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Abstract: In this paper, an improvement to the mid-point method is contributed for finding the
square root of a matrix as well as its inverse. To this aim, an iteration scheme to find this matrix
function is constructed, and its error and stability estimates are provided to show the theoretical
rate of convergence. Our higher-order method can compete with the existing iterative methods of a
similar nature. This is illustrated in numerical simulations of various sizes.
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1. Introductory Notes

A matrix function is a type of function that obtains matrices (mostly square ones)
and maps them into matrices of the same dimensions. There are several definitions in
the literature ([1], Chapter 1) for defining the functions of matrices, among which the
Jordan canonical form, Cauchy integral, as well as a definition based on the Hermite matrix
polynomials are of special interest.

Apart from such standard procedures to compute matrix functions, iterative methods
are significant as long as it is required to compute them when the entries are changing
over time or when a sharp initial approximation is available in some applications (for more
information, see [2,3]).

In this work, the application of iteration methods for finding matrix square roots is
considered and discussed in detail. One of the motivations for this is the following fact.
Assume that one has a matrix differential equation as follows:

v′′(t) + Mv(t) = 0,

v(0) = v0, v′(0) = v′0(0),
(1)

where v(t) is a real value function and the exact solution can be obtained as follows (by
considering

√
M as any square roots of M):

v(t) = cos (
√

Mt)v0(0) + M−1/2 sin (
√

Mt)v′0(0). (2)

Mathematics 2022, 10, 2200. https://doi.org/10.3390/math10132200 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10132200
https://doi.org/10.3390/math10132200
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-6470-382X
https://orcid.org/0000-0002-5829-8634
https://doi.org/10.3390/math10132200
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10132200?type=check_update&version=1


Mathematics 2022, 10, 2200 2 of 11

As can be observed from Equation (2), both the principal square root and its inverse
are required to find the numerical solution. Note that M ∈ Cn×n has a square root if no two
terms are the same odd integer in the ascent sequence of integers t1, t2, · · · , given in [4]:

ti = dim(null(Mi))− dim(null(Mi−1)). (3)

The rich variety of iteration schemes for calculating the square root of a matrix (see, for
example, [5] and the references cited) with their widely differing computational stability
features are a challenging topic of investigation in their own right. As an illustration,
an application of the matrix square root is in the solution to the algebraic Riccati matrix
equations, as discussed recently in [6].

This paper proposes a new higher-order scheme for calculating the square root and
its associated inverse of a suitable matrix. It is illustrated and proven that under some
conditions, the solver converges globally to the square root. The method converges with
the fourth order of convergence to the matrix square root.

It is necessary to recall some important facts about the matrix sign function, which has
a clear relationship with the matrix square root. A significant fact is that although sign(M)
is the unit matrix square root (I), it is unequal to −I or I unless the spectrum of M is totally
in the open right or left half-plane(s), respectively [7]. Therefore, sign(M) is a non-primary
square root of I. This function is defined via the Cauchy integral as follows:

sign(M) = S =
2
π

∫ ∞

0
(t2 I + M2)−1dt. (4)

It should also be noted that a variety of mathematical problems which are not related
to nonlinear equations at first sight can be rewritten to find the solutions to nonlinear
equations in special spaces (e.g., in operator form). As an illustration, solving nonlinear
stochastic differential equations [8,9] with semi-analytic methods can be accomplished
with Chaplygin-type solvers, which are in fact part of Newton’s method in some operator
formats (for more information, see [10]).

Here, iteration schemes are the major concentration. In fact, such iterative matrix
methods considering an appropriate initial matrix are fixed point-type methods or Newton-
type schemes that produce a convergent sequence of matrices. The relation between the
iteration schemes for the sign matrix and the root-finding methods is unclear at first sight,
but many sign finders are derived via the application of root solvers to the following
nonlinear equation:

g(x) = x2 − 1 = 0, (5)

where g : D ⊆ C→ C is a scalar function.
The remaining structure of this article is as follows. Section 2 furnishes some of the

existing iterative methods of various orders to compute the matrix sign and the square
root. The proposed method is required mainly in the context of symmetric positive definite
matrices. Section 3 proposes a mid-point-type method for finding the square root and its
inverse. The relation to the matrix sign as well as its global convergence are illustrated.
Then, the convergence of the proposed scheme is given. The convergence rate along
with its asymptotical stability are brought forward in detail. The applicability of the
iterative methods as well as its reciprocal for finding the square roots of matrices are
illustrated and tested in Section 4. To establish the efficiency of the new scheme, we employ
numerical experiments of arbitrary dimensions. The numerical results uphold the analytical
discussion of this article. Finally, in Section 5, the conclusions are drawn.

2. Existing Iterative Methods

Applying the classic Newton scheme to Equation (5) yields the following scheme for
the matrix sign [11]:

Hk+1 =
1
2

(
Hk + H−1

k

)
. (6)
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Here, the operator H is used to show the iterates in the iterative method. In a similar
manner, the Newton scheme for the square root of a matrix can be written as follows:

Hk+1 =
1
2
[Hk + MH−1

k ], (7)

with an appropriate initial matrix H0. The scheme in Equation (7) suffers from instability as
long as the initial matrix is not chosen well or the input matrix has some special structures.

To have stability and higher rates, several methods have been proposed in the literature.
A second-order method based on the Newton method (7) is given as follows [12]:

Z0 = I, H0 = M, k = 0, 1, · · · ,
Hk+1 = 1

2 [Hk + Z−1
k ],

Zk+1 = 1
2 [Zk + H−1

k ].
(8)

The scheme in Equation (8) is stable and produces {Hk} that converges to M1/2.
Another well-known iteration is due to the cyclic reduction algorithm, which is expressed
as follows [13]: 

Z0 = 2(I + M), H0 = I −M, k = 0, 1, · · · ,

Hk+1 = −HkZ−1
k Hk,

Zk+1 = Zk − 2HkZ−1
k Hk.

(9)

The sequence {Zk} tends toward 4M1/2 in the convergence phase and calculates
only M1/2.

3. Improved Mid-Point Method for the Matrix Square Root
3.1. An Improved Mid-Point Method

It is well known that the mid-point solver has the cubical convergence rate to solve
nonlinear equations, which is an improvement over the well-known Newton’s method.
Adding one extra sub-step via the divided difference approximation can yield the following
improved mid-point type method for solving Equation (5):

yk = tk − 1
2

g(tk)
g′(tk)

,

hk = tk −
g(tk)
g′(yk)

,

tk+1 = hk −
g(hk)

g[hk ,yk ]
, t0 ≥ 0,

(10)

where g[a, b] := (a− b)−1(g(a)− g(b)).
Noting that the iterative solver in Equation (10) does not satisfy the Kung–Traub

conjecture regarding the construction of iterative schemes without memory to solve equa-
tions [14], but it has an important feature. As a matter of fact, if we pursue the optimality of
the iterative solvers for nonlinear equations, then we lose the global convergence behavior
in solving Equation (5), which clearly limits the matrix application of such solvers. Hence,
Equation (10) was designed to be not only an improvement over the mid-point method
and possess a higher rate of convergence but also to reach global convergence behavior:

Theorem 1. Assume that x∗ ∈ D is a simple root of the smooth enough nonlinear function
g : D ⊆ C → C. If the starting value t0 is close enough to the root, then the iterative method
(Equation (10)) has the following error equation:

ek+1 =
d3

2
2
− d2d3

8
e4

k +O(e
5
k), (11)

where ek = tk − x∗ and dj =
g(j)(x∗)
j!g′(x∗) .
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Proof. The proof is based on Taylor expansions and is straightforward. Hence, it has
been omitted.

3.2. Construction for the Sign Function

Now, by using Equation (10) to solve the problem in Equation (5) and a naive extension
to the matrix environment, one may construct a higher-order matrix iterative scheme to
calculate the sign as follows:

Hk+1 = Hk

(
7I + 22H2

k + 3H4
k

)[
I + 18H2

k + 13H4
k

]−1
, (12)

with the starting value given for a non-singular square complex matrix as follows:

H0 = M. (13)

It is noteworthy that, in a similar manner, the reciprocal form can be used and written
as follows:

Hk+1 =
(

I + 18H2
k + 13H4

k

)[
Hk

(
7I + 22H2

k + 3H4
k

)]−1
. (14)

3.3. Competitors from the Padé Family

An optimal family of solvers to compute the sign function was given in [15] based on
the Padé approximants to g(ζ) = 1/

√
(1− ζ) by considering ζ = 1− z2 as follows:

sign(z) = s =
z

(z2)1/2 =
z

(1− ζ)1/2 . (15)

If we consider m + n ≥ 1 and write the [m, n] approximant of Padé for g(ξ) as Pm,n(ξ)
Qm,n(ξ)

,
then it is possible to have

zk+1 =
zkPm,n(1− z2

k)

Qm,n(1− z2
k)

:= ϕ2m+1,2n, (16)

which tends toward ±1 while having a convergence rate of 1 + m + n. Here, P and Q are
the numerator and denominator of the Padé approximant, respectively.

In general, the family in Equation (16) (or its reciprocal), generated by the [m/m] and
[(m− 1)/m] Padé approximants, are convergent globally, and their order depends on k.

Some fourth-order methods from this family possessing global convergence can be
written as follows:

Hk+1 = [I + 6H2
k + H4

k ][4Hk(I + H2
k )]
−1, Padé [1,2] (17)

Hk+1 = [4Hk(I + H2
k )][I + 6H2

k + H4
k ]
−1. Reciprocal of Padé [1,2] (18)

It is remarked that the convergence rate is not the only important point in an iterative
scheme; the cost per iteration is also important for determining the total cost of the method.
By comparing Equations (12) and (14) to Equations (17) and (18), it is clear that all the
methods need four matrix-matrix multiplications and only one matrix inverse per cycle,
which means that Equations (12)–(14) are competitors to Padé variants of the same order
with global convergence.

3.4. Global Convergence

Investigating the global convergence for the proposed scheme is necessary, since no
iterative method for calculating the matrix sign or square root is useful if it lacks the global
convergence (see [16] for more information).

Here, an efficient way to ensure such a global convergence is to employ the theory of
attraction basins to check the convergence type. To this aim, a square in the complex plane
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is considered where [−2, 2]× [−2, 2] ∈ C. Then, this area is divided by a mesh at which
each point of the mesh is colored based on the root it converges. Note that it is colored
black in the case of divergence. The stopping criterion for the iterative methods in this
subsection is |g(xk)| ≤ 10−2. The results are given in Figures 1–3 and are shaded based on
the number of iterations. Some competitors from the Padé family are also plotted to show
the local convergence in contrast to the global convergence.

Here, although the iterative methods in Equations (7), (14), and (17) are globally
convergent, the basins for Equation (14) contains lighter areas, which shows it can arrive in
the convergence phase faster than its Padé competitor of the fourth order of convergence
when the cost (i.e., the number of matrix-by-matrix multiplications) and inverse per cycle
are the same. This superiority of the proposed scheme ensures its usefulness in solving
practical problems.

Figure 1. Attraction basins for Equation (7) on the left, Padé 0–3 in middle and Padé 0–4 to the right.

Figure 2. Attraction basins for Padé 1–2 on the left, Padé 1–3 in the middle and Padé 1–4 to the right.

Figure 3. Attraction basins for Padé 2–1 on the left, Padé 3–1 in the middle and (14) to the right.

3.5. Application to the Matrix Square Root

In order to use Equation (12) for our main target, an identity is used as follows [1]:

sign(M) = sign
([

0 M
I 0

])
=

[
0 M1/2

M−1/2 0

]
, (19)



Mathematics 2022, 10, 2200 6 of 11

which is actually the main connection between the matrix sign function and the matrix
square root. Here, M is a 2n× 2n matrix.

It is also mentioned that for an invertible matrix M without any eigenvalues on R−,
and using the proposed iteration(s), if MH0 = H0M, then we have the fact that all the
subsequent iterates commune with the original matrix M.

3.6. Error Estimate

Theorem 2. If M is an invertible matrix without any eigenvalues on R−, and H0 is sufficiently
close to M1/2 that it commutes with M, then the scheme in Equation (14) (or equivalently Equa-
tion (12)) converges to M1/2, and this convergence is of the fourth order.

Proof. Note that all diagonalizable or non-diagonalizable matrices have a Jordan canonical
decomposition form M = TJT−1, where the matrix J includes the Jordan blocks. Using
this fact and standard Jordan decomposition, one may find the following relation, which is
valid for the eigenvalues of the iterates for the steps from k to k + 1:

λi
k+1 =

(
1 + 18λi

k
2
+ 13λi

k
4)

×
[
λi

k

(
7 + 22λi

k
2
+ 3λi

k
4)]−1

, 1 ≤ i ≤ 2n, (20)

wherein si = ±1. The expression in Equation (20) reveals that, in general, the eigenvalues
are convergent to si = ±1. This means that

lim
k→∞

∣∣∣∣∣λi
k+1 − si

λi
k+1 + si

∣∣∣∣∣ = 0. (21)

After the convergence by Equation (21), and in order to find the convergence rate, we
assume that Dk = Hk(7I + Yk)(I + 3Yk). Thus, we can write

Hk+1 − S = (I + 18H2
k + 13H4

k )D−1
k − S

= [I + 18H2
k + 13H4

k − SDk]D−1
k

= [I + 18H2
k + 13H4

k − 7HkS− 22H3
k S− 3H5

k S]D−1
k

= [(Hk − S)4 − 3H5
k S5 + 12H4

k S4 − 18H3
k S + 12H2

k S2 − HkS3]D−1
k

= [(Hk − S)4 − 3HkS
(

H4 − 4H3
k S + 6H2

k S2 − 4HkS3 + I
)
]D−1

k
= [(Hk − S)4 − 3HkS(Hk − S)4]D−1

k
= (Hk − S)4[I − 3HkS]D−1

k .

(22)

It is now easy to take the appropriate norm from Equation (22) and find that

‖Hk+1 − S‖ ≤
(
‖D−1

k ‖‖I − 3HkS‖
)
‖Hk − S‖4, (23)

which shows a convergence rate of four for Equation (14). Note that the norm of sign(A)
can be large arbitrarily, though its eigenvalues are ±1. This completes the proof.

3.7. Asymptotical Stability

The stability discussion for Equation (14) is best addressed in the following theo-
rem. Theorem 3 follows from a general result [17,18] on the stability of “pure matrix
iterations”. The following two facts will also be used: S2 = I and S−1 = S:

Theorem 3. By using Equation (14) and similar assumptions on M or subsequently on M (to have
no pure imaginary eigenvalue), then {Hk}∞

k=0 with H0 = M is stable asymptotically.
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Proof. Let γk be a perturbation in the numerical solution of the scheme in the k-th iterate
and further assume that

H̃k = Hk + γk. (24)

We now consider a first-order error analysis which means implicitly that (γk)
i ≈ 0, i ≥

2. This is rational as long as γk is sufficiently small. It is now possible to write down

H̃k+1 =[I + 18H̃2
k + 13H̃4

k ][H̃k(7I + 22H̃2
k + 3H̃4

k )]
−1. (25)

For a sufficiently large value k (i.e., in the convergence phase), it is assumed that
Hk ≈ sign(M) = S. After extensive simplifications, we obtain

H̃k+1 ≈
(

S +
1
2

γk −
1
2

SγkS
)

. (26)

Using γk+1 = H̃k+1 − Hk+1, we can write

γk+1 ≈
1
2

γk −
1
2

SγkS. (27)

This can lead to the point that the iteration k + 1 is bounded. In other words, we have

‖γk+1‖ ≤
1
2
‖γ0 − Sγ0S‖. (28)

Therefore, the sequence {Hk}k=∞
k=0 , produced via Equation (14), is stable asymptotically.

This finishes the proof.

3.8. Scaling

Since iteration schemes are mostly slow at the beginning of the iterates due to the
choice of an initial matrix that is not sharp enough, it is possible to accelerate the process
by employing an approach called scaling. This process has been investigated before ([1],
Chapter 5.5) for Newton’s method based on computing an extra parameter adaptively in
each iterate by replacing Hk with µk Hk as follows:

µk =


|det(Hk)|

−1
n , (determinantal scaling),√

ρ(H−1
k )

ρ(Hk)
, (spectral scaling),√

‖H−1
k ‖
‖Hk‖

, (norm scaling).

(29)

Since the proposed method is of the fourth order, we revise Equation (29) as follows:

µk =

(
‖H−1

k ‖
‖Hk‖

)1/4

. (30)

Hence, an accelerated improved version of the mid-point solver using Equation (30)
for finding the matrix square root can be obtained as follows:

H0 = M,
H̄k = µk Hk, k ≥ 0,
H̄k+1 = H̄k

(
7I + 22H̄2

k + 3H̄4
k
)[

I + 18H̄2
k + 13H̄4

k
]−1,

(31)

Note that, in a similar manner, the reciprocal form can be used and written as follows:

H̄k+1 =
(

I + 18H̄2
k + 13H̄4

k

)[
H̄k

(
7I + 22H̄2

k + 3H̄4
k

)]−1
. (32)
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4. Benchmark Tests

The aim of this section is to evaluate the efficacy of the discussed iteration schemes
for finding the matrix square root and its inverse. All tests were performed on the same
computer and under the package of Wolfram Mathematica [19].

Here, the following iteration methods (Equations (7)–(9), (17), (18), (14) and (32),
denoted by NM, DB, CR, Pade12, Pade12-R, PM and APM, respectively) are compared
in terms of the stability and efficiency for finding matrix square roots. These solvers are
compared based on the following relative error in l∞:

Ek+1 =
‖Hk+1 − Hk‖∞

‖Hk+1‖∞
≤ ε. (33)

The following example is not only one test, since it includes different sizes of the input
matrices, and accordingly, four different cases are involved:

Example 1. To test the effectiveness of the variety of solvers here, we consider the following symmetric
positive definite (SPD) matrix of a size n and compute the square root and its inverse simultaneously:

M =



12 −5 −1 0 0

−5
. . . . . . . . . 0

−1
. . . . . . . . . −1

0
. . . . . . . . . −5

0 0 −1 −5 12


n×n

.

The results in this test are compared to Pade12 and Pade12-R of the same order of
convergence, coming from the Padé family of methods. Computational pieces of evidence
are brought forward in Figures 4 and 5 for Example 1 with ε = 10−6. For the tested
examples, the effectiveness of the obtained numerical results compared with some existing
methods can be seen, and it was observed that the PM and APM beat all their other
competitors by reaching the stopping termination as fast as possible. In fact, the results
reveal that PM of the fourth order of convergence was faster than Pade12 and Pade12-R of
the same order of convergence, while all had almost the same computational complexity.
PM mostly requires one fewer iterate, in contrast to Pade12 and Pade12-R, which state
a lower number of matrix matrix products and one less computation of the stopping
termination in Equation (33).

1 2 3 4 5 6 7

-10

-5

0

Number of iterates

L
o
g
o
f
s
to
p
te
rm
in
a
ti
o
n

□ Pade12

○ Pade12-R

▼ PM

▲ APM

◆ CR

■ DB

●

Figure 4. Cont.
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○ Pade12-R
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●

Figure 4. Numerical comparisons for finding the matrix square root in Example 1 when n = 100 at
the top and n = 200 at the bottom.

5 10 15 20

-14
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-10
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-2

0

Number of iterates

L
o
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o
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s
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n

□ Pade12

○ Pade12-R
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5 10 15 20

-12

-10

-8

-6

-4

-2

0

2

Number of iterates

L
o
g
o
f
s
to
p
te
rm
in
a
ti
o
n

□ Pade12

○ Pade12-R

▼ PM

▲ APM

◆ CR

■ DB

● NM

Figure 5. Numerical comparisons for finding the matrix square root in Example 1 when n = 300 at
the top and n = 1000 at the bottom.

To ease the understanding of the proposed algorithm for computing the matrix square
root and its inverse simultaneously, here, we provide the written Mathematica code for PM
in solving Example 1 when n = 1000:

ClearAll["Global‘*"];
n = 1000;
M = SparseArray[{{i_, i_} -> 12, {i_, j_} /; Abs[i - j] == 1 -> -5.,
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{i_, j_} /; Abs[i - j] == 2 -> -1.}, {n, n}, 0.];
PositiveDefiniteMatrixQ[M]
Id = SparseArray[{{i_, i_} -> 1.}, {n, n}];
tolerance = 10^-6; max = 20;

M = SparseArray@ArrayFlatten[{{0, M}, {Id, 0}}];
Id = SparseArray[{{i_, i_} -> 1.}, {2 n, 2 n}];
Y[0] = M; k = 0; R5[0] = 0.1;

While[
k < max && R5[k] >= tolerance,
Y2 = SparseArray[Y[k].Y[k]];
Y4 = SparseArray[Y2.Y2];
l1 = SparseArray[(Y[k].(7 Id + 22 Y2 + 3 Y4))];
l2 = SparseArray@ArrayFlatten[

{{0, Inverse@l1[[n + 1 ;; 2 n, 1 ;; n]]},
{Inverse@l1[[1 ;; n, n + 1 ;; 2 n]], 0}}];

Y[k + 1] = SparseArray[(Id + 18 Y2 + 13 Y4).l2];
R5[k + 1] = Norm[Y[k + 1] - Y[k], Infinity]/
Norm[Y[k + 1], Infinity];

k++]; // AbsoluteTiming
k
Table[R5[m], {m, 1, k}]
R5[k]
Y[k][[1 ;; n, n + 1 ;; 2 n]];
Y[k][[n + 1 ;; 2 n, 1 ;; n]];

5. Conclusions

The calculation of the square root of a matrix and its inverse are of importance not
just from the theoretical point of view but also from the numerical and application view-
points. The computation is required mainly in the context of symmetric positive definite
matrices. A common application is in the solution of matrix differential equations of the sec-
ond order (Equation (1)) and another well-known one in an application at which the inverse
matrix square root turns up for the calculation of tight windows of Gabor frames [20].

In this paper, a fourth-order variant of the mid-point method for finding the square
root of a matrix as well as its inverse, based on a stable iteration for the matrix sign, was
discussed in detail. The convergence rate as well as the scaling of the scheme were given.
Finally, numerical simulations were performed to support the theoretical discussions. One
of the forthcoming works is to employ the efficient iterations in Equations (12) and (14) in
the context of fractional Sturm–Liouville problems [21] in order to devise iterative methods
that tackle those problems more efficiently.
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