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Abstract: A Hopfield neural network is described by a system of nonlinear ordinary differential
equations. We develop a broad range of numerical schemes that are applicable for a wide range of
computational problems. We review here our study on an approximate solution of the Fredholm
integral equation, and linear and nonlinear singular and hypersingular integral equations, using a
continuous method for solving operator equations. This method assumes that the original system
is associated with a Cauchy problem for systems of ordinary differential equations on Hopfield
neural networks. We present sufficient conditions for the Hopfield networks’ stability defined via
coefficients of systems of differential equations.
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1. Introduction

Modeling problems of mathematical physics on Hopfield neural networks (HNN) is
based on modeling of an artificial neuron implemented as an electronic circuit by a nonlinear
ordinary differential equation. Within this approach, the i-th neuron connected to the N
neurons of the network (including itself) is modeled by the system of differential equations

Ci
dui
dt

= − ui
Ri

+
N

∑
j=1

wij f (uj) + Ii, i = 1, 2, . . . , N, (1)

where wij are the synaptic weights of the neurons, Ii are the currents representing an
external bias, ui are the induced local fields at the input of the nonlinear activation functions
f (ui), Ri and Ci are the leakage resistances and the leakage capacitances, respectively.

Since the 1980s, the methods of modeling numerical solutions on artificial neural
networks have attracted a serious attention [1–12]. A detailed bibliography of the works
carried out in this direction can be found in [1–5,12]. The books [1,4,5] are of encyclopedic
character. They describe—with different degrees of detail—the most principal results
concerning the architecture, training and practical applications of artificial neural networks
(ANN). The article [13] is a pioneering one; it has demonstrated an opportunity in solv-
ing computational problems with the devices assembled from a large number of quite
simple standardized elements. The paradigm of Hopfield neural networks has also been
introduced in this work.

Some of the listed works are devoted to solving of particular problems on the basis of
artificial neural networks. For instance, the works [14,15] concern the optimization problem,
the works [16,17] describe solving linear and nonlinear algebraic equations with neural
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networks, and the works [3,7,9–11] exploit the application of ANN to ordinary and partial
differential equations. The work [6] is devoted to a more difficult and special problem of
solving Diofant equations. General problems of information science are elucidated in the
context of ANN in the book [2]. The problem of dynamical system parametric identification
with HNNs is described in [18].

Along with modeling known numerical methods on artificial neural networks, it is of
interest to develop special modeling methods designed to solve problems of mathematical
physics with the ANNs and, first of all, with the HNNs. One of these methods is the continuous
operator method [19]. Here is a brief overview of the works carried out in this direction.

The predecessors of the HNN are, to some extent, analog computers.
In the second half of the 20th century, a separate direction in computer technology

associated with analog computers was actively developing. Analog computers had a
high performance (operations performed at the speed of light), but low accuracy due
to imperfection of the element base, and by the end of the century, they were ousted
from many fields of application, in particular, from computational mathematics, by digital
computers. Currently, analog computers are used as part of specialized control systems.
However, we note that recently there has been a renaissance in relation to analog computers,
albeit on a different element base [20].

Note that analog computers are used to solving the following systems of nonlinear
differential equations

dui
dt

=
N

∑
j=1

aij fij(t, uj) + gi(t), i = 1, 2, . . . , N. (2)

Here, aij, i, j = 1, 2, . . . , N are real numbers, fij(t, vj), t ∈ [0, T], max1≤j≤N |vj| ≤ H,
i, j = 1, 2, . . . , N are continuous functions, and gi(t), i = 1, 2, . . . , N, t ∈ [0, T] are continuous
functions. The parameter T is determined by the problem to be solved and the design of
the machine, and H is determined by the design of the machine.

From the comparison of Equations (1) and (2), it follows that the fields of applications
of Hopfield’s neural networks and analog computers coincide. Therefore, the results
presented in this article in terms of Hopfield neural networks are applicable to analog
computers. A detailed presentation of the methods for solving systems of algebraic and
ordinary differential equations on analog computers can be found in [21].

A review of works devoted to approximate methods for solving systems of algebraic
equations and systems of ordinary differential equations on analog computers and NNH
shows that regular (not singular) equations have mostly been solved.

Meanwhile, a large class of problems from various branches in mathematics, physics
and engineering has come out of NNH applications. They are ill-posed problems in a
Hadamard sense, spectrum problems, inverse problems and many others. Applying the
continuous operator method [19] to solve various ill-posed problems (coefficient problems
for parabolic and hyperbolic equations, solving systems of linear algebraic equations with
non-inversible matrices) has demonstrated the capabilities of the method.

Obviously, the continuous operator method can be implemented directly on NNH of
any technological origin. This extends the range of problems implemented on NNH.

The main goal of this work is to demonstrate the relations between the continuous
method for solving nonlinear operator equations and NNH, and, thereby, to extend the
range of problems solved on NNH.

In [13], J.J. Hopfied researched the application of “biological computers” to computer
design. The architecture of machines built by analogy with biological objects is based on a
very large number of interconnected and very simple computing nodes of the same type,
called neurons.

In the article [14], J.J. Hopfied and D.W. Tank have demonstrated the possibility of
implementing such computers, called Hopfield neural networks, using simple circuits
made up of resisters, capacitors and inductors. In [14], the energy function was introduced
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and the stability of neural networks was studied based on the second Lyapunov method.
Note that the stability of Hopfield neural networks [22], Ref. [23] has been studied based
on the first Lyapunov method.

Starting from [13,14], Hopfield neural networks began to be widely used to solve
optimization problems [15], matrix inversion [16], and parametric identification of dynamic
systems [18]. In [17], Hopfield neural networks are applied to solve systems of nonlinear
algebraic equations.

In works known to the authors, numerical methods for solving problems of mathe-
matical physics on artificial neural networks (ANN) are based on methods for minimizing
the corresponding functionals.

In this paper, we review the works of the authors devoted to methods for solving the
equations of mathematical physics on the HNN. These methods are based on conditions
for stability of the solutions to systems of ordinary differential equations.

Stability of the neural network is crucial for modeling numerical methods with the
network. Usually, stability of the network is substantiated on the grounds of symmetry
of the synaptic matrix, and the HNN energy is used as the Lyapunov function. Here,
we obtain more general stability conditions that are applicable even for non-symmetric
synaptic matrices.

2. Notation and Basic Definitions

Let us first introduce the notation used in the work.
Let B be a Banach space, and a ∈ B, K is a linear operator on B, Λ(K) is the logarithmic

norm [24] of the operator K, K∗ is the conjugate operator to K, and I is the identity operator.

B(a, r) = {z ∈ B : ‖z− a‖ ≤ r} ,

S(a, r) = {z ∈ B : ‖z− a‖ = r} ,

Re(K) = <(K) = (K + K∗)/2 ,

Λ(K) = lim
h↓0

(‖I + hK‖ − 1)h−1 .

The analytical expressions for logarithmic norms are known for operators in many
spaces. We restrict ourselves to a description of the following three norms. Let A = {aij},
i, j = 1, 2, . . . , n, be a matrix. In the n-dimensional space Rn of vectors x = (x1, . . . , xn) the
following norms are often used:

• octahedral—‖x‖1 =
n
∑

i=1
|xi|;

• cubic—‖x‖2 = max
1≤i≤n

|xi|;

• spherical (Euclidean)—‖x‖3 = (
n
∑

i=1
x2

i )
1/2.

Here are the analytical expressions for the logarithmic norm of a n× n matrix A = (aij),
consistent with vector space norms given above:
octahedral logarithmic norm Λ1

Λ1(A) = max
1≤j≤n

(
ajj + ∑

i 6=j
|aij|

)
;

cubic logarithmic norm Λ2

Λ2(A) = max
1≤i≤n

(
aii + ∑

j 6=i
|aij|

)
;
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spherical (Euclidean) logarithmic norm Λ3

Λ3(A) = λmax

(
A + A∗

2

)
,

where A∗ is the conjugate matrix for A.
Note that the logarithmic norm of the same matrix can be positive in one space

and negative in another. Moreover, it is known that a linear combination with positive
coefficients of any finite number of norms is also a norm.

The logarithmic norm has some properties very useful for numerical mathematics.
Let A, B be n×n matrices with complex elements and x = (x1, . . . , xn), y = (y1, . . . , yn),

ξ = (ξ1, . . . , ξn), η = (η1, . . . , ηn) are n-dimensional vectors with complex components. Let
the following systems of algebraic equations: Ax = ξ and By = η be given. The norm of a
vector and its subordinate operator norm of the matrix are agreed upon; the logarithmic
norm Λ(A) corresponds to the operator norm.

Theorem 1 ([25]). If Λ(A) < 0, the matrix A is non-singular and ‖A−1‖ ≤ 1/|Λ(A)|.

Theorem 2 ([25]). Let Ax = ξ, By = η and Λ(A) < 0, Λ(B) < 0. Then

‖x− y‖ ≤ ‖ξ − η‖
|Λ(B)| +

‖A− B‖
|Λ(A)Λ(B)| .

Some properties of the logarithmic norm in a Banach space which are useful in numer-
ical mathematics are given in [24].

3. Continuous Methods for Solving Operator Equations

Extensive literature is devoted to approximate methods for solving nonlinear operator
equations, and a detailed bibliography on this subject can be found in the books [26,27].
At the same time, discrete methods have mainly been considered, among which, first of
all, we should note the methods of simple iteration and Newton-Kantorovich. The study
of continuous analogues of the Newton-Kantorovich method began, apparently, with the
article [28]. Later, continuous analogs of the Newton-Kantorovich method were widely
used for solving numerous problems in physics [29,30].

Let us present several statements about continuous methods for solving operator
equations, which will be used below when substantiating computational methods.

Let the nonlinear operator equation

A(x) = f , (3)

map from the Banach space B to B. Here, A(x) is a non-linear operator.
Consider the Cauchy problem in a Banach space B

dx(t)
dt = A(x(t))− f ,

x(0) = x0.
(4)

We assume that the operator A has a continuous Gateaux (Frechet) derivative.

Theorem 3 ([19]). Let Equation (3) have a solution x∗. On any differentiable curve g(t) in Banach
space B, the inequality

lim
t→∞

1
t

t∫
0

Λ(A′(g(τ))dτ ≤ −αg, αg > 0. (5)
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holds. Then, the solution of the Cauchy problem (4) converges to the solution x∗ of Equation (3) for
any initial value x(0) ∈ B.

Theorem 4 ([19]). Let Equation (3) have a solution x∗. Let the following conditions be satisfied on
any differentiable curve g(t), in a ball B(x∗, r):

(1) for any t(t > 0), the inequality

t∫
0

Λ(A′g(τ))dτ ≤ 0 (6)

holds;
(2) the following equality is true:

lim
t→∞

1
t

t∫
0

Λ(A′(g(τ))dτ = −αg, αg > 0. (7)

Then, the solution of the Cauchy problem (4) converges to the solution x∗ of Equation (3) for
any initial value x(0) ∈ B(x∗, r).

If the conditions (6) and (7) are not satisfied, it is necessary to transform Equation (3)
and the Cauchy problem (4). For this purpose, we employ a symmetrizing version of the
operator. The symmetrization is performed by an adjoint derivative operator acting on
Equation (3) from the left. As a result, the derivative of the operator becomes symmetric
and non-negative. Let A′(x) be the Gateaux (Frechet) derivative of operator A(x). We will
transform Equation (3) to the form

(A′(x))∗A(x)− (A′(x))∗ f = 0, (8)

where (A′(x))∗ is the operator conjugated to (A′(x)).
Equation (8) is associated with the Cauchy problem

dx(t)
dt

= −
[
(A′(x))∗A(x)− (A′(x))∗ f

]
(9)

x(0) = x0. (10)

The following statement is valid.

Theorem 5. Let Equation (8) have a unique solution x∗ in the ball B(x∗, r), r > 0. Let the following
conditions be satisfied for any differentiable curve g(t), laying in the ball B(x∗, r):

(1) for any t(t > 0), the inequality

t∫
0

Λ((A′(g(τ)))∗(A′(g(τ)))dτ ≥ 0 (11)

occurs;
(2) the equality

lim
t→∞

1
t

t∫
0

Λ((A′(g(τ)))∗(A′(g(τ)))dτ ≥ αg, αg > 0 (12)

is valid.
Then, the solution of the Cauchy problem (9) and (10) converges to the solution x∗ of Equa-

tion (8) for any initial value x(0) ∈ B(x∗, r).
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The proof of the theorem is based on the sufficient condition for stability of solutions
of differential equations in Banach spaces.

Let the differential equation be in a Banach space B

dx(t)
dt

= A(x(t)), (13)

where the nonlinear operator A(x) has a Gateaux derivative, A(0) = 0, and the spectrum of
the operator A′(0) is in the left half-plane of the complex plane and on the imaginary axis.

Theorem 6 ([31]). Let the following conditions be satisfied on any differentiable curve ϕ that lays

in the ball B(0, ρ): (1)
t∫

0
Λ(A′(x(τ)))dτ ≤ 0; (2) limt→∞

1
t

t∫
0

Λ(A′(x(ϕ(τ))))dτ ≤ −κϕ < 0.

Then, a trivial solution to Equation (13) is asymptotically stable.

The validity of Theorem 5 follows from this statement. Indeed, the spectrum of the
operator −(A′(x(t)))∗(A′(x(t))) is in the left half-plane of the complex plane and on the
imaginary axis. The asymptotic stability for the solution of Equation (9) for any initial value
in the ball B(x∗, r) follows from Theorem 6. Thus, limt→∞ x(t) = x∗ and limt→∞

dx(t)
dt = 0.

Therefore, the solution of Equation (9) converges to the solution x∗(t).
If conditions (11) and (12) are not met, it is necessary to use regularization. Consider

the Cauchy problem

dx(t)
dt = −γx(t)− [(A′(x))∗A(x)− (A′(x))∗ f ],

x(t0) = x0.
(14)

Here, γ, γ > 0 is a regularization parameter.
The Cauchy problem (14) has a solution for any initial value. Moreover, this solution

satisfies the equation

γx(t) + [(A′(x))∗A(x)− (A′(x))∗ f ] = 0, (15)

and does not satisfy Equation (8).
The continuous method for solving nonlinear equations has the advantages over the

standard Newton-Kantorovich method. They are:

(1) The existence of an inverse operator is not required for the Gateaux (Frechet) deriva-
tive of the nonlinear operator;

(2) If the inequality
t∫

0
Λ(C(g(τ))dτ < 0 holds on any differentiable function g(t), then

the convergence of the method does not depend on initial conditions.

4. Representation of Functions of Multiple Variables on Hopfield Neural Networks

In this section we study the methods of representation for functions of multiple
variables and for localization of the minimum (maximum) of such functions using an
artificial neural network.

When constructing neural networks for solving numerous problems in physics and
engineering, the problem of representation for the functions of multiple variables on
neural networks arises. The issue is due to the fact that the Hopfield networks compute
linear and nonlinear functions of one dynamic variable. They also perform superposition
and addition operations when networks [3,5] are cascaded. Therefore, algorithms for
representing multiple variables’ functions by superpositions of one variable’s functions
and the addition operation are of great interest. Representations of multiple variables’
functions by superpositions of one variable’s functions and the addition operation were
obtained by V.I. Arnold and A.N. Kolmogorov [32,33]. The representations have a rather
complicated form. Their application to designing neural networks is difficult. Thus,
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the exact representation of multiple variables’ functions on neural networks is hardly
possible, and approximate methods are of considerable interest.

An approximate method for function representation on neural networks is based on
Stone’s [2] theorem. The possibility of approximating multiple variables’ functions with any
degree of accuracy by superpositions and linear combinations of one variable’s functions
was studied in [2,4]. An important question of approximation accuracy, and especially
of the choice of the best basis, are open. A number of research results and an extensive
literature on representation of continuous functions with neural networks is given in [34].

The second approach to an approximate representation of functions of multiple vari-
ables by functions of one variable uses various sweep methods [35]. However the appli-
cation of these methods in neural networks seems to be problematic. Therefore, it is of
interest to develop an easy-to-implement and sufficiently accurate approximate method
for representing multiple variables’ function in neural networks. One of such methods is
presented below. Note that this method also allows us to find extreme values of functions
of multiple variables.

Today, the problem of finding the extreme values of functions of multiple variables is
widely studied. A detailed literature review on the subject can be found in [35].

Let f (x1, x2) ∈ C̃D, D = [0, 2π]2. Let p1, p2 be prime numbers, (p1 6= p2).
Show that the extreme values of the function f (x1, x2) are approximated with high

degree by the extreme values of the function f (p1t, p2t), 0 ≤ t ≤ 2π. It is sufficient to
consider the minimum of the function. We assume that the function f (x1, x2) satisfies the
Lipschitz condition

| f (x′1, x′2)− f (x′′1 , x′′2 )| ≤ |x′1 − x′′1 |+ |x′2 − x′′2 |, (x1, x2) ∈ D (16)

Without loss of generality, we assume that the function f (x1, x2) in D has a unique
maximum at (x∗1 , x∗2). Let ϕ(t) = f (p1t, p2t) yield its maximum at t∗.

Let 〈t〉 be a residue class t modulo 2π. The set 〈p1t〉, 〈p2t〉 for 0 ≤ t ≤ 2π form a set
of parallel lines, which for p2 > p1 intersect (0 ≤ x ≤ 2π, y = 2π) at 2π(kp1 − jp2)/p2,
k = 1, p2, j = 0, p1 − 1. Obviously, |2π(kp1 − jp2)/p2| ≤ 2π|p1 − p2|/p2.

Let ρ = π|p1 − p2|/p2. We want to prove |ϕ(t∗)− f (x∗1 , x∗2)| ≤ ρ.
Let t(0 ≤ t ≤ 2π) be the value of t such that p2t = x∗2 , and p1t yields its minimum

|p1t− x∗1 |, 0 ≤ t ≤ 2π. However, from (16), it follows that | f (x∗1 , x∗2)− ϕ(t)| = f (x∗1 , x∗2)−
f (p1t, x′2)| ≤ |x∗1 − p1t| ≤ ρ.

Thus, it was shown that the extreme value of f (x1, x2) is located at ρ near (p1t∗, p2t∗).
Take several sets of natural numbers (pi

1, pi
2), i = 1, 2, . . . , n. Find the minima ϕi(t∗i )

of the functions ψi(t) = f (pi
1, pi

2t). Construct ρi = π|pi
1 − pi

2|/pi
2 near Ωi, i = 1, 2, . . . , n,

of points (xi
1, xi

2), xi
1 = pi

1t∗i , xi
2 = pi

2t∗i , i = 1, 2, . . . , n.
The extreme point (x∗1 , x∗2) is at the intersection of the neighborhoods.
This way the problem of the extreme values of multiple variables’ functions is reduced

to the problem of finding the extreme values of functions of one variable. Numerous works
are devoted to the solution of the latter problem on artificial neural networks (see [3,5]).

5. Multiple Integrals’ Evaluations on Hopfield Neural Networks

This section is devoted to evaluation of multiple integrals of periodic functions
2π∫
0

2π∫
0

f (x1, x2)dxdx2 on Hopfield networks. The suggested method is applied to the eval-

uation of multiple variable integral of any finite dimension. Without loss of generality,
we consider two-dimensional integrals. The method for evaluating integrals of multiple
variables’ functions f (x1, x2, . . . , xl) was presented in [36]. It was suggested that func-
tions expand in a Fourier series. An accuracy estimation of the method on certain classes
of functions was also given.

The method is based on the following statement ([36,37]).
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Lemma 1. Let f (x1, x2) be a continuous 2π periodic function with respect to each variable, and N
is a natural, q1, q2 are prime and q1 6= q2, q1, q2 ≥ 2N. Then,

2π∫
0

2π∫
0

f (x1, x2)dx1dx2 = 2π

2π∫
0

f (q1t, q2t)dt + RN( f ), (17)

where
|RN( f ) ≤ CEN,N( f ), (18)

where EN,N( f ) is the best approximation of f (x1, x2) by a trigonometric polynomial of N degree
with respect to each variable.

The convergence rate is defined in terms of constants C that here do not depend on N,
and the functional classes EN,N( f ) are defined as follows.

Evaluating the integral in the right-hand side of (17) with the rectangle quadrature
formula, we have

∫ 2π

0

∫ 2π

0
f (x1, x2)dx1dx2 =

4π2

N

N−1

∑
k=0

f (2kq1π/N, 2kq2π/N) + RN(t),

where q1, q2 are prime numbers, q1, q2 = O(N1/(1+2α)).
The estimate holds

RN [Eα
2 ] = O(N−2α/(1+2α)).

Recall the definition of the class of functions Eα
2 . Let the function f (x1, x2, . . . , xl) be

continuous in an l-dimensional cube Gl defined by the inequalities 0 ≤ xv ≤ 2π (v =
1, 2, . . . , l) and be periodic with a period 2π in each variable x1, x2, . . . , xl . c(m1, . . . , ml)
stands for the Fourier coefficients of the function. We also introduce m̄v defined as m̄v = 1,
for mv = 0, and m̄v = |mv|, for mv 6= 0. We say that f (x1, x2, . . . , xl) belongs to the class
Eα

l (A), if c(m1, . . . , ml) = A((m̄1 · m̄2 · · · m̄l)
−α), where a > 1/2, and the constant A does

not depend on m1, m2, . . . , ml .
One can evaluate multiple periodic function integrals on Hopfield networks by for-

mula (17). To do so, it is enough to solve the Cauchy problem

dy(t)
dt = f (q1t, q2t),

y(0) = 0.
(19)

Then,

y(2π) =
1

2π

2π∫
0

2π∫
0

f (x1, x2)dx1dx2 − RN( f ).

This method for integral evaluation can be used to calculate the Fourier coefficients of
multiple variable functions on the basis of trigonometric functions.

6. Approximate Solution of Systems of Algebraic Equations on Hopfield
Neural Networks

Consider the system of linear algebraic equations

Ax = b, (20)

where A = {aij}, i, j = 1, 2, . . . , n, x = (x1, . . . , xn), b = (b1, . . . , bn)T .
Let the logarithmic norm Λ(A) of matrix A be negative.
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We associate the system of algebraic Equations (20) with the Cauchy problem

dx(t)
dt = Ax− b

x(0) = 0.
(21)

From results of Section 2, it follows that for t → ∞, the solution of the Cauchy
problem (21) converges to the solution x∗ = A−1b of the system of algebraic Equations (20)
for any initial value x(0).

Thus, modeling the Cauchy problem (21) on Hopfield neural networks is possible
for sufficiently large values of t to obtain a good approximation to the solution of the
system (20). It is easy to see that the solution is stable to perturbation of the initial values for
Cauchy problem (21). It is also stable to the perturbation of the coefficients and right-hand
sides of Equation (20). The proof of this statement and the corresponding theorems can be
found in [38].

Consider the application of the continuous operator method for solving systems of
nonlinear algebraic equations on Hopfield neural networks. For generality, we assume
operator equations in Banach spaces.

Consider the nonlinear operator equation

A(x)− f = 0, (22)

acting from the Banach space X to X. Here, A(x) is a non-linear operator.
Let the Equation (22) have an isolated solution x∗. Let us consider the Cauchy problem

dx(t)
dt = A(x(t))− f ,

x(0) = x0.
(23)

By Theorem 4, if for any smooth curve g(t) defined in the ball R(x∗, r) of a Banach
space B, the inequalities

t∫
0

Λ(A′(g(τ))dτ ≤ 0,

lim
t→∞

1
t

t∫
0

Λ(A′(g(τ))dτ = −α, α > 0,
(24)

hold, then lim
t→∞

x(t) = x∗.

Remark 1. Examples of implementations can be found in [38].

7. Approximate Solutions for Fredholm Integral Equations on Hopfield
Neural Networks

In this section we solve Fredholm integral equations on Hopfield neural networks. For
demonstration, we will use a one-dimensional integral equation of the second kind

x(t) =
1∫

0

h(t, τ, x(τ))dτ + f (t) (25)

with continuous kernels in the right-hand side.
Weakly singular integral equations and multidimensional integral equations are

treated similarly.
Let Equation (25) have an isolated solution x∗(t) in B(x∗, r) ∈ C[0, 1].
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The approximate solution xN(t) = (xN(t1), . . . , xN(tN)) (25) is obtained from the
system of equations

xN(tk) =
N

∑
l=1

αlh(tk, tl , xN(tl)) + f (tk), k = 1, 2, . . . , N, (26)

where αl and tl ∈ [−1, 1], l = 1, 2, . . . , N are coefficients and nodes of the quadrature formula

1∫
0

g(t)dt =
N

∑
1

αl g(tl) + RN(g).

It is essential to take tk = k/N, k = 0, 1, . . . , N.
In [27] (Theorem 19.5, Chapter 4), solvability conditions of system (26) were presented.

The convergence of approximate solutions x∗N(t) of (26) to exact solutions x∗(t) of (25)
using nodes tlN , l = 1, 2, . . . N was also demonstrated.

We set the following condition to the function h(t, τ, u): at any interior point of B(x∗, r)
in space C[0, 1] there exists the derivative h′3(tk, tl , u), k, l = 1, 2, . . . , N. Here, h′3(t, τ, u)
stands for the partial derivative with respect to the third variable.

Consider the matrix C(u) = {cij(u)}, i, j = 1, 2, . . . , N, where cii(u) = 1− αih′3(ti, ti, u),
i = 1, 2, . . . , N; cij(u) = −αih′3(ti, tj, u), i, j = 1, 2, . . . , N, i 6= j.

It follows from Theorem 4 that if Λ(C(u)) < 0 for u ∈ B(x∗, r), then the solution of
the system of differential equations

dzk(t)
dt

= zk(t)−
N

∑
l=1

αlh(tk, tl , zl(t))− f (tk), k = 1, 2, . . . , N, (27)

converges to the solution x∗(t) of the system of Equation (26) at the nodes tk, k = 1, 2, . . . , N.
We illustrate the method described above with solving the following equation:

x(t)− 1
4

1∫
−1

(t2τ + tτ2)x(τ)dτ = t− t2

6
. (28)

The exact solution of the equation reads x(t) = t. Equation (28) has been approximated
with a system of 10 ordinary differential equations, solved using Euler’s method with a
time step h = 0.1 In Table 1 we show the numerical error as a function of the number of
iterations N.

Table 1. Convergence of the method to the solution of the linear integral Equation (28) with respect
to the number of iterations. ε = ‖xN(t)− t‖C.

N ε

10 5.2698 × 10−2

50 1.1581 × 10−3

100 5.8614 × 10−3

150 3.9232 × 10−3

8. Approximate Solution of Linear Hypersingular Integral Equations on Hopfield
Neural Networks

Let us recall the Hadamard definition of hypersingular integrals [39]. The integral of
the type ∫ b

a

A(x) dx
(b− x)p+α (29)
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for an integer p and 0 < α < 1, is defined as the limit of the sum∫ x

a

A(t) dt
(b− t)p+α +

B(x)
(b− x)p+α−1 ,

at x → b if one assumes that A(x) has p derivatives in the neighborhood of the point b.
Here, B(x) is any function that satisfies the following two conditions:

(i) The above limit exists;
(ii) B(x) has at least p derivatives in the neighborhood of the point x = b.

An arbitrary choice of B(x) is unaffected by the value of the limit in the condition
(i). The condition (ii) defines values of the (p− 1) first derivatives of B(x) at a point b, so
that an arbitrary additional term in the numerator is an infinitely small quantity, at least of
order (b− x)p.

Chikin in [40] introduced the definition of the Cauchy–Hadamard-type integral that
generalizes the notion of the singular integral in the Cauchy principal sense and in the
Hadamard sense.

The Cauchy–Hadamard principal value of the integral

∫ b

a

ϕ(τ) dτ

(τ − c)p , a < c < b, (30)

is defined as the limit of the following expression

∫ b

a

ϕ(τ) dτ

(τ − c)p = lim
v→0

[∫ c−v

a

ϕ(τ) dτ

(τ − c)p +
∫ b

c+v

ϕ(τ) dτ

(τ − c)p +
ξ(v)
vp−1

]
,

where ξ(v) is a function constructed so that the limit exists.
Consider the one-dimensional linear hypersingular integral equation

Kx ≡ a(t)x(t) + b(t)
1∫
−1

x(τ)dτ

(τ − t)p +

1∫
−1

h(t, τ)x(τ)dτ = f (t), p = 2, 4, . . . . (31)

We impose the following conditions on the coefficients and the right-hand side of
Equation (31):

(1) b(t) 6= 0, t ∈ [−1, 1];
(2) a(t), b(t), f (t) ∈Wr(1), h(t, τ) ∈Wr,r(1), r ≥ p.
(3) Equation (31) is uniquely solvable and its solution x∗(t) ∈Wr(M), M = const.

Introduce nodes tk = −1 + 2k/N, k = 0, 1, . . . , N, and t̄k = tk + k/N, k = 0, 1, . . . ,
N − 1. Let ∆k be intervals ∆k = [tk, tk+1), k = 0, 1, . . . , N − 2, ∆N−1 = [tN−1, tN ].

An approximate solution (31) is sought in the form of piecewise constant functions

xN(t) =
N−1

∑
k=0

αkψk(t), ψk(t) =
{

1, t ∈ ∆k
0, t /∈ ∆k.

(32)

The values {αk}, k = 0, 1, . . . , N − 1, are determined from the system of linear alge-
braic equations

a(t̄k)αk + b(t̄k)
N−1

∑
l=0

αl

∫
∆l

dτ

(τ − t̄k)
p +

N−1

∑
l=0

αl

∫
∆l

h(t̄k, τ)dτ = f (t̄k), (33)

k = 0, 1, . . . , N − 1.
The following statement is true.
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Theorem 7 ([38,41]). Let the following conditions be satisfied: (1) Equation (31) has the unique
solution x∗(t) ∈ Wp−1([−1, 1], M); (2) the inequality |b(t)| ≥ b > 0 holds for t ∈ (−1, 1);
(3) the function h(t, τ) is satisfied the Lipschitz condition with respect to the second variable. Then,
for sufficiently large N, the system of Equations (33) has the unique solution x∗N(t) .

The conditions of Theorem 7 are sufficient for the system of Equations (33) to be solved
on Hopfield neural networks.

System (33) should be represented in the form

sgn b(t̄k)

[
a(t̄k)αk + b(t̄k)

N−1

∑
l=0

′αl

∫
∆l

dτ

(τ − t̄k)
p +

N−1

∑
l=0

αk

∫
∆l

h(t̄k, τ)dτ − f (t̄k)

]
= 0 , (34)

k = 0, 1, . . . , N − 1.
When the conditions given in Section 2 are met, the solution of the system

dαk(t)
dt

= sgn b(t̄k)

a(t̄k)αk(t) + b(t̄k)
N−1

∑
l=0

′αl(t)
∫
∆l

dτ

(τ − t̄k)
p +

N−1

∑
l=0

αk(t)
∫
∆l

h(t̄k, τ)dτ − f (t̄k)

, (35)

k = 0, 1, . . . , N − 1, for t → ∞ converges to solution of the system (34) for any
initial value.

Note that the conditions of Theorem 7 guarantee just a unique solvability for the
system (33). To prove the convergence of the approximate solution of Equation (31) to its
exact solution, one has to construct a more complicated algorithm.

In doing so, let p = 2. Divide the interval [−1, 1] into 2N subintervals at the points
tk = −1 + k/N, k = 0, 1, . . . , 2N. We seek an approximate solution of (31) in the form of a
piecewise continuous function

xN(t) =
2N

∑
k=0

αk ϕk(t), (36)

where ϕk(t), k = 0, 1, . . . , 2N, is a family of basis functions.
For nodes tk, k = 1, . . . , 2N − 1, the corresponding basis elements are determined by

ϕk(t) =



0, tk−1 ≤ t ≤ tk−1 +
1

N2 ,
N2

N−2 (t− tk−1)− 1
N−2 , tk−1 +

1
N2 ≤ t ≤ tk − 1

N2 ,
1, tk − 1

N2 ≤ t ≤ tk +
1

N2 ,
− N2

N−2 (t− tk+1)− 1
N−2 , tk +

1
N2 ≤ t ≤ tk+1 − 1

N2 ,
0, tk+1 − 1

N2 ≤ t ≤ tk+1,
0, t ∈ [−1, 1]\[tk−1, tk+1].

(37)

For boundary nodes tk, k = 0 and k = 2N, the corresponding basis elements are
defined as

ϕ0(t) =


1, −1 ≤ t ≤ −1 + 1

N2 ,
− N2

N−2 (t− t1)− 1
N−2 , −1 + 1

N2 ≤ t ≤ t1 − 1
N2 ,

0, t1 − 1
N2 ≤ t ≤ t1,

0, [−1, 1]\[t0, t1];

(38)

and

ϕ2N(t) =


0, −1 ≤ t ≤ tN−1 +

1
N2 ,

N2

N−2 (t− tN−1)− 1
N−2 , tN−1 +

1
N2 ≤ t ≤ 1− 1

N2 ,
1, 1− 1

N2 ≤ t ≤ 1.
(39)



Mathematics 2022, 10, 2207 13 of 22

The coefficients αk in (36) are determined from the following system of linear algebraic
equations and obtained by approximating the kernel h(t, τ) with a polygon and applying a
collocation procedure

a(tk)αk +
2N

∑
l=0

h(tk, tl)αl

1∫
−1

ϕl(τ)

(τ − tk)2 dτ = f (tk), (40)

k = 0, 1, . . . , 2N.
The system (40) can be rewritten as

a(tk)αk − h(tk, tk)2N2 ln(N−1)
N−2 αk + α0h(tk, t0)

t1∫
t0

ϕ0(τ)
dτ

(τ−tk)2 +

+
2N−1

∑
l=1

′αlh(tk, tl)
tl+1∫

tl−1

ϕl(τ)
dτ

(τ−tk)2 +

+ α2Nh(tk, t2N)
1∫

t2N−1

ϕ2N(τ)
dτ

(τ−tk)2 =

= f (tk), k = 1, . . . , 2N − 1,

a(t0)α0 − h(t0, t0)N2 ln(N−1)
N−2 α0 +

2N−1
∑

l=1
αlh(t0, tl)

tl+1∫
tl−1

ϕl(τ)
dτ

(τ+1)2 +

+ αNh(t0, t2N)
1∫

2N−1
ϕ2N(τ)

dτ
(τ+1)2

= f (t0),

a(t2N)α2N − h(t2N , t2N)N2 ln(N−1)
N−2 α2N +

2N−1
∑

l=1
αlh(t2N , tl)

l+1∫
l−1

ϕl(τ)
dτ

(τ+1)2 +

+ α0h(t2N , t0)
t1∫
−1

ϕ0(τ)
dτ

(τ−1)2

= f (t2N).

(41)

Here, ∑ ′ indicates a summation over l 6= k. The system (41) is equivalent to the system

(sgn h(tk, tk))

(
a(tk)αk − h(tk, tk)2N2 ln(N−1)

N−2 αk + α0h(tk, t0)
t1∫

t0

ϕ0(τ)
dτ

(τ−tk)2 +

+
2N−1

∑
l=1

′αlh(tk, tl)
tl+1∫

tl−1

ϕl(τ)
dτ

(τ−tk)2 + α2Nh(tk, t2N)
1∫

t2N−1

ϕ2N(τ)
dτ

(τ−tk)2

)
=

= (sgn h(tk, tk)) f (tk), k = 1, . . . , 2N − 1,

(sgn h(t0, t0))

(
a(t0)α0 − h(t0, t0)N2 ln(N−1)

N−2 α0 +
2N−1

∑
l=1

αlh(t0, tl)
tl+1∫

tl−1

ϕl(τ)dτ

(τ+1)2 +

+αNh(t0, t2N)
1∫

t2N−1

ϕ2N(τ)
dτ

(τ+1)2 = (sgn h(t0, t0)) f (t0),

(sgn h(t2N , t2N))
(

a(t2N)α2N − h(t2N , t2N)N2 ln(N−1)
N−2 α2N+

+
2N−1

∑
l=1

αlh(t2N , tl)
tl+1∫

tl−1

ϕl(τ)
dτ

(τ+1)2 +

+α0h(t2N , t0)
t1∫
−1

ϕ0(τ)
dτ

(τ−1)2

)
= (sgn h(t2N , t2N)) f (t2N).

(42)

The system (42) can be written in the matrix form

DX = F,
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where D = {dkl}, k, l = 0, 1, . . . , 2N, X = (x0, x1, . . . , x2N), F = ( f0, f1, . . . , f2N). The values
of {dkl}, {xk} and { fk} are determined by matching to the corresponding terms in (42).

The cubic logarithmic norm of the matrix D is estimated as

Λ2(D) = max

 max
1≤k≤2N−1

dkk +
2N−1

∑
l=1

′|h(tk, tl)|
tl+1∫

tl−1

dτ

(τ − tk)2 +

+ |h(tk, t0)|
t1∫
−1

dτ

(τ − tk)2 + |h(tk, t2N)|
1∫

t2N−1

dτ

(τ − tk)2

,

d00 +
2N−1

∑
l=1
|h(t0, tl)|

tl+1∫
tl−1

dτ

(τ + 1)2 + |h(t0, t2N)|
1∫

t2N−1

dτ

(τ + 1)2

,

d2N,2N +
2N−1

∑
l=1
|h(t2N , tl)|

tl+1∫
tl−1

dτ

(τ − 1)2 + |h(t2N , t0)|
t1∫
−1

dτ

(τ − 1)2

.

If Λ2(D) < 0, by Theorem 2 we can see that the system (31) has a unique solution x∗N(t)
and ‖D−1‖ ≤ 1/|Λ2(D)|. It is obvious that x∗N is a solution of the system of Equation (41).

Let x∗(t) and x∗N be solutions of (40) and (41) respectively.

Theorem 8. Let the following conditions be satisfied:

1. p = 2.
2. Equation (31) has the unique solution x∗(t) ∈W2(M), M = const.
3. For all t ∈ [−1, 1], it holds that h(t, t) 6= 0.

4. max

(
max

1≤k≤2N−1

(
dkk +

2N−1
∑

l=1

′|h(tk, tl)|
tl+1∫

tl−1

dτ
(τ−tk)2 +

+ |h(tk, t0)|
t1∫
−1

dτ
(τ−tk)2 + |h(tk, t2N)|

1∫
t2N−1

dτ
(τ−tk)2

)
,(

d00 +
2N−1

∑
l=1
|h(t0, tl)|

tl+1∫
tl−1

dτ
(τ+1)2 + |h(t0, t2N)|

1∫
t2N−1

dτ
(τ+1)2

)
,(

d2N,2N +
2N−1

∑
l=1
|h(t2N , tl)|

tl+1∫
tl−1

dτ
(τ−1)2 + |h(t2N , t0)|

t1∫
−1

dτ
(τ−1)2

))
< 0,

where ∑ ′l indicates a summation over l 6= k.

Then, the system of Equation (40) has a unique solution x∗N(t) and the following estimate
holds ‖x∗ − x∗N‖2 ≤ CN−1 ln N.

The system of Equation (35) can be solved by any numerical method. Examples of solving
linear hypersingular integral equations by the continuous operator method are given in [38].

Let us now study approximate methods for solving nonlinear hypersingular inte-
gral equations

a(t, x(t)) +
1∫
−1

h(t, τ, x(τ))dτ

(τ − t)p = f (t), p = 2, 4, 6, . . . (43)
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Consider Equation (43) with p = 2. An approximate solution of (43) is sought in the
form of a piecewise constant function (32), in which coefficients are determined from the
system of nonlinear algebraic equations

a(t̄k, αk) +
N−1

∑
l=0

∫
∆l

h(t̄k, t̄l , αl)

(τ − t̄k)2 dτ = f (t̄k), k = 0, 1, . . . , N − 1, (44)

where t̄k = −1 + (2k + 1)/N, k = 0, 1, . . . , N − 1.
Write Equation (44) in the operator form KN xN = FN , where xN = (α0, . . . , αN−1)

T ,
FN = ( f (t̄0), . . . , f (t̄N−1))

T ; KN is N × N a matrix.
We assume that Equation (44) has a solution x∗ in the ball B(x∗, R) in the space RN and

for any differentiable curve g(t) ∈ B(x∗, R), the inequality
t∫

0
Λ(K′N(g(τ)))dτ < 0 holds.

Then, the solution of the system of differential equations

dαk(t)
dt =

= −(sgn(a′2(t̄k, αk(t)) +
∫
∆k

h3(t̄k ,t̄k ,αk(τ))
(τ−t̄k)2 dτ))(a(t̄k, αk(t)) +

N−1
∑

l=0
αk(t)

∫
∆l

h3(t̄k ,t̄l ,αl(τ))
(τ−t̄k)2 dτ − f (t̄k)),

k = 0, 1, . . . , N − 1, converges to the solution x∗N = (α∗0 , . . . , α∗N−1) of the systems of
Equations (44).

Remark 2. If p is odd, the algorithms proposed and justified in [42] should be used as a basis to
construct computational process.

Remark 3. Study in Section 6 is based on numerical results provided in [38].

9. Continuous Method for Solving Gravity Exploration Problems

Introduce a Cartesian rectangular coordinate system with the 0z axis pointing down.
If an ore body is located at the depth of H, its lower surface coincides with the plane

z = H and the upper surface is described by function z(x, y) = H − ϕ(x, y) with a non-
negative function ϕ(x, y) and max ϕ(x, y) < H, then the gravitational field on Earth’s
surface is described by the equation

G
∞∫
−∞

∞∫
−∞

H∫
H−ϕ(ζ,η)

σ(ζ, η, ξ)ξdζdηdξ

((x− ζ)2 + (y− η)2 + ξ2)3/2 = f (x, y, 0), (45)

where G is the gravitational constant; σ(ζ, η, ξ) is the density of the body.
It is assumed that the density σ(ζ, η, ξ) ≡ 0 outside the body and that the density is

differentiable with respect to ξ.
To simplify further calculations, we assume that the density does not depend on ξ.

Then, we obtain the equation

G
∞∫
−∞

∞∫
−∞

σ(ζ, η)
[

1
((x−ζ)2+(y−η)2+(H−ϕ(ζ,η))2)1/2−

− 1
((x−ζ)2+(y−η)2+H2)1/2

]
dζdη = f (x, y, 0).

(46)

Linearization of Equation (46) leads to

G
∞∫
−∞

∞∫
−∞

σ(ζ, η)

[
Hϕ(ζ, η)

((x− ζ)2 + (y− η)2 + H2)3/2

]
dζdη = f (x, y, 0). (47)

Below, we assume that the density is constant and, for convenience, let Gσ(ζ, η) = 1/2π.
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Represent Equation (47) in the form

1
2π

∞∫
−∞

∞∫
−∞

[
Hϕ(ζ, η)

((x− ζ)2 + (y− η)2 + H2)3/2

]
dζdη = f (x, y, 0). (48)

The problem of logarithmic potential leads to nonlinear integral equations

G
b∫

a

σ(s) ln
(x− s)2 + H2

(x− s)2 + (H − z(s))2 ds = f (x), (49)

where z(ζ) is an function describing the surface of a body; H is the depth of body location.
Linearization of Equation (49) leads [43] to linear integral equation

2GσH
b∫

a

z(ζ)dζ

(x− ζ)2 + H2 = f (x). (50)

A detailed review of the literature of approximate methods for solving inverse prob-
lems of gravity exploration is given in [44–46].

In [47], the nonlinear Equation (45) is approximated by a simpler nonlinear equation

− 1
4π

∞∫
−∞

∞∫
−∞

σ(ζ, η)
(ϕ2(ζ, η)− 2(H − z)ϕ(ζ, η)) dζ dη(
(x− ζ)2 + (y− η)2 + (H − z)2

)3/2 = f (x, y, z). (51)

Here, H is the depth of the body location, σ(x, y) is its density, and H − ϕ(x, y) stands
for the contact surface shape.

Similarly, Equation (49) is approximated by

f (x, z) = − G
4π

l∫
−l

σ(ξ)
2(z− H)ϕ(ξ) +

(
ϕ(ξ)

)2

(x− ξ)2 +
(
z− H + ϕ(ξ)

)2 dξ. (52)

There are three unknown variables in (51). They are the depth of the gravitating body
H, the density of the body σ(x, y) and the shape of the contact surface H − ϕ(x, y). To find
them it is necessary to have three linear and independent information sources.

Assume that gravity field values are known on surfaces z = 0, z = −h1, z = −h2. De-
note f (x, y, 0), f (x, y,−h1), f (x, y,−h2) by f (x, y), f1(x, y), f2(x, y), respectively. Suppose
z = 0, z = −h1, z = −h2 in (51), and we have

1
4π

∞∫
−∞

∞∫
−∞

σ(ζ, η)
2Hϕ(ξ, η)− ϕ2(ξ, η)(

(x− ξ) + (y− η)2 + H2
)3/2 dξ dη = f (x, y),

1
4π

∞∫
−∞

∞∫
−∞

σ(ζ, η)
2(H + h1)ϕ(ξ, η)− ϕ2(ζ, η)(

(x− ξ)2 + (y− η)2 + (H + h1)2
)3/2 dξ dη = f1(x, y),

1
4π

∞∫
−∞

∞∫
−∞

σ(ζ, η)
2(H + h2)ϕ(ξ, η)− ϕ2(ξ, η)(

(x− ξ)2 + (y− η)2 + (H + h2)2
)3/2 dξ dη = f2(ξ, η).

(53)

Introduce functions σ(x, y)ϕ(x, y) = w1(x, y), σ(x, y)ϕ2(x, y) = w2(x, y). This way,
the system (53) is turned into a linear system of new variables
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1
4π

∞∫
−∞

∞∫
−∞

2Hw1(ξ, η)− w2(ξ, η)(
(x− ξ) + (y− η)2 + H2

)3/2 dξ dη = f (x, y),

1
4π

∞∫
−∞

∞∫
−∞

2(H + h1)w1(ξ, η)− w2(ζ, η)(
(x− ξ)2 + (y− η)2 + (H + h1)2

)3/2 dξ dη = f1(x, y),

1
4π

∞∫
−∞

∞∫
−∞

2(H + h2)w1(ξ, η)− w2(ξ, η)(
(x− ξ)2 + (y− η)2 + (H + h2)2

)3/2 dξ dη = f2(ξ, η).

(54)

Applying the Fourier transformation to (54), we have

4πe−H|ω|W1
(
ω1, ω2

)
− 2π

H e−H|ω|W2
(
ω1, ω2

)
= F

(
ω1, ω2

)
,

4πe−(H+h1)|ω|W1
(
ω1, ω2

)
− 2π

H+h1
e−(H+h1)|ω|W2

(
ω1, ω2

)
= F1

(
ω1, ω2

)
,

4πe−(H+h2)|ω|W1
(
ω1, ω2

)
− 2π

H+h2
e−(H+h2)|ω|W2

(
ω1, ω2

)
= F2

(
ω1, ω2

)
.

(55)

To solve the systems (54) and (55) we used a continuous method for solving nonlinear
operator equations similar to the methods for Fredholm integral equations and for systems
of algebraic linear equations described above. The detailed description of computations
and their justification is given in [47]. More details on the logarithmic potential case can be
found in [48].

In Figure 1, we show a numerical example of solving Equation (49) using the NNH.
In the works cited above, the NNH has been applied to nonlinear approximations of
the original equation. Here, we demonstrate an application of the NNH to the original
nonlinear equation with the logarithmic potential. Consider Equation (49) with the fol-

lowing parameters: a = −5, b = 5, G = 1, σ(s) = 1, H = 2, f (x) =
5∫
−5

ln((x− s)2 + 4)ds−

5∫
−5

ln((x− s)2 + (2− 3(s2 + 1)−1/4)2)ds. The exact solution reads z(x) = 3(x2 + 1)−1/4.

Equation (49) has been solved numerically by solving the Cauchy problem for the following
system of nonlinear differential equations

dαk(t)
dt

=
10
N

N−1

∑
l=0

ln
(tk − tl)

2 + H2

(tk − tl)2 + (H − αl(tk))2 + f (tk), k = 0, 1, . . . , N − 1,

where tk = −5 + 10k/N and the initial state αk(0) = 0.01. The system has been solved by
Euler’s method with time step h = 0.4. In Figure 1a, we show the final state for N = 180
after 100 iterations together with the exact solution. The numerical and the exact solutions
are indistinguishable in the scale of the figure. The corresponding numerical error is shown
in Figure 1b.

Figure 1. Exact z(x) and numerical zN(x) solutions of Equation (49): (a) the solutions, (b) the
numerical error for 180 spatial grid points, time step h = 0.4 for 100 iterations.
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10. Implementation and Numerical Experiments

We noted above that the continuous operator method has been applied for solving
inverse coefficients problems [49], hypersingular integral equations [38], and inverse prob-
lems in astrophysics [50]. In each of these works, the obtained results were compared with
the known ones.

The most significant advantages of the continuous method for solving nonlinear
operator equations compared with iterative methods are as follows:

(1) Implementation of the basic method does not require Gateaux or Frechet derivatives
of the operator to solve the equation; (2) Implementation of the modified method does
not require invertibility of the Gateaux or Frechet derivatives of the operator to solve the
equation; (3) The operator continuous method is based on Lyapunov’s stability theory
for solving differential equations. The method is stable for coefficient perturbations in
right-hand sides of equations.

In this section, the method’s efficiency is illustrated on the example of solving inverse
problems for logarithmic potential. Hereby, we solve the exact equation without any
simplifications. As far as the authors know, the inverse problem for logarithmic potential
has not been previously solved in such a formulation.

Let us return to Equation (49) and write it in a more convenient form:

G
1∫

0

σ(s) ln
(x− s)2 + H2

(x− s)2 + (H − u(s))2 ds = f (x), (56)

where u(s) is the function describing the surface of the body; σ(s) is the density of the
body, and H is the occurrence depth of the body.

Recall the issue. There is a gravitating body infinitely extended along the Y-axis
and homogeneous along y. In this case, it can be treated as two-dimensional and we
restrict ourselves to considering y = 0. Thus, we consider a body lying in the region
G : H − u(x) ≤ z ≤ H, 0 ≤ x ≤ 1. Let f (x), 0 ≤ x ≤ 1 stand for perturbation of the Earth’s
external field. It is required to restore the function u(x) given data about H, σ(x), f (x).

Similar problems are of great practical importance.
It was mentioned above that there are extensive studies devoted to the study of

equations of the form (56). They considered either linearized equations or nonlinear
approximations of Equation (56).

Below we demonstrate Hopfield neural networks for solving the original Equation (56).
Let ∆k, k = 0, 1, . . . , N − 1, and ∆k = [tk, tk+1), k = 0, 1, . . . , N − 1, ∆N−1 = [tN−1, tN ].

Here, tk = k/N, k = 0, 1, . . . , N. Introduce the nodes t̄k = (k + 1/2)/N, k = 0, 1, . . . , N − 1.
We will seek an approximate solution in the form of a piecewise constant function

uN(x) =
N−1

∑
k=0

αkψk(x),

where

ψk(x) =


1, x ∈ ∆k,
0, x ∈ [0, 1] \ ∆k,
k = 0, 1, . . . , N − 1.

The coefficients αk, k = 0, 1, . . . , N − 1 are determined from the system of nonlinear
algebraic equations

G
N

N−1

∑
l=0

σ(t̄l) ln
(t̄k − t̄l)

2 + H2

(t̄k − t̄l)2 + (H − uN(t̄l)2)
= f (t̄k), k = 0, 1, . . . , N − 1. (57)
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The system of Equation (57) is associated with the Cauchy problem

dαk(v)
dv

= γk(
G
N

N−1

∑
l=0

σ(t̄l) ln
(t̄k − t̄l)

2 + H2

(t̄k − t̄l)2 + (H − αl(v))2 − f (t̄k)), k = 0, 1, . . . , N − 1. (58)

The coefficients αk = ±1, k = 0, 1, . . . , N − 1 are selected so that the logarithmic norm
of the Jacobian of the right side of the system (58) is negative.

The system (58) can be solved by any numerical method.
Application of the Euler method leads to the iterative scheme

αk(m + 1) = αk(m) + hγk(
G
N

N−1

∑
l=0

σ(t̄l) ln
(t̄k − t̄l)

2 + H2

(t̄k − t̄l)2 + (H − αl(m)))2 − f (t̄k)), (59)

k = 0, 1, . . . , N − 1. Here, h is the step of the Euler method.
The algorithm described above was applied to solve the problem of restoring a gravi-

tating body with the data: σ = 2, H = 1.5, N = 180, h = 0.4, m = 100.
The exact solution of the problem is u(x) = 3/(2H(x2 + 1)). The function f (x) has

been computed by the quadrature rule

f (t̄k) =
2
N ∑

l=0
N − 1 ln

(t̄k − t̄l)
2 + H2

(t̄k − t̄l)2 + (H − u(t̄l))2 .

Detailed computational results are shown in Table 2.

Table 2. Convergence of the continuous method to solution of nonlinear integral Equation (56) by a
number of iterations, εk = |u(tk)−UN(tk)|.

tk UN(tk) u(tk) εk

0 5.011124 × 10−1 5.000000 × 10−1 1.112496 × 10−3

1 5.065099 × 10−1 5.055864 × 10−1 9.235025 × 10−4
10 5.582226 × 10−1 5.586206 × 10−1 3.980314 × 10−4

20 6.220347 × 10−1 6.230769 × 10−1 1.042146 × 10−3

30 6.913298 × 10−1 6.923077 × 10−1 9.778526 × 10−4

40 7.635971 × 10−1 7.641509 × 10−1 5.537315 × 10−4

50 8.349188 × 10−1 8.350515 × 10−1 1.326703 × 10−4

60 9.000700 × 10−1 9.000000 × 10−1 7.007729 × 10−5

70 9.529645 × 10−1 9.529411 × 10−1 2.333060 × 10−5

80 9.876083 × 10−1 9.878048 × 10−1 1.965277 × 10−4

90 9.995410 × 10−1 1.000000 4.589433 × 10−4

100 9.872545 × 10−1 9.878048 × 10−1 5.502841 × 10−4

110 9.527123 × 10−1 9.529411 × 10−1 2.287820 × 10−4

120 9.004980 × 10−1 8.999999 × 10−1 4.980633 × 10−4

130 8.361412 × 10−1 8.350515 × 10−1 1.089730 × 10−3

140 7.646853 × 10−1 7.641509 × 10−1 5.344244 × 10−4

150 6.900979 × 10−1 6.923077 × 10−1 2.209774 × 10−3

160 6.153842 × 10−1 6.230769 × 10−1 7.692711 × 10−3

170 5.429360 × 10−1 5.586207 × 10−1 1.568470 × 10−2

180 4.747546 × 10−1 5.000000 × 10−1 2.524530 × 10−2

11. Conclusions

The paper is devoted to approximate methods for solving linear and nonlinear equa-
tions of mathematical physics. In doing so, we used a spline-collocation method based
on a continuous method for solving nonlinear operator equations [19]. It has been shown
that a continuous method computational scheme for solving nonlinear operator equations
can be implemented with Hopfield neural networks. The efficiency and flexibility of the
approach has been shown by evaluating multiple integrals, and solving Fredholm integral
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equations and hypersingular integral equations. In addition to the listed examples, the
method was efficiently applied to a direct and inverse electromagnetic wave scattering
problem [51], amplitude-phase problem [52,53], solving Ambartsumian’s systems of equa-
tions (astrophysics) [50], solving inverse problems of gravity and magnetic prospecting [47],
and solving direct and inverse problems for parabolic and hyperbolic equations [54].

The authors intend to continue the study of the applicability of the continuous method
for solving nonlinear operator equations, Hopfield neural networks, to new classes of
equations. First, we want to use it for solving inverse problems in optics. Two points
should be taken into account. First, the authors started to study the amplitude-phase
problem [52,53]. Second, a couple of works devoted to applications of neural networks
for inverse problems of restoration have been published recently [55,56]. It is of interest to
investigate the possible use of the continuous operator method application for these issues.

As noted above, the continuous method for solving nonlinear operator equations is based
on Lyapunov’s stability theory. The authors have studied the stability of Hopfield neural
networks [22,57] and considered some issues of stabilization for dynamic systems [58,59]. A
new statement of the problem of stabilization for dynamical systems was given in [60,61]. The
authors intend to use this formulation in coming works.
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original draft, I.B.; Writing—review & editing, V.R. and A.B. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Galushkin, A.I. Theory of Neural Networks; IPRZHR: Moscow, Russia, 2000; 416p.
2. Gorban, A.N.; Dunin-Barkovsky, V.L.; Kirdin, A.N.; Mirkes, E.M.; Novokhod’ko, A.Y.; Rossiev, D.A.; Terekhov, S.A.; Senashova,

M.Y.; Tzargorodtzev, V.G. Neuroinformatics; Siberian Enterprise “Science”: Novosibirsk, Russia, 1998; 296p.
3. Gorbachenko, V.I. Neurocomputers in Solving Boundary Value Problems of Field Theory; Radio Engineering: Moscow, Russia, 2003;

336p.
4. Gupta, M.M.; Jin, L.; Hamma, N. Static and Dynamic Neural Networks from Fundamentals to Advanced Theory; John Wiley & Sons,

Inc.: Hoboken, NJ, USA, 2005; 722p.
5. Haykin, S. Neural Networks: A Comprehensive Foundation; Prentice Hall: Hoboken, NJ, USA, 1999; 842p.
6. Joya, G.; Atencia, M.A.; Sandoval, F. Application of high-order Hopfield neural networks to the solution of diophante equations.

Lect. Notes Comput. Sci. 1991, 540, 395–400.
7. Lagaris, I.E.; Likas, A.C.; Fotiadis, D.I. Artificial neural networks for solving ordinary and partial differential equations. IEEE

Trans. Neural Netw. 1998, 9, 987–1000. [CrossRef] [PubMed]
8. Lagaris, I.E.; Likas, A.C.; Papageorgiou, D.G. Neural-network methods for boundary value problems with irregular boundaries.

IEEE Trans. Neural Netw. 2000, 11, 1041–1049. [CrossRef]
9. Lee, H.; Kang, I.S. Neural algorithm for solving differential equations. J. Comput. Phys. 1990, 91, 110–131. [CrossRef]
10. Mehdi, D.; Mojtaba, N.; Menhaj, M.B. Numerical solution of Helmholtz equation by the modified Hopfield finite difference

technique. Numer. Partial Differ. Equ. 2009, 25, 637–656.
11. Nesterenko, B.B.; Novotarsky, M.A. Solution of boundary value problems on discrete cellular neural networks. Artif. Intell. 2008,

3, 568–578.
12. Tarkhov, D.A. Neural Networks as a Means of Mathematical Modeling; Radio Engineering: Moscow, Russia, 2006; 48p.
13. Hopfield, J.J. Neural Networks and Physical Systems with Emergent Collective Computational Abilities. Proc. Natl. Acad. Sci.

USA 1982, 79, 2554–2558. [CrossRef]
14. Hopfield, J.J.; Tank, D.W. Neural Computation of decision in Optimization problems. Biol. Cybern. 1985, 52, 141–152. [CrossRef]
15. Tank, D.W.; Hopfield, J. Simple Neural Optimization: An A/D Converter, a Single Decision Cir- cuit and Linear Programming

Circuit. IEEE Trans. Circuit Syst. 1991, 33, 137–142.
16. Jang, J.S.; Lee, S.Y.; Shin, S.Y. An Optimization Network for Solving a Set of Simultaneous Linear Equations. In Proceedings of the

IJCNN International Joint Conference on Neural Networks, Baltimore, MD, USA, 7–11 June 1992; pp. 516–521.
17. Mishra, D., Kalra, P.K. Modified Hopfield Neural Network Approach for Solving Nonlinear Algebraic Equations. Eng. Lett. 2007,

14, 135–142.

http://doi.org/10.1109/72.712178
http://www.ncbi.nlm.nih.gov/pubmed/18255782
http://dx.doi.org/10.1109/72.870037
http://dx.doi.org/10.1016/0021-9991(90)90007-N
http://dx.doi.org/10.1073/pnas.79.8.2554
http://dx.doi.org/10.1007/BF00339943


Mathematics 2022, 10, 2207 21 of 22

18. Atencia, M.; Joya, G.; Sandoval, F. Hopfield Neural Networks for Parametric Identification of Dynamical Systems. Neural Process.
Lett. 2005, 143–152. [CrossRef]

19. Boikov, I.V. On a continuous method for solving nonlinear operator equations. Differ. Equ. 2012, 48, 1308–1314. [CrossRef]
20. Potapov, A.A.; Gilmutdinov, A.K.; Ushakov P.A. Fractal Elements and Radio Systems: Physical Aspects; Radio Engineering: Moscow,

Russia, 2009; 200p.
21. Eterman, I.I. Analogue Computers; Pergamon Press: New York, NY, USA, 1960; 264p.
22. Boikov, I.V. Stability of Hopfield neural networks. Autom. Remote Control. 2003, 64, 1474–1487. [CrossRef]
23. Boikov, I.V. Stability of Solutions of Differential Equations; Publishing House of Penza State University: Penza, Russia, 2008; 244p.
24. Daletskii, Y.L.; Krein, M.G. Stability of Solutions of Differential Equations in Banach Space; Nauka: Moscow, Russia, 1970; 536p.
25. Lozinskii, S.M. Note on a paper by V.S. Godlevskii. USSR Comput. Math. Math. Phys. 1973, 13, 232–234. [CrossRef]
26. Kantorovich, L.V.; Akilov, G.P. Functional Analysis in Normed Spaces; Pergamon Press: Oxford, UK, 1982; 604p.
27. Krasnoselskii M.A.; Vainikko G.M.; Zabreiko P.P.; Rutitcki J.B.; Stecenko V.J. Approximated Solutions of Operator Equations; Walters

and Noordhoff: Groningen, The Netherlands, 1972; 484p.
28. Gavurin, M.K. Nonlinear functional equations and continuous analogues of iterative methods. Izv. Univ. Math. 1958, 5, 18–31.
29. Puzynina, T.P. Modified Newtonian Schemes for the Numerical Study of Quantum Field Models. Abstract of DoS Thesis, Tver

State University, Tver, Russia, 2003.
30. Puzynin, I.V.; Boyadzhiev, T.L.; Vinitsky, S.I.; Zemlyanaya, E.V.; Puzynina, T.P.; Chuluunbaatar, O. On the methods of computa-

tional physics for the study of models of complex physical processes Phys. Elem. Part. At. Nucl. 2007, 38, 144–232.
31. Boikov, I.V. On the stability of solutions of differential and difference equations in critical cases. Soviet Math. Dokl. 1990, 42,

630–632.
32. Arnold, V.I. On functions of three variables. Dokl. AN SSSR 1957, 144, 679–681.
33. Kolmogorov, A.N. On the representation of continuous functions of several variables as superpositions of continuous functions of

one variable and addition. Dokl. AN SSSR 1957, 114, 953–956.
34. Kurkova, V.; Sanguineti, M. Bounds on rates of variable. Basis and neural network approximations. IEEE Trans. Inf. Theory 2001,

47, 2659–2665. [CrossRef]
35. Strongin, R.G.; Sergeev, Y.D. Global Optimization with Non-Convex Constants. Sequential and Parallel Algorithms; Kluwer Academic

Publishers: Dordrecht, The Netherlands, 2000; 728p.
36. Boykov, I.V. Optimal Function Approximation Methods and Calculation of Integrals; Publishing house of Penza State University: Penza,

Russia, 2007; 236p.
37. Boikov, I.V.; Roudnev, V.A.; Boikova, A.I. Approximate solution of problems of mathematical physics on Hopfield neural networks.

Neurocomput. Dev. Appl. 2013, 10, 13–22.
38. Boykov, I.V.; Roudnev, V.A.; Boykova, A.I.; Baulina, O.A. New iterative method for solving linear and nonlinear hypersingular

integral. Appl. Numer. Math. 2018, 127, 280–305. [CrossRef]
39. Hadamard, J. Lectures on Cauchy’s Problem in Linear Partial Differential Equations; Dover Publication Inc.: New York, NY, USA, 1952;

334p.
40. Chikin, L.A. Special cases of the Riemann boundary value problems and singular integral equations. Sci. Notes Kazan State Univ.

1953, 113, 53–105.
41. Boykov, I.V.; Ventsel, E.S.; ; Roudnev, V.A.; Boykova, A.I. An approximate solution of nonlinear hypersingular integral equations.

Appl. Numer. Math. 2014, 86, 1–21. [CrossRef]
42. Boykov, I.V.; Boykova, A.I. Approximate solution of hypersingular integral equations with odd singularities of integer order.

Univ. Proc. Volga Reg. Phys. Math. Sci. Math. 2010, 3, 15–27.
43. Strakhov, V.N. Some questions of the plane problem of gravimetry. Proc. Acad. Sci. USSR Phys. Earth 1970, 12, 32–44.
44. Boikov, I.V.; Boikova, A.I. Approximate Methods for Solving Direct and Inverse Problems of Gravity Exploration; Publishing House of

the Penza State University: Penza, Russia, 2013; 510p.
45. Mudretsova, E.A.; Veselov, K.E. (Eds.) Gravity Exploration; Nedra: Moscow, Russia, 1990; 607p.
46. Zhdanov, M.S. Integral Transforms in Geophysics; Springer: Berlin/Heidelberg, Germany, 1988; 350p.
47. Boikov, I.V.; Ryazantsev, V.A. On Simultaneous Restoration of Density and Surface Equation in an Inverse Gravimetry Problem

for a Contact Surface. Numer. Anal. Appl. 2020, 13, 241–257. [CrossRef]
48. Boikov, I.V.; Boikova, A.I.; Baulina, O.A. Continuous Method for Solution of Gravity Prospecting Problems. In Practical and

Theoretical Aspects of Geological Interpretation of Gravitational, Magnetic and Electric Fields; Nurgaliev D., Khairullina N., Eds.;
Springer: Cham, Switzerland, 2019; pp. 55–68.

49. Boikov, I.V.; Ryazantsev, V.A. An Approximate Method for Solving Inverse Coefficient Problem for the Heat Equation. J. Appl. Ind.
Math. 2021, 15, 175–189. [CrossRef]

50. Boykov, I.V.; Pivkina, A.A. Iterative methods of solution Ambartsumyan’s equations. Part 2. Univ. Proc. Volga Reg. Phys. Math.
Sci. Math. 2021, 4, 71–87.

51. Boykov, I.V.; Roudnev, V.A.; Boykova, A.I.; Stepanov, N.S. Continuous operator method application for direct and inverse
scattering. Zhurnal SVMO 2021, 23, 247–272. [CrossRef]

52. Boikov, I.V.; Zelina, Y.V. Approximate Methods of Solving Amplitude-Phase Problems for Continuous Signals. Meas. Tech. 2021,
64, 386–397. [CrossRef]

http://dx.doi.org/10.1007/s11063-004-3424-3
http://dx.doi.org/10.1134/S001226611209008X
http://dx.doi.org/10.1023/A:1026056104067
http://dx.doi.org/10.1016/0041-5553(73)90144-4
http://dx.doi.org/10.1109/18.945285
http://dx.doi.org/10.1016/j.apnum.2018.01.010
http://dx.doi.org/10.1016/j.apnum.2014.07.002
http://dx.doi.org/10.1134/S1995423920030040
http://dx.doi.org/10.1134/S1990478921020010
http://dx.doi.org/10.15507/2079-6900.23.202103.247-272
http://dx.doi.org/10.1007/s11018-021-01944-y


Mathematics 2022, 10, 2207 22 of 22

53. Boikov, I.V.; Zelina, Y.V.; Vasyunin, D.I. Approximate methods for solving amplitude-phase problem for discrete signals. J. Phys.
Conf. Ser. 2021, 2099, 012002. [CrossRef]

54. Boikov, I.V.; Ryazantsev, V.A. On an iterative method for solution of direct problem for nonlinear hyperbolic differential equations.
Zhurnal SVMO 2020, 22, 155–163. [CrossRef]

55. Yin, W.; Yang, W.; Liu, H. A neural network scheme for recovering scattering obstacles with limited phaseless far-field. J. Comput.
Phys. 2020, 417, 109594. [CrossRef]

56. Gao, Y.; Hongyu, L.; Wang, X.; Zhang, K. On an artificial neural network for inverse scattering problems. J. Comput. Phys. 2022,
448, 110771. [CrossRef]

57. Boykov, I.; Roudnev, V.; Boykova, A. Stability of Solutions to Systems of Nonlinear Differential Equations with Discontinuous
Right-Hand Sides: Applications to Hopfield Artificial Neural Networks. Mathematics 2022, 10, 1524. [CrossRef]

58. Boikov, I.V. The Brockett stabilization problem. Autom. Remote 2005, 66, 745–751. [CrossRef]
59. Boykov, I.V.; Krivulin, N.P. Methods for Control of Dynamical Systems with Delayed Feedback. J. Math. Sci. 2021, 255, 561–573.

[CrossRef]
60. Halik, A.; Wumaier, A. Synchronization on the non-autonomous cellular neural networks with time delays. J. Nonlinear Funct.

Anal. 2020, 2020, 51.
61. Hao, J.; Zhu, W. Architecture self-attention mechanism: Nonlinear optimization for neural architecture search. J. Nonlinear Var.

Anal. 2021, 5, 119–140.

http://dx.doi.org/10.1088/1742-6596/2099/1/012002
http://dx.doi.org/10.15507/2079-6900.22.202002.155-163
http://dx.doi.org/10.1016/j.jcp.2020.109594
http://dx.doi.org/10.1016/j.jcp.2021.110771
http://dx.doi.org/10.3390/math10091524
http://dx.doi.org/10.1007/s10513-005-0118-x
http://dx.doi.org/10.1007/s10958-021-05393-4

	Introduction
	Notation and Basic Definitions
	Continuous Methods for Solving Operator Equations
	Representation of Functions of Multiple Variables on Hopfield Neural Networks 
	Multiple Integrals' Evaluations on Hopfield Neural Networks
	Approximate Solution of Systems of Algebraic Equations on Hopfield Neural Networks
	Approximate Solutions for Fredholm Integral Equations on Hopfield Neural Networks 
	 Approximate Solution of Linear Hypersingular Integral Equations on Hopfield Neural Networks
	Continuous Method for Solving Gravity Exploration Problems
	Implementation and Numerical Experiments
	Conclusions
	References

