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Abstract: Gray has presented the invariant orthogonal irreducible decomposition of the space of
all covariant tensors of rank 3, obeying only the identities of the gradient of the Ricci tensor. This
decomposition introduced the seven classes of Einstein-like manifolds, the Ricci tensors of which
fulfill the defining condition of each subspace. The large-scale geometry of such manifolds has been
studied by many geometers using the classical Bochner technique. However, the scope of this method
is limited to compact Riemannian manifolds. In the present paper, we prove several Liouville-type
theorems for certain classes of Einstein-like complete manifolds. This represents an illustration of the
new possibilities of geometric analysis.
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1. Introduction

Let (M, g) be an n-dimensional Riemannian manifold with the Levi–Civita connec-
tion∇. If H is the vector bundle over (M, g) of all covariant tensors of rank 3 satisfying only
the identities of the covariant derivative ∇Ric of the Ricci tensor Ric, then H decomposes
into the pointwise orthogonal sum H = A⊕ B ⊕ S of its three subbundles, A,B, and S
(see [1,2] (pp. 432–433). MoreoverA,B, and S are pointwise irreducible under the action of
the orthogonal group O(n). Therefore, the Riemannian manifold is called an an Einstein-like
manifold of type A (respectively, B or S) if ∇Ric ∈ C∞A (respectively, ∇Ric ∈ C∞B or
∇Ric ∈ C∞S). In the first case Ric is called the Killing–Ricci tensor (see [3]), while in the
second case Ric is called the Codazzi–Ricci tensor (see [4]) and in the third case Ric is called
the Sinyukov–Ricci tensor (see [5–7]).

A discussion of the geometry of the above and other types of Riemannian Einstein-like
manifolds can be found in the paper [1] and the monograph [2] (pp. 432–455). In turn,
the application of such manifolds in general relativity can be found in [7,8]. For example, it
is well known that the scalar curvature s = tracegRic is constant for an arbitrary Einstein-
like manifold (M, g) belonging to either class A or B. Moreover, an arbitrary manifold
belonging to A ∩ B must have a parallel Ricci tensor. An example of this type of Einstein-
like manifold is a Riemannian locally symmetric space (see [9], p. 369).

In turn, we use the Bourguignon Laplacian (see [10]) and the Sampson Laplacian
(see [11–13]) to study the global geometry of the above three classes of Einstein-like mani-
folds. Both of these Laplacians admit Weitzenböck decompositions (see [2], p. 53). We recall
here that a Laplace operator D permits a Weitzenböck decomposition if D = ∆̄ + <, where
< is the Weitzenböck curvature operator, which depends linearly on the curvature R and
the Ricci tensors of (M, g) and ∆̄ = ∇∗∇ is the Bochner Laplacian (see [2], pp. 52–53).
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Weitzenböck decompositions are important because (see [2], p. 53) there is a method, per
Bochner [14], of proving vanishing theorems for null space of a Laplace operator that allows
a Weizenböck decomposition.

For example, several fundamental results formulated in various theorems are based
on the Bochner technique, which usually shows that the assumption of positive or negative
sectional curvatures of compact Riemannian manifolds yields the vanishing of certain
geometric and topological invariants (such as the Betti numbers), geometrically interest-
ing tensor fields (such as the Killing–Yano tensors), and mappings (such as harmonic
mappings); see for example [9] (pp. 333–364), [15–17].

However, we have already entered the era of geometric analysis and its applications
in studying geometric and topological properties of complete Riemannian manifolds (see
for example [18]). Therefore, in this article we discuss the global geometry of Einstein-like
complete manifolds using a generalized version of the Bochner technique (see for exam-
ple [19]). Furthermore, in the three sections below we demonstrate the application of
various methods of the generalized Bochner technique (see for example [20]) to the study
of the above-mentioned three classes of complete Einstein-like manifolds. In particular,
the results obtained in our paper generalize well-known results on Einstein-like compact
manifolds to the case of Einstein-like complete non-compact manifolds.

2. A-Spaces and the Sampson Laplacian

A Riemannian manifold (M, g) is said to be Einstein-like of type A if its Ricci tensor
Ric is cyclic parallel, that is, if (∇XRic)(X, X) = 0 for all X ∈ TM (see [21]). In particular,
from [2] (p. 451) it is known that if (M, g) is a compact (without boundary) Einstein-like
manifolds of type A with nonpositive sectional curvature, then ∇Ric = 0. If, in addition,
there exists a point in M where the sectional curvature of every two-plane is strictly
negative, then (M, g) is Einsteinian, i.e., its Ricci tensor satisfies Ric = ρ g for some constant
ρ (see [2], p. 451).

On the other hand, Deng (see [22]) studied the rigidity of complete A-manifolds and
showed that (M, g) is an n-dimensional complete Einstein-like manifold of type A with a
Yamabe constant Q(M, g) > 0 and nonpositive scalar curvature, and is an Einstein manifold
if there exists a small number C depending on the dimension n and Q(M, g) such that∫

M(‖Ric − s/n · g‖n/2 + ‖W‖n/2)dvolg ≤ C for the Weyl curvature tensor, W. In turn,
Chu modernized this result in his article [23]. We remark here that the above results were
obtained using the methods of the classical Bochner technique.

This section studies complete Einstein-like manifolds of type A with nonpositive
sectional curvature. As the starting point in the study of Riemannian manifolds of non-
positive curvature, we first recall the following well known Cartan–Hadamard theorem:
Let (M, g) be an n-dimensional simply connected complete Riemannian manifold of nonpositive
curvature; then, (M, g) is diffeomorphic to the n-dimensional Euclidean space Rn. Therefore,
a simply connected complete Riemannian manifold of nonpositive curvature is called a
Hadamard manifold or a Cartan–Hadamard manifold, after the Cartan–Hadamard theorem (see
for example [9], p. 241; [18], pp. 391–381).

Remark 1. From the Cartan–Hadamard theorem, one can conclude, in particular, that no compact
simply connected manifold admits a metric of nonpositive curvature (see [9], p. 162). Therefore,
compact Hadamard manifolds do not exist.

Here, we recall that the function f ∈ C2M is subharmonic if ∆ f ≥ 0, where ∆ = div ◦ grad
is the Beltrami Laplacian on functions. Then, we can formulate the following proposition.

Lemma 1. On a Hadamard manifold (M, g) any non-negative subharmonic function f ∈ C2M
such that f ∈ Lq(M) for q ∈ (0, ∞) is equal to zero.

Proof. The following theorem holds (see [24]): on a complete simply connected Rieman-
nian manifold (M, g) of nonpositive sectional curvature, every nonnegative subharmonic
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function f ∈ Lq(M) for q ∈ (0, ∞) is a constant C. In this case, we have C ·
∫

M dvolg < +∞.
We observe that Hadamard manifolds have infinite volume (see [25]); hence, from the last
inequality, we obtain C = 0. This finishes the proof of our Lemma 1.

In turn, we introduce the Sampson Laplacian into consideration and consider sev-
eral of its properties. In order to do this, we define the differential operator δ∗ as fol-
lows: C∞Sp M → C∞Sp+1M of degree 1 such that δ∗ = (p + 1) Sym ◦ ∇, where Sym:
⊗pT∗M→ Sp M is the linear algebraic operator of symmetrization. This means that δ∗ is a
symmetrized covariant derivative defined by the following equation (see [2], pp. 355–356):

(δ∗ϕ)(X1, X2, . . . , Xp,Xp+1) = (∇X1 ϕ) (X2, . . . , Xp, Xp+1) + · · ·+ (∇Xp+1 ϕ) (X1, X2, . . . , Xp)

for any ϕ ∈ C∞Sp M, and X1, X2, X3, . . . , Xp, Xp+1 ∈ TM. Then, there exists its for-
mal adjoint operator δ: C∞Sp+1M → C∞Sp M, which is called the divergence operator
(see [2], p. 356). Notice that δ is nothing other than the ⊗p+1T∗M restriction of ∇∗ to
Sp+1M (see [2], p. 35).

Using the operators δ∗ and δ, we can define the second order differential operator
∆S, C∞Sp M → C∞Sp M, by the formula ∆S = δ δ∗ − δ∗δ. At the same time, if ∆S ϕ = 0,
then the tensor field ϕ is called a ∆S-harmonic symmetric tensor, as it is an analog of the
harmonic forms of the Hodge–de Rham theory (see [9], p. 335).

The Weitzenböck decomposition formula for the Sampson Laplacian ∆S: C∞Sp M→
C∞Sp M has the form

∆S ϕ = ∆̄ ϕ−< (ϕ). (1)

The second component of the right-hand side of (1) is called the Weitzenböck curvature
operator of the Sampson Laplacian ∆S.

Next, from (1) by direct calculation, we obtain the Bochner–Weitzenböck formula,

1
2

∆ ‖ϕ‖2 = − g(∆S ϕ, ϕ) + ‖∇ϕ‖2 − g (<(ϕ), ϕ), (2)

for ‖∇ϕ‖2 = g(∇ϕ,∇ϕ). If p = 2, then for any point x ∈ M there exists an orthonormal
eigenframe e1, . . . , en of Tx M such that ϕx(ei, ej) = µi δij for the Kronecker delta, δij. In this
case (see [2], p. 436, [26], p. 388), we have

g(< (ϕx), ϕx) = 2 ·∑
i<j

sec (ei ∧ ej) ( µi − µj)
2 (3)

where sec (ei ∧ ej) is the sectional curvature in the direction of the two-plane σx = span {ei, ej}
of Tx M at an arbitrary point x ∈ M. In this case, the Formula (2) can be rewritten in the form

1
2

∆ ‖ϕ‖2 = − g(∆S ϕ, ϕ) + ‖∇ϕ‖2 − 2 ·∑
i<j

sec (ei ∧ ej) (µi − µj)
2. (4)

We can now prove the following statement.

Theorem 1. Let (M, g) be a Hadamard manifold and ϕ a ∆S-harmonic symmetric 2-tensor on
(M, g) such that

∫
M ‖ϕ‖q dvolg < +∞ for at least one q > 1; then, ϕ ≡ 0.

Proof. Let ϕ be a non-zero ∆S-harmonic symmetric 2-tensor on a Riemannian manifold
with non-positive sectional curvature; then, from Formula (4), we obtain

1
2

∆‖ϕ‖2 = ‖∇ϕ‖2 − 2 · ∑
i<j

sec (ei ∧ ej)(µi − µj)
2. (5)

On the other hand, we have 1
2 ∆‖ϕ‖2 = ‖ϕ‖ · ∆‖ϕ‖+ ‖∇‖ϕ‖‖2. Then, from the last

formula and (5), we obtain
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‖ϕ‖ · ∆ ‖ϕ‖ = ‖∇ϕ‖2 − 2 · ∑
i<j

sec (ei ∧ ej) (µi − µj)
2 − ‖∇‖ϕ‖ ‖2 (6)

where ‖∇ϕ‖2 ≥ ‖∇‖ϕ‖ ‖2 due to the Kato inequality ‖∇ϕ‖ ≥ ‖∇‖ϕ‖ ‖.
Moreover, if we suppose that (M, g) is a manifold with nonpositive sectional curvature,

then from (6) we obtain the inequality ‖ϕ‖∆‖ϕ‖ ≥ 0. It is known from [27] that if the
inequality (q− 1) f · ∆ f ≥ 0 holds for a nonnegative function f ∈ C2(M) defined on a
complete Riemannian manifold, then either

∫
M f qdvolg = +∞ for all q 6= 1 or f = const.

In particular, q may even be less than one here (see [27]). In this case, the inequality∫
M f qdvolg < ∞ becomes Cq ·

∫
M dvolg < ∞. At the same time, we know that a Hadamard

manifold (M, g) has an infinite volume; hence, from the last inequality we obtain C = 0.
This completes our proof.

On the other hand, let Sp
0 M be the bundle of traceless symmetric p-tensors on (M, g).

Then, the fact that sec≤ 0 implies the negative semi-definiteness of the quadratic g(<(ϕ), ϕ)
for any p ≥ 2, while ϕ ∈ C∞Sp

0 M is proven in [28]. For this case, the following proposi-
tion holds:

Theorem 2. Let (M, g) be a Hadamard manifold and ϕ a ∆S-harmonic traceless symmetric p-
tensor (p ≥ 2) on (M, g) such that

∫
M ‖ϕ‖q dvolg < +∞ for at least one q > 0; then, ϕ ≡ 0.

Let (M, g) be a Riemannian Einstein-like manifold (M, g) of type A. Then, its Ricci
tensor, Ric, satisfies the equations δ∗Ric = 0 and has a constant trace, i.e., the scalar
curvature s = tracegRic is a constant function. This means that δRic = 0. Therefore, Ric is
a ∆S-harmonic symmetric 2-tensor. Then, we can formulate the following lemma.

Lemma 2. A Killing–Ricci tensor is a ∆S-harmonic symmetric 2-tensor.

In this case, the following proposition is an immediate consequence of Lemma 2 and
Theorem 1.

Corollary 1. Let an n-dimensional Riemannian Einstein-like manifold (M, g) of type A be
a Hadamard manifold. If

∫
M ‖Ric‖q dvolg < +∞ for at least one q > 1, then (M, g) is

isometric to Rn.

Proof. We know that a Killing–Ricci tensor of (M, g) is a ∆S-harmonic symmetric 2-tensor.
Moreover, if (M, g) is a Hadamard manifold and ‖Ric‖ ∈ Lq(M) for at least one q ∈ (1,+∞),
then Ric ≡ 0 per Theorem 2. Next, we need to prove one obvious statement. If the sectional
curvature is non-positive and the Ricci curvature is zero, then the Riemannian manifold
is flat; that is, let X ∈ Tx M be a unit vector. We can complete it on an orthonormal basis,
{X, e2, . . . , en}, for Tx M at an arbitrary point x ∈ M; then, (see [9], p. 86):

Ric(X, X) =
n

∑
a=2

sec (X ∧ ea).

In this case, from the conditions Ric ≡ 0 and sec ≤ 0 we obtain sec ≡ 0, i.e., the
sectional curvature vanishes identically. In this case, (M, g) is a flat Riemannian mani-
fold. If (M, g) is simply connected, it follows that (M, g) is isometric to the Euclidean
space Rn.

We now consider a three-dimensional Riemannian Einstein-like manifold (M, g) of
type A. In this case, the following corollary holds.

Corollary 2. Let (M, g) be a three-dimensional simply connected Riemannian Einstein-like
manifold (M, g) of type A. If its Ricci tensor Ric satisfies the conditions Ric ≥ 1

2 sg and∫
M ‖Ric‖q dvolg < +∞ for at least one q > 1, then (M, g) is isometric to R3.
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Proof. In dimensions up to three, Einstein-like manifolds of type A have been classified
in [29]; in particular, they are homogeneous (see [30]). Therefore, a three-dimensional
Einstein-like manifold of type A is complete, because any homogeneous Riemannian
manifold is complete (see [2], p. 181). Moreover, it is well known (see [9], p. 86 and [31]) that

sec (Xx ∧Yx) =
1
2

s(x)− Ric(Zx, Zx) (7)

for unit orthogonal vectors Xx, Yx, Zx ∈ Tx M at any point x ∈ M such that Zx is orthogonal
to the plane σ = span {Xx, Yx}. In this case, the condition sec ≤ 0 can be rewritten in the
form Ric ≥ 1

2 s g. Then, from Theorem 1 and Corollary 2, we can conclude that if the Ricci
tensor Ric satisfies the two conditions Ric ≥ 1

2 s g and
∫

M ‖ Ric ‖q dvolg < +∞ for at least
one q > 1, then (M, g) is a Ricci-flat manifold, and hence is a flat manifold due to equality
(7). In this case, (M, g) is isometric to the Euclidean space R3.

3. B-Spaces and the Bourguignon Laplacian

A Riemannian manifold (M, g) is said to have a harmonic curvature tensor if δ R = 0
(see [9], p. 362). This happens if and only if the Ricci tensor Ric is a Codazzi–Ricci tensor,
i.e., (∇XRic)(Y, Z) = (∇YRic)(X, Z) for any X, Y, Z ∈ TM. This means that (M, g) is an
Einstein-like manifold belonging to class B. There exist numerous examples of compact
Riemannian manifolds with this property (see [2], pp. 443–447; [4]). On the other hand,
the following classical Berger–Ebin theorem is well known. If (M, g) is a compact (without
boundary) Einstein-like manifold of type B with non-negative sectional curvature, then
∇ Ric = 0. If, in addition, there exists a point in M where the sectional curvature of every
two-plane is strictly positive, then (M, g) is Einsteinian (see [2], p. 445). Based on the results
obtained above, we can supplement this theorem as follows: a three-dimensional compact
Einstein-like manifold of type B with Ric < 1

2 s · g has constant positive sectional curvature.
In this section, we generalize this result to the case of a complete Riemannian manifold.

In order to do this, we use the Bourguignon Laplacian (see [10]).
Here, we consider a symmetric tensor ϕ ∈ C∞S2M as a one-form with values in the

cotangent bundle T∗M on M. This bundle is equipped with the Levi–Civita covariant
derivative ∇; thus, there is an induced exterior differential d∇: C∞S2M → C∞(Λ2M ⊗
T∗M) on T∗M-valued differential one-forms such as

d∇ϕ(X, Y, Z) := (∇X ϕ) (Y, Z)− (∇Y ϕ) (X, Z)

for any tangent vector fields X, Y, Z on M and an arbitrary ϕ ∈ C∞S2M (see [2],
pp. 133–134, 355; [9], pp. 349–350; and [32]). In this case, ϕ ∈ C∞S2M is a Codazzi ten-
sor if and only if d∇ϕ = 0 (see [9], p. 350). The formal adjoint of d∇ is denoted by δ∇(see [2],
p. 134). Moreover, Bourguignon proved in [33] (see p. 271) that

δ∇ϕ = − d(traceg ϕ) (8)

for an arbitrary Codazzi tensor ϕ ∈ C∞S2M. At the same time, he defined a harmonic
symmetric 2-tensor as a tensor ϕ ∈ C∞S2M such that ϕ ∈ Ker d∇

⋂
Ker δ∇ (see [9], p. 350

and [33] p. 270). Next, Bourguignon defined the Laplacian ∆B: C∞S2M → C∞S2M by
the formula ∆B := δ∇d∇ + d∇δ∇ (see [33], p. 273). Then, the symmetric harmonic 2-
tensors belong to the kernel of the Bourguignon Laplacian ∆B. The converse is true in the
compact case as well; namely, if (M, g) is a compact manifold (without boundary), then
L2(M) denotes the usual Hilbert space of functions or tensors with the global product
(with respect to the global norm)

〈u, w〉 =
∫

M
g(u, w) dvolg.

Then, by direct computation, we obtain the following integral formula (see [10]):
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〈∆B ϕ, ϕ〉 = 〈d∇ϕ, d∇ϕ〉+ 〈δ∇ϕ, δ∇ϕ〉 (9)

Next, an easy computation yields the Weitzenböck decomposition formula (see [2], p. 355
and [33], p. 273)

∆B ϕ = ∆̄ ϕ +<(ϕ). (10)

The second component of the right-hand side of (10) is called the Weitzenböck curva-
ture operator of the Bourguignon Laplacian ∆B (see [2], p. 356).

Based on the last two formulas, we conclude that the Bourguignon Laplacian ∆B is a
non-negative operator and its kernel is the finite dimensional vector space of harmonic
symmetric 2-tensors (or, in other words, Codazzi tensors with constant trace). Therefore,
the harmonic symmetric 2-tensor will be called the ∆B-harmonic tensor.

Using (10), the Bochner-Weitzenböck formula (see [10]) can be obtained:

1
2

∆‖ϕ‖2 = − g(∆B ϕ, ϕ) + g(<(ϕ), ϕ) + ‖∇ϕ‖2, (11)

where
g(<(ϕ), ϕ) = ∑

i 6=j
sec (ei ∧ ej) (µi − µj)

2

for an arbitrary ϕ ∈ C∞S2M and an orthonormal eigenframe e1, . . . , en of Tx M such that
ϕx(ei, ej) = µiδij at any point x ∈ M. Let ϕ ∈ C∞S2M be a ∆B-harmonic; then, (11) can be
rewritten in the following form:

1
2

∆‖ϕ‖2 = ∑
i 6=j

sec (ei ∧ ej) (µi − µj)
2 + ‖∇ϕ‖2. (12)

The following theorem supplements the Berger–Ebin theorem for the case of ∆B-harmonic
tensors on a complete noncompact Riemannian manifold.

Theorem 3. Let (M, g) be a connected complete and noncompact Riemannian manifold with
nonnegative sectional curvature. Then, there is no non-zero ∆B-harmonic tensor ϕ ∈ C∞S2M such
that

∫
M ‖ϕ‖qdvolg < +∞ for any q > 1.

Proof. Let (M, g) be a connected complete and noncompact Riemannian manifold with
nonnegative sectional curvature, and let ϕ ∈ C∞S2M be a non-zero ∆B-harmonic symmetric
2-tensor; then, g(<(ϕ), ϕ)≥0. Therefore, from (12), we can obtain the inequality

‖ϕ‖∆‖ϕ‖ = ‖∇ϕ‖2 + ∑
i 6=j

sec (ei ∧ ej) (µi − µj)
2 − ‖∇‖ϕ‖ ‖2 ≥ 0.

where ‖∇ϕ‖2 ≥ ‖∇‖ϕ‖ ‖2 due to the Kato inequality ‖∇ϕ‖ ≥ ‖∇‖ϕ‖ ‖. Then, we can
conclude that ‖ϕ‖ ∆‖ϕ‖ ≥ 0 on a connected complete and noncompact Riemannian
manifold with nonnegative sectional curvature. For q > 1, then, either

∫
M ‖ϕ‖q dvolg = ∞

or ‖ϕ‖ = const (see [27]). In a case where (M, g) has infinite volume, all of the constant
functions hold while zero is in Lq(M); that is, if the function f ∈ Lq(M) for some positive
number q is a constant function, C, then the inequality

∫
M | f |

q dvolg < ∞ becomes |C |q ·∫
M dvolg < +∞. If in addition (M, g) has an infinite volume, then we can obtain C = 0

from the last inequality. It must be recalled that a complete Riemannian manifold of non-
negative sectional curvature has an infinite volume (see [27,34]). This remark completes
the proof.

We are now able to formulate the following lemma.

Lemma 3. The Codazzi–Ricci tensor is a ∆B-harmonic symmetric 2-tensor.
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Proof. Let (M, g) be a Riemannian Einstein-like manifold (M, g) of type B. Then, its
Ricci tensor Ric satisfies the equations d∇Ric = 0 and has a constant trace, i.e., the scalar
curvature s = tracegRic is a constant function. This means that δ∇Ric = 0; therefore, Ric is
a ∆B-harmonic symmetric 2-tensor.

In this case, the following proposition is an immediate consequence of the above
Lemma 3 and Theorem 3.

Corollary 3. Let (M, g) be a connected complete and noncompact Einstein-like manifold (M, g)
of type B with non-negative sectional curvature. If

∫
M ‖Ric‖q dvolg < +∞ for some q > 1, then

(M, g) is flat.

Proof. If (M, g) is a connected complete and noncompact manifold with non-negative
sectional curvature, and

∫
M ‖Ric‖q dvolg < +∞ for some q > 1, then (M, g) is Ricci-flat per

Lemma 3 and Theorem 3. Next, we need to prove one obvious statement: if the sectional
curvature is nonnegative and the Ricci curvature is zero, then the Riemannian manifold
is flat. That is, let X ∈ Tx M be a unit vector which we complete on an orthonormal basis,
{X, e2, . . . , en}, for Tx M at an arbitrary point x ∈ M; then, (see [9], p. 86)

Ric(X, X) =
n

∑
i=2

sec(X ∧ ei).

In this case, from the conditions Ric = 0 and sec ≥ 0 we obtain sec = 0, which com-
pletes the proof.

In conclusion, we formulate one more obvious corollary.

Corollary 4. Let (M, g) be a three-dimensional connected complete and noncompact Einstein-like
manifold of type B. If Ric ≤ 1

2 s g and
∫

M ‖Ric‖q dvolg < +∞ for some q > 1, then (M, g)
is flat.

Remark 2. In Corollaries 3 and 4, we proved that (M, g) is a flat Riemannian manifold. If (M, g)
is simply connected, then (M, g) is isometric to the Euclidian space, Rn.

4. On Compact Einstein-like Manifolds of the Type S
A Riemannian manifold (M, g) is said to be Einstein-like of type S if its Ricci tensor Ric

satisfies the condition

(∇XRic) (Y, Z) = σ(X)g(Y, Z) + υ(Y) g (X, Z) + υ(Z) g (Y, Z) (13)

where σ(X) = n
(n−1) (n+2) X(s) and υ (X) = n−2

2(n−1) (n+2) X(s) for any X ∈ TM. Riemannian
manifolds satisfying condition (13) are called Sinyukov manifolds in [5]. Besse defined these
Equations (13), but did not carry out any research for manifolds of class S . The local
properties of such manifolds were studied in [5]. In turn, the purpose of [35] was the
local classification of all three-dimensional Riemannian manifolds belonging to class S .
The application of such manifolds in general relativity can be found in [7,8].

We now prove a theorem on compact Einstein-like manifolds of type S .

Theorem 4. If (M, g) is a compact (without boundary) Einstein-like manifold of type S with
non-positive sectional curvature, then ∇Ric = 0. If, in addition, there exists a point in M where
the sectional curvature of every two-plane is strictly negative, then (M, g) is Einsteinian.

Proof. From (13), we can obtain

(∇X ϕ) (Y, Z) + (∇Y ϕ) (Z, X) + (∇Z ϕ) (X, Y) = 0 (14)
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for
ϕ(Y, Z) = Ric(Y, Z)− 2

n + 2
s · g(Y, Z) (15)

for any X, Y, Z ∈ TM. Assume that the manifold M is compact; then, from (2) we can
obtain the integral formula

〈<(ϕ), ϕ〉 − 〈δϕ, δϕ〉 − 〈∇ϕ,∇ϕ〉 = 0, (16)

where, by virtue of (14), we have

〈∆S ϕ, ϕ〉 = 〈δ∗ϕ, δ∗ϕ〉 − 〈δϕ, δϕ〉 = −〈δϕ, δϕ〉

and g(<(ϕx), ϕx) = 2 ·∑i<j sec (ei ∧ ej) (µi − µj)
2 for an orthonormal eigenframe e1, . . . , en

of Tx M such that ϕx(ei, ej) = µi δij at any point x ∈ M. Therefore, if (M, g) is a compact
(without boundary) Einstein-like manifolds of type S with non-positive sectional curvature,
then from (16) we obtain ∇Ric = 0. In this case, from (13) we obtain ∇ ϕ = 0. In addition,
if there exists a point in M where the sectional curvature of every two-plane is strictly
negative, then from (15) and (16) we can conclude that (M, g) is Einsteinian.

All three-dimensional Riemannian manifolds belonging to class S are known from [35].
In turn, we formulate a theorem for a four-dimensional compact Sinyukov manifold.

Theorem 5. A four-dimensional compact Sinyukov manifold (M, g) with positive sectional curva-
ture is diffeomorphic to the sphere or the real projective space.

Proof. Our proof is based on three facts. First, if (M, g) is a Sinyukov manifold and dim M
≤ 4, then (M, g) is locally conformally flat (see [5]). We recall here that a locally conformally
flat Riemannian manifold (M, g) is determined by the condition that any point x ∈ M has
a neighborhood Ux ⊂ M and a C∞-function f on Ux such that the Riemannian manifold
(Ux, e2 f · g |Ux ) is flat (see [2], p. 60). Second, we proved in [20] that in the case of a locally
conformally flat Riemannian manifold of dimension n ≥ 4, the conditions R̂ > 0 and
sec > 0 are equivalent for its curvature operator, R̂ (see [9], p. 83), and its sectional curvature,
sec, respectively. Third, it has been proven (see [36]) that the Ricci flow deforms g to a
metric of constant positive curvature, provided that (M, g) is compact and has the positive
curvature operator R̂. In this case, (M, g) is diffeomorphic to the sphere S4 or the real
projective space RP4.

In conclusion, we formulate a theorem supplementing the previous assertion.

Theorem 6. Let (M, g) be a four-dimensional complete Sinyukov manifold with Ric ≥ 0; then,
(M, g) belongs to one of the following classes: either flat, or locally isometric to the product of a
sphere and a line, which are globally conformally equivalent to either Rn or a spherical space form.

Proof. We know that a four-dimensional Sinyukov manifold (M, g) is locally conformally
flat (see [5]). Moreover, the main theorem of [37] states that complete locally conformally
flat manifolds of dimension n ≥ 3 with Ricci tensor Ric ≥ 0 belong to one of the following
classes: either flat, or locally isometric to the product of a sphere and a line, and are globally
conformally equivalent to either Rn or a spherical space form (see [38], p. 69).

5. Conclusions

Gray has presented the O(n)-invariant orthogonal irreducible decomposition of the
space of all covariant tensors of rank 3 obeying only the identities of the gradient of the
Ricci tensor (see above). This decomposition introduced the seven classes of Einstein-like
manifolds with Ricci tensors fulfilling the defining condition of each subspace (see [2],
pp. 432–455). In the large, the geometry of such manifolds has been studied by many
geometers using the classical Bochner technique. This technique’s scope is limited to
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compact Riemannian manifolds (see [9], pp. 333–364; [14,16]; [17], pp. 322–360). However,
we have already entered the era of geometric analysis and its applications to the study
of relations between the geometric and topological properties of complete Riemannian
manifolds (see for example [17] (pp. 361–394) and [18,19]). Yau, Schoen, Hamilton, and
others initiated a particularly productive era of geometric analysis in differential geometry
in the large, which continues to this day. Most of these results are called Liouville-type
theorems, and belong to the generalized Bochner technique (see for example [19,20]). In the
present paper, we have proven several Liouville-type theorems for cetain classes of Einstein-
like complete manifolds. This paper represents an illustration of the new possibilities in
contemporary geometric analysis.
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