(2 + β)(M + Ξ)
. (53)



Mathematics 2022, 10, 2214 16 of 21

The substitution of (51) and (53) into (52) leads to

V̇av ≤ −
2

β
2 αM

β−1
2 (M− Ξ)

√
2(2 + β)(M + Ξ)

2 + ε2

2[M−Ξ
α −|s2min|β]

(
1−e−α

ε2
M−Ξ

)
 . (54)

The upper bound of the convergence time to zero inside the ε2-zone is computed accord-
ing to

∆4 = tr − t3 ≤
V(t3)

|V̇av|
=

(2 + β)(M + Ξ)

2 +
ε2

2
[

M−Ξ
α − |s2min|β

](
1− e−α

ε2
M−Ξ

)
ε

1−β
2

α(M− Ξ)
. (55)

The upper bound for the full convergence time tr − t0 is calculated with the help

of (22), (25), (31), (33), (34), (36), (42) and (55), and it is equal to
4
∑

i=1
∆i for Situation 1 and

4
∑

i=2
∆i for the other situations.

5. Numerical Example

For the numerical example, a one-link robot manipulator with a dynamical actuator is
considered (see Figure 5).

Figure 5. Robot manipulator diagram.

ϕ̇ = ω,

ω̇ =
1
J
(τ −mgl cos ϕ),

τ̇ = −kτ + u + ξ(t),

(56)

where ϕ is the angular position of the robot arm, [rad]; ω is the angular velocity, [rad/s]; τ
is the actuator torque, [N ·m]; u is the control input, [(Ω ·N ·m)/H]; J is the generalized
inertia, [kg ·m2]; m is the mass of the arm of the robot, [kg]; l is the position of the center of
the mass of the robot [m]; the external perturbation is

ξ(t) = 10 sin(5t)− 4− 2 cos(9t) [(Ω ·N ·m)/H]. (57)

It is assumed that ϕ, ω, ω̇, τ are available for the measurement; the parameters
l, k, J, m are known.

The regulation problem is considered in the simulation

lim
t→∞
|ϕ| = 0, ϕ = ϕ− ϕz, ϕz = const > 0.

The goal of the numerical example is to show the steady-state error for the designed
control law (14) and “twisting” algorithm [12,16]. Therefore, the difference between the
two algorithms is introduced during the last design step.
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The following coordinate transformation is introduced as

ω = ω + l1(ϕ− ϕz), τ =
1
J
(τ −mgl cos ϕ)− l2

1 ϕ + l1ω, l1 = const > 0. (58)

The substitution of (58) into (56) leads to

ϕ̇ = −l1 ϕ + ω,

ω̇ = τ,

τ̇ = − k
J

τ +
mgl

J
sin ϕ(−l1 ϕ + ω) + l3

1 ϕ− l2
1ω + l1τ +

u
J
+

ξ(t)
J

,

(59)

According to (57), for the perturbation, the following inequalities can be written

|ξ(t)| ≤ Ξ = 16 [(Ω ·N ·m)/H], |ξ̇(t)| ≤ Ξ = 68 [(Ω ·N ·m)/(H · s)]. (60)

For the numerical simulation of (14), developed in this paper, the following algorithm
is chosen using parameters from Table 1

uc = kτ −mgl sin ϕ(−l1 ϕ + ω)− l3
1 Jϕ + l2

1 Jω− l1 Jτ. (61)

upr = uc − ατ − α|τ|βsign(τ)−Msign(ω), (62)

where parameter α is chosen according to (14)

α

J

(
M
J
− Ξ

J

)
>

Ξ
J
⇒ α > 1.7714.

Table 1. The simulation parameters.

k, (Ω/H) J, (kg ·m2) m, (kg) l, (m) β

10 0.0521 0.338 0.34 0.2

l1, (rad/s) M1, ((Ω ·N ·m)/H) M2, ((Ω ·N ·m)/H) M, ((Ω ·N ·m)/H) α, ((Ω ·m2 · kg)/H)

0.5 36 18 18 5/50

It was shown during the convergence proof that the convergence time depends on the
value of α. The faster motion in the ε1-area is for smaller α. Therefore, the first experiment
is provided with α = 5, and for further simulation, α = 50 is used (see Table 1). The results
of the behavior of the closed-loop system with the proposed algorithm are depicted in
Figure 6 with

V =

(
|ω| − ξ

18
ω +

(5ω + τ)2

36

)0.4

.
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(a)

(c)

(b)

(d)

Figure 6. The simulation results of the closed-loop systems (59), (61) and (62). (a) Plots of ϕ(t) and ϕz;
(b) Plot of ω(t); (c) Phase portrait of ω and τ; (d) Plot of V(t).

The “twisting” control law (11) with parameters from Table 1 is used

utwist = uc −M2sign(τ)−M1sign(ω), (63)

and the relay amplitudes are chosen according to (12)

M1 > Ξ + M2 ⇒ M1 > M2 + 16; M2 > Ξ⇒ M2 > 16.

The simulation result of the “twisting ” algorithm is shown in Figure 7.
There are zoomed areas depicted in Figures 6b and 7b. It is seen that there are real

second-order sliding modes that exist in the sense of Definitions 6 and 7 and Proposition 1. This
corresponds to the well-known “chattering” problem, and its reduction is one of the challenges
concerned with sliding mode theory [1]. For further experiments, the ideal relay element is
changed for some static or dynamic non-ideality. Let us denote the maximum errors of the
variable ω in the steady-state for (11) and (14) as etwist and epr.

Experiment 2. The sign function sign(ω) in (62) and (63) is replaced with the relay
with hysteresis ∆ = const > 0. For numerical simulation, the Euler method is used
with the integration step ts = 10−5 s. The errors in the steady-state are reported in
Table 2.
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(a)

(c)

(b)

(d)

Figure 7. The simulation results of the closed-loop systems (59), (61) and (63). (a) Plots of ϕ(t) and ϕz;
(b) Plot of ω(t); (c) Phase portrait of ω and τ; (d) Plot of τ(t).

Table 2. The simulation results for non-ideal relay type with hysteresis.

∆ 0.1 1× 10−2 10−3 10−4

etwist 0.294 2.95× 10−2 2.91× 10−3 2.936× 10−4

epr 0.1 1× 10−2 1× 10−3 1× 10−4

etwist
epr

2.94 2.95 2.91 2.936

Experiment 3. The sign function sign(ω) in (62) and (63) is changed with the delay
relay sign[ω(t− τd)], τd = const > 0. For the numerical simulation, the Euler method
is used with the integration step ts = 10−5 s. The simulation results are shown in
Table 3.

Table 3. The results of simulation of control laws with delay.

τd 0.01 10−3 10−5 10−5

etwist 0.47 4.02× 10−3 5.05× 10−5 2.44× 10−6

epr 7.3× 10−4 6.3× 10−5 3.025× 10−6 4.1× 10−7

etwist
epr

643.83 63.81 16.69 5.95
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Experiment 4. To demonstrate the dependence of the steady-state control error
on the switching frequency of the relay, the simulation is provided for closed-loop
systems (8), (61) and (62) and (8), (61) and (63) using the Euler method with different
integration steps ts. The simulation results are shown in Table 4.

Table 4. The simulation results with different integration steps.

ts 10−3 10−4 10−5

etwist 8.22× 10−3 7.52× 10−5 8.07× 10−7

epr 1.28× 10−3 1.55× 10−5 2.31× 10−7

etwist
epr

6.422 4.851 3.494

It follows from the numerical experiments (see Tables 2–4) that reducing the amplitude
of the relay M in (62) in comparison to other modern algorithms [12,16] provides smaller
steady-state errors (in some cases, the error ratio can be several orders of magnitude smaller).

From the transient process analysis, it follows that using a higher gain coefficient α
in (62) leads to less regulation error, but the long lag (see Figure 6c) is the price for such
a result. Therefore, the compromise must be made between the sufficiently large α and
transient time duration.

6. Conclusions

In this paper, a new class of controllers based on second-order sliding modes was proposed.
The proof of the finite time convergence to the second-order sliding mode set was made based on
the method of averaging the Lyapunov function and phase portrait analysis. With the designed
control law, stability is ensured at lower relay amplitudes in comparison to the existing second-
order sliding mode algorithms. Essentially, during the proof, the requirement of homogeneity of
differential equations describing a closed control loop system was not imposed. This significantly
expands the class of functions that can be used in the feedback. The further search for new
Lyapunov functions for better transient process analysis is an open problem. Moreover, the
adaptation of the designed algorithm for bounded control inputs needs to be considered more
carefully. Moreover, due to the results, the case for discontinuous disturbances must be considered
carefully because according to the simulation results of the real second-order sliding mode, the
full invariance is not achieved, and the prescribed accuracy can be provided with the designed
control law with less control input bounds.

Author Contributions: Conceptualization, methodology, S.K. and V.A.U.; validation, investigation,
formal analysis S.K., S.A.K. and V.A.U.; writing—original draft preparation, S.K. and S.A.K.; writing—
review and editing, S.A.K. and V.A.U. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Utkin, V.I.; Guldner, J.; Shi, J. Sliding Mode Control in Electromechanical Systems; Tailor and Francis: London, UK, 2009.
2. Edwards, C.; Spurgeon, S. Sliding Mode Control: Theory and Applications; Taylor and Francis: London, UK, 1998.
3. Emelyanov, S.V.; Korovin, S.K.; Levant, L. The new class of second order sliding mode. Math. Model. Comput. Simul. 1990, 2, 89–100.
4. Emelyanov, S.V.; Korovin, S.K.; Levant A. High-order sliding modes in control systems. Comput. Math. Model. 1996, 7, 294–318.

[CrossRef]
5. Levant, A. Sliding order and sliding accuracy in sliding mode control. Int. J. Control 1993, 58, 1247–1263. [CrossRef]

http://doi.org/10.1007/BF01128162
http://dx.doi.org/10.1080/00207179308923053


Mathematics 2022, 10, 2214 21 of 21

6. Levant, A. Higher order sliding modes, differentiation and output feedback control. Int. J. Control 2003, 76, 924–941. [CrossRef]
7. Bartolini, G.; Ferrara, A.; Usai, E. Chattering avoidance by second-order sliding mode control. IEEE Trans. Autom. Control 1998,

43, 241–246. [CrossRef]
8. Bartolini, G.; Ferrara, A.; Levant, A.; Usai, E. On second order sliding mode controllers. In Variable Structure Systems, Sliding Mode

and Nonlinear Control; Lecture Notes in Control and Information Science; Young, K.D., Ozguner, U., Eds.; Springer: London, UK, 1999;
Volume 247, pp. 329–350.

9. Levant, A. Principles of 2-sliding mode design. Automatica 2007, 43, 576–586. [CrossRef]
10. Kochetkov, S.A.; Utkin, V.A. Providing the invariance property on the basis on oscillation modes. Dokl. Math. 2013, 88, 618–623.

[CrossRef]
11. Kochetkov, S.A.; Utkin, V.A. Invariance in systems with unmatched perturbations. Autom. Remote Control 2013, 74, 1097–1127.

[CrossRef]
12. Shtessel, Y.B.; Moreno, J.A.; Fridman, L.M. Twisting sliding mode control with adaptation: Lyapunov design, methodology and

application. Automatica 2017, 75, 229–235. [CrossRef]
13. Chen, B.; Geng, Y. Super twisting controller for on-orbit servicing to non-cooperative target. Chin. J. Aeronaut. 2015, 28, 285–293.

[CrossRef]
14. Chen, B. ; Geng, Y. Modified super twisting controller for servicing to uncontrolled spacecraft. J. Syst. Eng. Electron. 2015, 26, 334–345.

[CrossRef]
15. González-Hernández, I.; Salazar, S.; Lozano, R.; Ramírez-Ayala, O. Real-Time Improvement of a Trajectory-Tracking Control

Based on Super-Twisting Algorithm for a Quadrotor Aircraft. Drones 2022, 6, 36. [CrossRef]
16. Edwards, C.; Shtessel, Y. Adaptive continuous higher order sliding mode control. Automatica 2016, 65, 183–190. [CrossRef]
17. Mendoza-Avila, J.; Moreno, J.A.; Fridman, L.M. Continuous Twisting Algorithm for Third Order Systems. IEEE Trans. Autom.

Control 2020, 65, 2812–2825. [CrossRef]
18. Mofid, O.; Mobayen, S.; Zhang, C.; Esakki, B. Desired tracking of delayed quadrotor UAV under model uncertainty and wind

disturbance using adaptive super-twisting terminal sliding mode control. ISA Trans. 2022, 123, 455–471. [CrossRef] [PubMed]
19. Fikhtengol’ts, G.M. The Fundamentals of Mathematical Analysis: International Series of Monographs in Pure and Applied Mathematics;

Pergamon Press: Oxford, UK, 2016; Volume 72.
20. Filippov, A.F. Differential Equations with Discontinuous Right-Hand Sides; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988.
21. Orlov, Y. Finite time stability and robust control synthesis of uncertain switched systems. SIAM J. Control Optim. 2005, 43, 1253–1271.

[CrossRef]
22. Bhat, S.P.; Bernstein, D.S. Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans.

Autom. Control 1998, 43, 678–682. [CrossRef]
23. Hahn, W. Theory and Application of Liapunov’s Direct Method; Prentice-Hall: Englewood Cliffs, NJ, USA, 1963.
24. Ryan, E.P. An integral invariance principle for differential inclusions with applications in adaptive control. SIAM J. Control. Optim.

1998, 36, 960–980. [CrossRef]
25. Orlov, Y. Extended invariance principle and other analysis tools for variable structure systems. In Advances in Variable Structure

and Sliding Mode Control; Edwards, C., Colet, E.F., Fridman, L., Eds.; Springer: New York, NY, USA, 2006; pp. 3–22.
26. Moreno, J.; Osorio, M. Strict Lyapunov functions for the super-twisting algorithm. IEEE Trans. Autom. Control 2012, 57, 1035–1040.

[CrossRef]
27. Zubov, V.I. Methods of A.M. Lyapunov and Their Application; Noordhoff Ltd.: Groningen, The Netherlands, 1964.
28. Zubov, V.I. Analytic construction of Lyapunov functions. Dokl. Math. 1994, 49, 414–417.
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