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Abstract: This study examines n-balls, n-simplices, and n-orthoplices in real dimensions using novel
recurrence relations that remove the indefiniteness present in known formulas. They show that in
the negative, integer dimensions, the volumes of n-balls are zero if n is even, positive if n = −4k − 1,
and negative if n = −4k − 3, for natural k. The volumes and surfaces of n-cubes inscribed in n-balls
in negative dimensions are complex, wherein for negative, integer dimensions they are associated
with integral powers of the imaginary unit. The relations are continuous for n ∈ R and show that the
constant of π is absent for 0 ≤ n < 2. For n < −1, self-dual n-simplices are undefined in the negative,
integer dimensions, and their volumes and surfaces are imaginary in the negative, fractional ones
and divergent with decreasing n. In the negative, integer dimensions, n-orthoplices reduce to the
empty set, and their real volumes and imaginary surfaces are divergent in negative, fractional ones
with decreasing n. Out of three regular, convex polytopes present in all natural dimensions, only
n-orthoplices and n-cubes (and n-balls) are defined in the negative, integer dimensions.

Keywords: regular convex polytopes; negative dimensions; fractal dimensions; complex dimensions
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1. Introduction

The notion of dimension n of a set has various definitions [1,2]. Natural dimensions
define a minimum number of independent parameters (coordinates) needed to specify
a point within Euclidean space Rn, where n = −1 is the dimension of the empty set, the
void, having zero volume and undefined surface. Negatively dimensional spaces can be
defined by analytic continuations from positive dimensions [3]. A spectrum, a topological
generalization of the notion of space, allows for negative dimensions [2,4–6] that refer to
densities, rather than to sizes as in the natural ones.

Fractional (or fractal) dimensions extend the notion of dimension to real, including
negative [7], numbers. Negative dimensions are considered in probabilistic fractal mea-
sures [8]. Fractal dimension and lacunarity [9,10] allow for an investigation of the fractal
nature of prime sequences [11]. Fractal dimensions have been verified to be consistent with
experimental observations and allow for the analysis of the transport properties, such as
permeability, thermal dispersion, and conductivities (both thermal and electrical) in multi-
phase fractal media [12]. The probability models for pore distribution and for permeability
of porous media can also be expressed as a function of fractal dimensions [13]. Interestingly,
the dimension of the boundary of the Mandelbrot set equals 2 [14], and the generalized
Mandelbrot set in higher-dimensional hypercomplex number spaces, when the power α of
the iterated complex variable z tends to infinity, is convergent to the unit (α − 1)-sphere [15].

Complex dimensions can also be considered [2]. Furthermore, geometric concepts
(such as lengths, volumes, and surfaces) can be related to negative, fractional, and complex
numbers. Complex geodesic paths emerge in the presence of black hole singularities [16]
and when studying entropic dynamics on curved statistical manifolds [17]. Fractional
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derivatives of complex functions could be able to describe different physical phenom-
ena [18].

In R2, there is a countably infinite number of regular, convex polygons; in R3, there
are five regular, convex Platonic solids; in R4, there are six regular, convex polytopes.
For n > 4, there are only three: self-dual n-simplex and n-cube dual to n-orthoplex [19].
Furthermore, Rn is also equipped with a perfectly regular, convex n-ball. The properties
of these three regular, convex polytopes in natural dimensions are well known [20–22].
Fractal dimensions of hyperfractals based on these polytopes in natural dimensions were
disclosed in [23].

This study examines n-balls, regular n-simplices, and n-orthoplices in real dimensions
using novel recurrence relations that remove the indefiniteness present in known formulas.

The paper is structured as follows. Section 2 presents known formulas for volumes
and surfaces of n-balls, regular n-simplices, and n-orthoplices in natural dimensions. Sec-
tion 3 defines novel recurrence relations for these geometric objects in real dimensions
and presents their algebraic forms in integer dimensions. Section 4 refers to n-balls cir-
cumscribed about and inscribed in n-cubes in real dimensions. Section 5 summarizes the
findings of this paper. Their possible applications are discussed in Section 6.

2. Known Formulas

The volume of an n-ball (B) is known to be

Vn(R)B =
πn/2

Γ(n/2 + 1)
Rn (1)

where Γ is the Euler’s gamma function and R is the n-ball radius. This becomes

V2k(R)B =
πkR2k

k!
(2)

if n is even (n = 2k, k ∈ N0) and

V2k−1(R)B =
22kπk−1k!

(2k)!
R2k−1 (3)

if n is odd (n = 2k− 1, k ∈ N). Expressed in terms of n-ball diameter (1) is the rescaling factor
between the n-dimensional Lebesgue measure and Hausdorff measure for n ∈ R+ [2,24].

Another known [21] recurrence relation expresses the volume of an n-ball in terms of
the volume of an (n − 2)-ball of the same radius

Vn(R)B =
2πR2

n
Vn−2(R)B (4)

where V0(R)B = 1 and V1(R)B = 2R. It is also known [21] that the (n− 1)-dimensional surface
of an n-ball can be expressed as

Sn(R)B =
n
R

Vn(R)B (5)

Furthermore, it is known [25] that the sequence

fn =
2π

n
fn−2 (6)

satisfies the same recursion formula as (4) for unit radius.
The volume of a regular n-simplex (S) is known [20,26] to be

Vn(A)S =

√
n + 1

n!
√

2n
An (7)
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where A is the edge length. A regular n-simplex has n + 1 (n− 1)-facets [21], so its surface is

Sn(A)S = (n + 1)Vn−1(A)S (8)

The volume of n-orthoplex (O) is known [22] to be

Vn(A)O =

√
2n

n!
An (9)

As n-orthoplex has 2n facets [21], being regular (n − 1)-simplices, its surface is

Sn(A)O = 2nVn−1(A)S (10)

Formulas (1)–(3) and (7)–(10) are undefined in negative dimensions since the factorial
is defined only for non-negative integers, while the gamma function is undefined for
non-positive integers. Relations (4)–(6) are undefined if n = 0.

3. Novel Recurrence Relations

A radius recurrence relation
fn

.
=

2
n

fn−2, (11)

for n ∈ N0, where f 0 := 1 and f 1 := 2, allows for expressing the volumes and, using (5),
surfaces of n-balls as

Vn(R)B
.
= fnπbn/2cRn, (12)

Sn(R)B
.
= n fnπbn/2cRn−1 =

d
dR

Vn(R)B, (13)

where “bxc” denotes the floor function giving the greatest integer less than or equal to its
argument x.

Proof. If n = 2k for k ∈ N0, then by equating (2) with (12)

πkR2k

k!
= f2kπkR2k ⇔ f2k =

1
k!

=
1

(n/2)!
. (14)

Then, with (11), e.g., for k = 3

f6 = 2
6 f4, f4 = 2

4 f2, f2 = 2
2 f0

f6 = 2
6

2
4

2
2 1 = 23

6!! ⇔ f2k =
2k

(2k)!! =
2k

2kk!
.

For even n ≥ 0, n!! = 2kk!
If n = 2k − 1, k ∈ N, then by equating (3) with (12), we have

22kπk−1k!
(2k)! R2k−1 = f2k−1πb(2k−1)/2cR2k−1

22kπk−1k!
(2k)! = f2k−1πk−1 ⇔

f2k−1 = 22kk!
(2k)! =

22k−1(k−1)!
(2k−1)! =

2n( n−1
2 )!

n!

(15)

Then, with (11), e.g., for k = 4

f7 = 2
7 f5, f5 = 2

5 f3, f3 = 2
3 f1, f1 = 2

1 f−1

f7 = 2
7

2
5

2
3

2
1 1 = 24

7!! ⇔ f2k−1 = 2k

(2k−1)!!
.

For odd n ≥ 1, n!! = (2k − 1)!/(2k−1(k − 1)!), which completes the proof. �

The sequence (11) allows for presenting an n-ball’s volume and surface recurrence
relations (12), (13) as a product of the rational factor fn or nfn, the irrational factor πˆbn/2c,
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and the metric (radius) factor Rn or Rn−1. The relation (11) can be extended into negative
dimensions as

fn =
n + 2

2
fn+2 (16)

solving (11) for fn−2 and assigning new n ∈ Z as old n − 2. Thus, it is sufficient to define
f−1 := 1, f 0 := 1 (for the empty set and point dimension) to initiate (11) and (16).

The same assignment of new n ∈ Z as old n − 2 can be made in (4) solved for
Vn−2(R)B, yielding

Vn(R)B =
n + 2
2πR2 Vn+2(R)B (17)

which enables us to avoid the indefiniteness of factorial and gamma function in negative
dimensions present in Formulas (1)–(3) and removing the singularity present in relation (4).

If n ≤ −3 and odd

fn = in+1 2n+2(−n− 2)!(−n−3
2
)
!

(18)

Proof. Set n = −2k − 1, k ∈ N. Then, with (16), e.g., for k = 3

f−7 = − 5
2 f−5, f−5 = − 3

2 f−3, f−3 = − 1
2 f−1

f−7 = (−1)3 5
2

3
2

1
2 1 = (−1)3 5!!

23 ⇔
f−2k−1 = (−1)k(2k−1)!!

2k = (−1)k(2k−1)!
22k−1(k−1)!

Also

(−1)k = (−1)(−n−1)/2 =
[
(−1)

1
2
]−n−1

= i−(n+1)

= −in+1 = (−1)n+1in+1 = in+1

since n is odd. �

The factorial can be expressed by the gamma function. Thus, for n = 2k, k ∈ N,
(14) becomes

f2k =
1

(n/2)!
=

1
Γ(n/2 + 1)

(19)

while for n = 2k − 1, k ∈ N, (15) becomes

f2k−1 =
2n

Γ(n + 1)
n!
√

π

2n(n/2)!
=

√
π

Γ(n/2 + 1)
(20)

the forms which are, similarly to the gamma function, defined for all complex numbers
except the non-positive, even integers.

The radius recurrence relation fn (16) is listed in Table 1 for n ∈ Z, and shown in
Figure 1 along with the even algebraic form of fn (19), odd algebraic form of fn, (20) and the
πˆbn/2c factor for n ∈ C (for complex numbers ba + bic = bac + bbci). As shown, (19) and
(20) bound the relation (16) for Re(n). Volumes and surfaces of n-balls calculated with (12)
and (13) are shown in Figure 2.
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Table 1. Volumes and surfaces of n-balls for −11 ≤ n ≤ 9.

n fn gn Vn (R = 1)B Sn (R = 1)B Vn (D = 1)B Sn (D = 1)B

−11 −945/32 −60,480 −0.031 0.338 −62.909 1383.997

−9 105/16 3360 0.021 −0.193 10.980 −197.634

−7 −15/8 −240 −0.019 0.135 −2.464 34.494

−5 3/4 24 0.024 −0.121 0.774 −7.7404

−3 −1/2 −4 −0.051 0.152 −0.405 2.432

−1 1 2 0.318 −0.318 0.637 −1.273

0 1 1 1 0 1 0

1 2/1 1 2 2 1 2

2 1/1 1/4 3.142 6.283 0.785 3.142

3 4/3 1/6 4.189 12.566 0.524 3.142

4 1
2 1/32 4.935 19.739 0.308 2.467

5 8/15 1/60 5.264 26.319 0.164 1.645

6 1/6 1/384 5.168 31.006 0.081 0.969

7 16/105 1/840 4.725 33.073 0.037 0.517

8 1/24 1/6144 4.059 32.470 0.016 0.254

9 32/945 1/15,120 3.299 29.687 0.006 0.116
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Figure 1. n-ball radius recurrence relation fn for n ∈ Z (blue); even (yellow) and odd (black) algebraic
forms of fn, and the πˆbn/2c factor (green); for −7 ≤ n ≤ 7, n ∈ C.
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Figure 2. Graphs of volumes (V) and surface areas (S) of n-balls of unit radius for n = −25, −24,
. . . , 15.

Furthermore, for n ∈ Z

fn f−n−2 = Re
(

in+1
)
= cos

(π

2
(n + 1)

)
(21)

where
in+1 = eiπ(n+1)/2

= cos
(

π
2 (n + 1)

)
+ i sin

(
π
2 (n + 1)

) (22)

Proof. If n = 2k, then

fn f−n−2 = f2k f−2k−2 = 0 = Re
(

in+1
)

since fn = 0 for negative, even n.
If n = 2k − 1 then, using (15) and (18)

fn f−n−2 = f2k−1 f−2k−1

= 22k−1(k−1)!
(2k−1)! (−1)k (2k−1)!

22k−1(k−1)!

= (−1)k = (−1)(n+1)/2 = in+1 = Re
(
in+1)

since n is odd. �

Furthermore, for n ∈ R, k ∈ Z

πbn/2cπb(−n−2)/2c =

{
π−1 n = 2k
π−2 n 6= 2k

(23)

Proof. If n = 2k, then πkπ−k−1 = π−1. Otherwise, set n = 2k ± ε, where 0 < ε ≤ 1, ε ∈ R. For
n = 2k + ε

πbk+ε/2cπb−k−ε/2−1c = πkπ−k−2 = π−2
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while for n = 2k − ε

πbk−ε/2cπb−k+ε/2−1c = πk−1π−k−1 = π−2

�

Furthermore, the following holds for n-balls surfaces (13)

SnBS(2−n)B = n(2− n) fn f2−n = 4Re
(

in−1
)

(24)

for n ∈ Z, where
in−1 = eiπ(n−1)/2

= cos
(

π
2 (n− 1)

)
+ i sin

(
π
2 (n− 1)

)
= −in+1 (25)

Proof. If n = 2k then

S(2k)BS(2−2k)B
= 2k f2kπkR2k−1(2− 2k) f2−2kπ1−kR1−2k

= 4k(1− k) f2k f2−2kπ = 0 = 4Re
(
in−1) ,

for k = {0, 1} and for the remaining k’s, as f−2k = 0 for k ∈ N. Also Re(in−1) = 0 and
Im(in−1) = ±1, as n is even.

If n = 2k − 1 then

S(2k−1)BS(3−2k)B
= (2k− 1)(3− 2k) f2k−1 f3−2kπb(2k−1)/2cπb(3−2k)/2c

= (2k− 1)(3− 2k) f2k−1 f3−2kπk−1π−k+1

= (2k− 1)(3− 2k) f2k−1 f3−2k

.

For k = 1, using (15)
S(1)BS(1)B = f 2

1 = 4 = 4Re
(

i0
)

wherein for the remaining k’s, we shall use both (15) and (18) (and f−1 = 1). For instance,
for k = {0, 2}

S(3)BS(−1)B = 3(−1) f3 f−1 = −3
4
3

1 = −4 = 4Re
(

i2
)

,

and further, for k ≤ −1 or k ≥ 3

S(2k−1)BS(3−2k)B

= (2k− 1)(3− 2k) 22k−1(k−1)!
(2k−1)!

(−1)k−2(2k−5)!
22k−5(k−3)!

= (2k− 1)(3− 2k)(−1)k−224 (k−1)!(2k−5)!
(2k−1)!(k−3)!

= 4(−1)k−1 = 4in−1 = 4Re
(
in−1)

,

since n is odd and thus, n − 1 is even. �

Furthermore, for n ∈ R, k ∈ Z

πbn/2cπb(2−n)/2c =

{
π n = 2k
1 n 6= 2k

(26)

Proof. If n = 2k, then πkπ1−k = π. Otherwise, set n = 2k ± ε, where 0 < ε ≤ 1, ε ∈ R. For
n = 2k + ε

πbk+ε/2cπb1−k−ε/2c = πkπ−k = π0 = 1
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while for n = 2k − ε

πbk−ε/2cπb1−k+ε/2c = πk−1π−k+1 = π0 = 1

�

Moreover, the following holds for n-ball volumes (12)

nπ

2
VnBV(−n)B = Re

(
in−1

)
(27)

for n ∈ Z.

Proof. If n = 2k, k ∈ N, then

V(2k)BV(−2k)B = f2kπkR2k f−2kπ−kR−2k

= f2k f−2k = 0 = 2
2kπ Re

(
i2k−1

)
If n = 2k − 1, k ∈ N, then

V(2k−1)BV(1−2k)B = f2k−1πk−1 f1−2kπ−k = f2k−1 f1−2kπ−1.

For k = 1, using (15) and f−1 = 1

V(1)BV(−1)B = f1 f−1π−1 =
2

1π
=

2
1π

Re
(

i0
)

.

For the remaining k’s, we shall use both (15) and (18)

V(2k−1)BV(−2k+1)B = f2k−1 f1−2kπ−1

22k−1(k−1)!
(2k−1)!

(−1)k−1(2k−3)!
22k−3(k−2)!

π−1

= (−1)k−1 2
nπ = 2

nπ in−1 = 2
nπ Re

(
in−1) ,

since n is odd and, thus n − 1 is even. �

Furthermore, for n ∈ R, k ∈ Z

πbn/2cπb−n/2c =

{
1 n = 2k

π−1 n 6= 2k
(28)

Proof. If n = 2k, then πkπ−k = 1. Otherwise, set n = 2k ± ε, where 0 < ε ≤ 1, ε ∈ R. For
n = 2k + ε

πbk+ε/2cπb−k−ε/2c = πkπ−k−1 = π−1

while for n = 2k − ε

πbk−ε/2cπb−k+ε/2c = πk−1π−k = π−1

�

One can also express the volumes and, using (5), surfaces of n-balls in terms of their
diameters D as

Vn(D)B
.
= gnπbn/2cDn (29)

Sn(D)B
.
= 2ngnπbn/2cDn−1 = 2

d
dD

Vn(D)B (30)
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defining diameter recurrence relation

gn
.
=

1
2n

gn−2 (31)

having inverse
gn = 2(n + 2)gn+2 (32)

for n ∈ Z, where g−1 := 2 and g0 := 1. The diameter recurrence relation (31), (32) is related
to radius recurrence relation (11), (16) by

fn = 2ngn (33)

Proof. By equating (12) with (29), we have

fnπbn/2cRn = gnπbn/2c2nRn

which completes the proof. �

Furthermore (proof follows from (21) and (33))

gng−n−2 = 4Re
(

in+1
)

(34)

The diameter recurrence relation gn (32) is listed in Table 1 for n ∈ Z, and shown in
Figure 3 along with the even algebraic form of gn ((19) with (33)) the odd algebraic form
of gn ((20) with (33)), and the πˆbn/2c factor for n ∈ C. Volumes and surfaces of n-balls
calculated with relations (29) and (30) are shown in Figure 4.
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Figure 4. Graphs of volumes (V) and surface areas (S) of n-balls of unit diameter for n = −10, −9,
. . . , 8.

In the case of regular n-simplices, Equation (7) can be written as a recurrence relation,
with V0(A)S := 1

Vn(A)S
.
= AVn−1(A)S

√
n + 1
2n3 (35)

Proof. By equating (7) with (35), we have

√
n+1

n!2n/2 An = AVn−1(A)S

√
n+1

21/2n3/2

Vn−1(A)S = 2(1−n)/2n3/2

n! An−1

Vn(A)S = (n+1)3/2

2n/2(n+1)!
An =

√
n+1

n!
√

2n An

which recovers (7) and completes the proof. �
The relation (35) removes the indefiniteness of the factorial for n < 0 and singularity

for n = −1 present in (7). Solving (35) for Vn−1 and assigning new n ∈ Z as old n − 1, yields

Vn(A)S =
Vn+1(A)

A

√
2(n + 1)3

n + 2
(36)

which shows that n-simplices are indefinite only for integer n < −1, as shown in Figure 5.
The volume of an empty or void (−1)-simplex is V−1(A)S = 0, while its surface S−1(A)S (8)
is undefined, as for the void itself.
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Figure 5. Graphs of volumes (V) and surface areas (S) of regular n-simplices of unit edge length for
n = −1, . . . , 7.

In the case of n-orthoplices, Equation (9) can be written as a recurrence relation

Vn(A)O
.
= AVn−1(A)O

√
2

n
(37)

with V0(A)O := 1.

Proof. By equating (9) with (37), we have
√

2n

n! An = AVn−1(A)O

√
2

n
Vn−1(A)O = n

n! An−12(n−1)/2

Vn(A)O = n+1
(n+1)! An2n/2 =

√
2n

n! An

which recovers (9) and completes the proof. �

The relation (37) removes the indefiniteness of the factorial for n < 0 present in (9).
Solving (37) for Vn−1 and assigning new n ∈ Z as old n − 1, yields

Vn(A)O = Vn+1(A)O
n + 1
A
√

2
(38)

which removes singularity from (37) and is zero for integer n ≤ −1, showing that for
negative, integer dimensions, the volumes of n-orthoplices are zero, while their surfaces
(10) are undefined, as shown in Figure 6.
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Figure 6. Graphs of volumes (V) and surface areas (S) of n-orthoplices of unit edge length for
n = −1, . . . , 7.

4. n-Balls Circumscribed about and Inscribed in n-Cubes

The edge length ACC of an n-cube circumscribed (CC) about an n-ball corresponds to
the diameter D of this n-ball. Thus, the volume of this cube is simply Vn(D)CC = Dn, and
the surface is Sn(D)CC = 2nDn−1.

However, the edge length ACI of an n-cube inscribed (CI) inside an n-ball of diameter
D is ACI = D/

√
n, which is singular for n = 0 and complex for n < 0. Thus, the volume of an

n-cube inscribed in an n-ball is

Vn(D)CI = An
CI = Dnn−n/2 (39)

and the surface is
Sn(D)CI = 2nAn−1

CI = 2Dn−1n(3−n)/2

= 2Vn(D)CI D−1n
√

n
(40)

The volumes (39) and surfaces (40) are real if n ≥ 0 (by convention 00 := 1), and
complex if n < 0, n ∈ R. To examine reflection relations we set m = −n in (39) and (40). This
yields volume

Vm(D)CI = imD−mmm/2 (41)

and surface
Sm(D)CI = −2im+1D−(m+1)m(3+m)/2

= −2iVm(D)CI D−1m
√

m
(42)

which are complex for all m ∈ R.
Volume formulas (39) and (41) correspond to each other for n≤ 0, n ∈ R and for n = 2k,

k ∈ Z.

Proof. By equating (39) with (41), we have

Dnn−n/2 = imD−mmm/2
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Setting n = −m, that is, reflecting (39) around zero, while leaving (41) intact, yields

D−m(−m)m/2 = imD−mmm/2[
(−1)1/2

]m
mm/2 = immm/2 ⇔ im = im ∀m ∈ R

On the other hand, setting m = −n

Dnn−n/2 = i−nDn(−n)−n/2

n−n/2 = i−n
[
(−1)1/2

]−n
n−n/2

i2n = 1⇔ n = 2k, k ∈ Z

�

Thus, the volumes (39), (41) are real if n is negative and even and imaginary if n is
negative and odd.

Surface Formulas (40) and (42) correspond to each other for n ≤ 0, n ∈ R, and for
n = 2k − 1, k ∈ Z.

Proof. By equating (40) with (42), we have

2Dn−1n(3−n)/2 = −2im+1D−(m+1)m(3+m)/2

Setting n = −m yields

2D−m−1(−m)(3+m)/2 = −2im+1D−m−1m(3+m)/2[
(−1)1/2

]3+m
m(3+m)/2 = −im+1m(3+m)/2

i3+m = −i1+m ⇔ i1+m = i1+m ∀m ∈ R

On the other hand, setting m = −n, that is, reflecting (42) around zero, while leaving
(40) intact, yields

2Dn−1n(3−n)/2 = −2i1−nDn−1(−n)(3−n)/2

n(3−n)/2 = −i1−n
[
(−1)1/2

]3−n
n(3−n)/2

1 = −i1−ni3−n ⇔ i−2n = −1⇔ n = 2k− 1, k ∈ Z

�

Thus, the surfaces (40), (42) are real if n is negative and odd and imaginary if n is
negative and even.

Volumes and surfaces of n-cubes given by Formulas (39)–(42) are shown in Figure 7
and listed in Table 2. This peculiar mixture of integer, rational, and irrational coefficients
requires further research.
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Figure 7. Graphs of volumes ((a,b), pink) and surfaces ((c,d), blue) of unit radius n-balls, along with
volumes and surface areas of n-cubes circumscribed about (yellow) and inscribed in (green, black)
these n-balls.

Table 2. Volumes and surfaces of n-cubes inscribed in n-balls of unit radius and diameter
for −8 ≤ n ≤ 3 (rational fraction approximation using Matlab rats function).

n Vn (R = 1)CI Sn (R = 1)CI Vn (D = 1)CI Sn (D = 1)CI

−8 16 −362.0387i 4096 −185,363.8i

−7 −7.0898i −16,807/128 −907.4927i −33,614

−6 −27/8 49.6022i −216 6349.077i

−5 1.7469i 625/32 55.9017i 1250

−4 1 −8i 16 −256i

−3 −0.6495i −27/8 −5.1961i −54

−2 −1/2 i
√

2 −2 8i
√

2

−1 i/2 1/2 i 2

0 1 0 1 0

1 2 2 1 2

2 2 4
√

2 1
2 2

√
2

3 8 × 3−3/2 8 3−3/2 2

The ratio of the volume or surface of an n-ball to the volume or surface of an n-cube
circumscribing this n-ball can be expressed using diameter recurrence relations (29), (30) as

VnB
VnCC

=
SnB

SnCC
= gnπbn/2c (43)

and similarly, the ratio of volume and surface of an n-ball to volume (39) and surface (40)
of an n-cube inscribed in this n-ball can be expressed as

VnB
VnCI

= gnπbn/2cnn/2 (44)
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SnB
SnCI

= gnπbn/2cn(n−1)/2 =
VnB

VnCI
√

n
(45)

We conjecture that for 0 < n < 1 volumes of n-cubes inscribed inside n-balls are larger
than volumes of those n-balls.

Furthermore, the following holds for (39) and (41) with m = n

Vn(D)CIVm(D)CI
m=n
= Dnn−n/2inD−nnn/2 = in (46)

5. Summary

The novel radius recurrence relation fn (11) enables us to express the known recurrence
relation (4) for n-ball volume and the known relation (5) for n-ball surface as a function of
πˆbn/2c, showing that the value of π as n-ball volume and surface irrational factor appears
only for n < 0 and n ≥ 2 (πˆbn/2c = 1 for 0 ≤ n < 2).

Sequence (16), inverse to sequence (11), enables the examination of n-ball volumes and
surfaces in the negative dimensions. Since f−2 = 0, in negative, even dimensions, n-balls
have zero (void-like) volumes and zero (point-like) surfaces and become divergent with
decreasing n. Curiously, the double factorial n!! can be extended to negative, odd integers
by inverting its recurrence relation and is not defined for negative even integers.

For positive dimensions, n = 5 (the largest unit radius n-ball volume) is the largest odd
n where fn > fn−1, while n = 7 (the largest unit radius n-ball surface) is the smallest odd n
where fn < fn−1. The diameter recurrence relation gn (32) is related with (16) by fn = 2ngn.

Algebraic forms (14), (15), (18)–(20) of the relation (16) were presented for even and
odd dimensions. Algebraic forms (19), (20) for n ∈ C, expressed in terms of the gamma
function, bound the relation (16) for n ∈ Z.

Constant (21) of products of pairs of these sequence values for integer n and −n−2
reveal symmetry that is the additive inverse of the symmetry {n, n−2} or equivalence of
an ordinary (n − 2)-dimensional space to the n-dimensional superspace [3]. Furthermore
sequence (16) reveals symmetry {n, 2 − n} (24) and {n, −n} (27), respectively, between n-ball
surfaces and volumes in integer dimensions.

Sequence (16) comprises rational numbers, while all πˆbn/2c (for n < 0 and n ≥ 2) are
most likely transcendental numbers.

It was shown that the known formula (7) for the volume of a regular n-simplex can
be expressed as a recurrence relation (35) to remove the indefiniteness of the factorial, and
further expressed as (36) to remove singularity for n = 0. Thus, n-simplices are undefined
in the negative, integer dimensions if n < −1. This is congruent with the fact that every
simplicial n-manifold inherits a natural topology from Euclidean space Rn [27], and by
researching Euclidean space Rn as a simplicial n-manifold, topological (metric-independent)
and geometrical (metric-dependent) content of the modeled quantities are disentangled [27].
Therefore, the lack of n-simplices in the negative, integer dimensions excludes the notion of
negatively dimensional Euclidean space Rn for n < −1. Volumes and surfaces of regular
n-simplices are imaginary in negative, fractional dimensions for n < −1 (surfaces also for
n < 0) and are divergent with decreasing n.

It was shown that the known formula (9) for the volume of n-orthoplex can be ex-
pressed as a recurrence relation (37) to remove indefiniteness of factorial and further
expressed as (38) to remove singularity for n = 0. Thus, the volumes of n-orthoplices are
zero in the negative, integer dimensions and divergent in the negative, fractional ones with
decreasing n. Moreover, the surfaces of n-orthoplices are undefined for integer n < −1
(n-orthoplex has facets that are regular simplices of the previous dimension (10), and these
are undefined for integer n ≤ −1), imaginary for fractional n < 0, and also divergent with
decreasing n. Peculiarly, in 1 dimension the volume V1(A)O = A

√
2 not A, as in the case of

1-simplex and 1-cube.
Relations (4), (5), (8), (10), (12), (13), (17), (19)–(22), (24), (25), (27), (29), (30), (34)–(46)

are continuous on their domains of definitions for n ∈ R. The starting points for fractional
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dimensions can be provided, e.g., using spline interpolation between two (or three in the
case of n-balls) subsequent integer dimensions.

In the negative dimensions, n-simplices, n-orthoplices, and n-balls have different prop-
erties than their positively dimensional counterparts, with the n-cube being an exception.
The volume Vn(A)C = An and surface Sn(A)C = 2nAn−1 = 2dVn(A)C/dA of an n-cube are
defined for any n ∈ R, and are real if A ∈ R. Interestingly, in R3, the fractal dimension of
the Sierpiński 3-simplex is 2, of the Sierpiński 3-orthoplex is 2.585, while only the Sierpiński
3-cube retains its regular dimension [28].

Out of three regular, convex polytopes (and n-balls) present in all non-negative di-
mensions [19], only n-cubes, n-orthoplices, and n-balls are defined in the negative, integer
dimensions, with n-cubes being dual to the void. This should not be surprising. There are
no 0-dimensional points in negative dimensions.

6. Discussion

Once upon a time, there was a (−1)-dimensional void of volume zero and undefined
surface. Then, a 0-dimensional point of unit volume and null surface somehow appeared
in this void. This first point is now called the primordial Big Bang singularity. The
existence of the first point implied a countably infinite number of other labeled points
forming various relations among each other. And thus, the void expanded into real and
imaginary dimensionalities.

The presented recurrence relations remove indefiniteness and singularities present in
known formulas, revealing the properties of the relevant geometric objects in negative and
real dimensions.

The results of this study could perhaps be applied in linguistic statistics, where the
dimension in the distribution for frequency dictionaries is chosen to be negative [4], and
in fog computing, where n-simplex is related to a full mesh pattern, n-orthoplex is linked
to a quasi-full mesh structure, and n-cube is referred to as a certain type of partial mesh
layout [29].

Another possible application of the results of this study could be molecular physics
and crystallography. There are countably infinitely many spherical harmonics, but nature
uses only the first four as subshells of s, p, d, and f electron shells that can hold 2, 6, 10, and
14 electrons, respectively. Further subshells are not populated in the ground states of all the
observed elements. The first element that would require a g subshell (18 electrons) would
have an atomic number of 121, while the heaviest element synthesized is Oganesson, with
an atomic number of 118 and a half-life of about 1/1000 of a second. Perhaps this is linked
with properties of the unit radius n-balls in negative dimensions, as illustrated in Figure 2.
The “flattening” occurring between dimensions −14 and −2 is intriguing. Dimensions −2,
−6, −10, and −14 are bounded from both sides, with −14, which would represent the f
subshell, already at the onset of divergence. In nature, the f subshell occurs essentially only
in lanthanides and actinides. A simple and approximate formula for a spherical nuclear
radius that generates very precise results in quantum and nuclear techniques is R = r0A1/3,
where A is the atomic number and r0 = 1.25 ± 0.2 fm.
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