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Abstract: Space debris near Earth severely interferes with the development of space, and cataloging
space objects is increasingly important. Since optical telescopes and radars used to detect space
debris only provide short-arc observations, mathematical algorithms are needed to solve problems
in the correlation of observations. In this work, an efficient mathematical algorithm based on J2

analytic solutions is put forward. Initial orbit determination (IOD) serves as the starter and orbit
determination (OD) with the weighted least-squares method (WLSM) is used to improve the accuracy
of the estimated orbit. Meanwhile, the effect of the weight of different observation types is analyzed.
The correlation criteria for bistatic radar observations are accordingly developed. Lastly, the variation
in and evolution of the error of bistatic radar ranging are discussed.

Keywords: space debris; bistatic radar; correlation; J2 perturbation
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1. Introduction

The application of space technologies is the theme of this era. Growing uncontrolled
space debris and satellites greatly increase the possibility of collisions year by year. The
collision of Iridium 33 and Cosmos 2251 is believed to be the first accidental hypervelocity
collision of two intact satellites [1]. In August 2016, significant orbit and attitude changes
occurred to the Sentinel-1A, which were later proved to be the result of a 1 cm space debris
impact [2]. Therefore, there have been many efforts to calculate collision probabilities [3],
for collision avoidance [4] and to design space debris removal missions [5]. Above all,
cataloging space objects with precise orbits is needed for the good performance of collision
avoidance operations and space debris removal missions.

Restricted to the characteristics of current optical or radar surveys for space debris,
only short-arc observations, also called as tracklets, can be obtained. If a tracklet can
be correlated to one of the cataloged orbits, the tracklet can be used to update the orbit.
The left tracklets that are uncorrelated (UCT) are either newly generated debris or an
operational satellite after maneuvering. For UCTs, tracklet correlation is usually first
needed to accomplish cataloging.

Milani [6] suggested the method of an admissible region (AR) using attributables
to solve the observation correlation of asteroids. Tommei and Milani [7] applied the
AR method to space debris in Earth orbit and generalized the method to radar cases.
Fujimoto [8] gave circular and zero-inclination solutions to the AR method. Farnocchia [9]
proposed a virtual debris algorithm based on the AR method. For many correlation works,
only two-body integrals were considered. However, Reihs [10] showed that correlation
without considering J2 perturbation is effective only when the time interval between
two measurements is very limited. Rehis [11] suggested a solution of the AR method
considering J2 perturbation.
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The Gaussian and Laplacian methods are the most classical IOD algorithms, and
they are used in this work. IOD algorithms such as Gibbs are used to deal with radar
observations. Details of these algorithms can be found in Escobal [12], Vallado [13], and
Liu [14]. Hill [15] took the IOD result as an initial value for an unscented Kalman filter. The
calculated orbits and covariances are propagated to a common epoch to accomplish the
comparison of orbits. A numerical integral has good precision in propagating orbits and
covariances, but the computation requirements are heavy. It is not quite good at dealing
with massive amount of tracklets considering the cost of time.

The Air Force Space Surveillance System (AFSSS) has achieved great success in the
past few decades because of the wide coverage and its ability to detect high-speed LEO ob-
jects. Therefore, continuous attention is being paid to fencelike radar systems. Huang [16]
investigated a large-scale distributed space surveillance radar system, and a tracklet as-
sociation scheme for LEO space debris observed by the double fence radar system was
produced [17].

At one step further than other UCTs correlation algorithms, J2 analytic solutions are not
only used in orbit calculation but also used in covariance propagation in this work. With J2
analytic solutions, the lack of accuracy by Keplerian integrals can be compensated for, and
the cost of time is still much less than that of the numerical integral. For monostatic radars,
traditional IOD methods are accurate enough when dealing with a single tracklet. However,
the same IOD methods are not quite suitable for the sum of ranges by bistatic radars; thus,
an extra OD step is added, and a direct correlation criterion to the observations is raised. The
effect of the weight of different observation types in the OD process is analyzed. The criteria
can eliminate beforehand outliers that might lead to an error in the correlation process.
Lastly, the variation in and evolution of the error of bistatic radar ranging are discussed.

2. Initial Orbit Determination for Tracklets Observed by Bistatic Radar

Given the geocentric position rT of a transmitting station, the geocentric position rR of
the receiving station and the corresponding topocentric position of the space debris ρT , ρR,
the geocentric position r of space debris can be expressed as r = ρT + rT or r = ρR + rR.
As shown in Figure 1, there are two types of observation for bistatic radars.

• angles observed by the receiving station, usually azimuth and elevation (A, E) in
topocentric horizontal coordinate system for radars;

• the sum of ranges by the transmitting station and receiving station, ρ = ρT + ρR.
ρT = ρT ρ̂T and ρR = ρRρ̂R, ρ̂T and ρ̂R are the unit vector of ρT and ρR, ρT and ρR
are the length of ρT and ρR. Sum of ranges ρ can be measured directly, but ρT and ρR
are unknown.

Radar ranging is based on the measurement of signal transmission time, and angles are
based on the mechanical measurements of an antenna. Different measurement principles
and equipment capabilities result in a difference in accuracy. In normalized units in which
the unit of distance is the radius of Earth, and the unit of angles is radian, the error of
angles is dozens of times larger than the error of radar ranging.

Traditional IOD methods can deal with monostatic radar ranging, but they are not
quite suitable for a sum of ranges by a bistatic radar. Two approximate approaches can be
used to obtain an initial orbit from bistatic radar observations.

• Angles only: Since a series of angle observations is sufficient for IOD, a sum of ranges
can be temporarily put aside. With Equation (1),

ρ̂R × r = ρ̂R × rR, (1)

ρR from the receiving station to the space debris can be eliminated; therefore, only
azimuth and elevation observed by the receiving station are used. The defect of this ap-
proach is that low-accuracy measurements are used, and high-accuracy measurements
are rejected.
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• ρR calculation: Since rR2T = rT − rR, ρ̂R and ρ are known with a simple geometric
calculation, ρR can be obtained. Then, the position of space debris can be calculated.
The problem of this approach is that the errors of angles are transferred to ρR.

Since a tracklet is usually short-arc with initial geocentric position and velocity (r0 =
r(t0), ṙ0 = ṙ(t0)) at t0 and prediction duration ∆t = t− t0, the geocentric position r(t) of
the space debris at t could be calculated by series expansion:

r(t) = F(r0, ṙ0, ∆t)r0 + G(r0, ṙ0, ∆t)ṙ0, (2)

where F and G are the polynomial function of ∆t. For the ρR calculation approach,
Equation (2) has 6 unknown variables (r0, ṙ0) and a known vector ρR. With at least 2
groups of measurements ρR(ti)(i = 1, 2, 3...), (r0, ṙ0) would be solvable.

By substituting Equation (2) into Equation (1),

ρ̂R × (Fr0 + Gṙ0) = ρ̂R × rR. (3)

For the angles-only approach, Equation (3) has 6 unknown variables (r0, ṙ0) and 2
known observations (A, E). With at least 3 groups of measurements ρ̂(ti)(i = 1, 2, 3...), (r0,
ṙ0) would be solvable.

Figure 1. Bistatic radar observation.

3. Orbit Improvement with Weighted Least Square Method

The angles-only and ρR calculation approaches can both provide a set of the estimated
state, but the accuracies of the two approaches much depend on the quality of angle mea-
surements. For the angles-only approach, the random noise of (A, E) is directly absorbed
by the estimated state. For the ρR calculation approach, the random noise of (A, E) is
absorbed by ρR and also leads to a huge error in the estimated state.

With the weighted least-squares method (WLSM) and an accurate measurement model,
the effects of the random noise of measurements can be reduced, measurements with large
error can be stripped out, and ρ can be appropriately calculated. Therefore, the accuracy of
the orbit can be improved.

3.1. Weighted Least-Squares Method

Suppose that zi is the observation at ti, xi is the calculated state at ti, and h(xi) = hi(x0)
is the observation equation. The loss function is defined as

J(x0) =
N

∑
i=1
‖zi − h(xi)‖, (4)
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the result xest
0 should satisfy

J(xest
0 ) = min

x0∈X0
J(x0) (5)

where X0 is the state-space of x0. For the least-squares method, either the position and
velocity or orbital elements could form the state vector of space debris. For analytic
solutions, the state of the space debris is usually expressed by orbital elements.

Define

Z = (z1, z2, ..., zn)
T , (6)

H(x0) = (h1(x0), h2(x0), ..., hn(x0))
T , (7)

∆Z = (∆z1, ∆z2, ..., ∆zn)
T = (z1 − h1(x0), z2 − h2(x0), ..., zn − hn(x0))

T . (8)

The loss function can also be expressed as

J(x0) = (Z− H(x0))
T(Z− H(x0)) = ∆ZT∆Z. (9)

Supposing that ∆x0 = x0 − xtrue
0 where xtrue

0 is the actual state at t0, we have

J(x0) =
N

∑
i=1
‖∂hi(x0)

∂x0
∆x0‖. (10)

If ∂H(x0)/∂∆x0 is nonsingular, there exists a solution

∆xest
0 =

[(
∂H(x0)

∆x0

)T(∂H(x0)

∆x0

)]−1(
∂H(x0)

∆x0

)T
∆Z (11)

which leads to ∂J(x0)/∂∆x0 = 0.
As mentioned in Section 2, the accuracies of ρ and (A, E) are different. Equal treatment

with different types of observations would lower the accuracy of the results, and a proper
weight is essential to data fusion. Thus, measurement errors σi(i = 1, 2, 3...) are put into
Equation (11) and form Equation (12).

∆xest
0 =

[(
∂H(x0)

∆x0

)T
W
(

∂H(x0)

∆x0

)]−1[(
∂H(x0)

∆x0

)T
W∆Z

]
(12)

where

W =



σ−2
1 0 ... 0 ... 0
0 σ−2

2 ... 0 ... 0
... ... ... ... ... ...
0 0 ... σ−2

i ... 0
... ... ... ... ... ...
0 0 ... 0 ... σ−2

n


. (13)

Since observation equation h(xi) is an equation with respect to xi, to calculate ∂hi(x0)/∂x0,
the state transition matrix φi is needed:

∂hi(x0)

∂x0
=

∂h(xi)

∂xi
φi, (14)

φi =
∂xi
∂x0

. (15)

3.2. Effect of Weight

Theoretical weight in WLSM is the accuracy of observation, as shown in Equation (13).
In practice, it is not easy to obtain the exact error of each observation while tracking and
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observing. The errors of observations are different since the error is affected by multiple
factors. Usually, a composite weight from experience and equipment performance is set for
each type of observation.

In this work, the relative weight between different types of observations could affect
the accuracy of a certain orbital element. Two stations, as shown in Table 1, and a satellite,
as shown in Table 2, were simulated to demonstrate the effect of observation weight. The
duration of the simulated tracklet was 1 min.

Table 1. Description of two simulated stations.

Simulated Stations Latitude (deg) Longitude (deg) Height (m)

Transmitting station 30 108 0
Receiving station 30 105 0

Table 2. Description of the simulated satellite.

Semi-Major Axis (m) Eccentricity Inclination (deg) RAAN (deg)

6,878,137.0 0.001 60.0 60.0

As discussed in Section 2, there are mainly two types of observation for bistatic radar,
and the accuracy of radar ranging is usually better than that of angles. From Equation (12),
the results of estimation change with the relative weight between different observations,
instead of the absolute weight of observations. In normalized units which the unit of
distance is the radius of Earth, and the unit of angles is radian, variation in the relative error
between the sum of ranges and azimuth (σρ/σA) was set from 0.1 to 0.02, and variation in
the relative error between elevation and azimuth (σE/σA) was set from 0.5 to 2.0. Like the
relative errors of observations being used to describe weight, the relative error between
different orbital elements is used to describe the accuracy of certain orbital element. By
setting the error of the estimated eccentricity as the reference, the relative error between
the semimajor axis and eccentricity (σa/σe) can represent the accuracy of the estimated
semimajor axis, and the relative error between inclination and eccentricity (σi/σe) can
represent the accuracy of the estimated inclination. The effects of weight on the accuracy of
estimated orbital elements are shown in Figure 2.

Figure 2 shows that the accuracy of the estimated semimajor axis increases with the
weight of radar ranging. This effect becomes stronger when σE 6= σA. On the other hand,
the accuracy of inclination decreases with the weight of radar ranging, and increases with
the weight of elevation.

Figure 2. Effect of weight on the accuracy of estimated orbital elements.
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4. Correlation Considering J2 Perturbation

The motion of space debris in terrestrial space is affected by all kinds of perturbations,
such as drag, solar radiation pressure, and the gravitational perturbations of the Sun and
Moon. Among all, the J2 term of Earth’s nonspherical perturbation has the strongest influence.

The J2 term represents the perturbation caused by the oblateness of Earth. The acceler-
ation of J2 perturbation is shown in Equation (16),

r̈J2 =



− 3
2 J2

GMeR2
e

r5
ec f

(
1− 5

z2
ec f

r2
ec f

)
xec f

− 3
2 J2

GMeR2
e

r5
ec f

(
1− 5

z2
ec f

r2
ec f

)
yec f

− 3
2 J2

GMeR2
e

r5
ec f

(
3− 5

z2
ec f

r2
ec f

)
zec f


. (16)

G is the gravitational constant, Me is the mass of Earth, Re is the radius of Earth, and
rec f = (xec f , yec f , zec f ) is the position of space debris in an Earth-centered fixed coordinate
system. J2 perturbation is not only considered in orbit prediction, but also in covariance
propagation in this work.

4.1. Orbit Propagation with J2 Perturbation

J2 perturbation causes a secular variation in the orbital plane (right ascension of
ascending node, Ω) and argument of perigee (ω) as shown in Equations (17) and (18):

Ω̇ = −3
2

J2

(
Re

p

)2
n cos i (17)

ω̇ =
3
2

J2

(
Re

p

)2
n
(

2− 5
2

sin2 i
)

(18)

where Re is the radius of Earth, n is the mean motion of a satellite, and p = a(1− e2).
Equation (19) shows that the mean motion (n) of space debris is affected by J2 perturbation,
but has no secular variation:

nJ2 = n +
3
4

J2

(
Re

a

)2
(

2− 3 sin2 i

p
3
2

)
. (19)

Since M = M0 + n(t − t0), variation in n leads to extra secular variation in mean
anomaly (M). Equation (20) gives the expression of Ṁ:

Ṁ = n +
3
2

nJ2

(
Re

p

)2(
1− 3

2
sin2 i

)√
1− e2. (20)
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With Equations (17)–(20), analytic state transition matrix φ = φ(0) + φ(1),

φ(0) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

φ
(0)
61 0 0 0 0 1


, (21)

φ(1) =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

φ
(1)
41 φ

(1)
42 φ

(1)
43 0 0 0

φ
(1)
51 φ

(1)
52 φ

(1)
53 0 0 0

φ
(1)
61 φ

(1)
62 φ

(1)
63 0 0 0


, (22)

where φ
(0)
61 is a function of (a0, ∆t), and φ

(1)
ij are functions of (a0, e0, i0, ∆t). φ(0) represents

the state transition of Keplerian motion, and φ(1) represents the effect of J2 perturbation.

4.2. Correlation of Tracklets

Assuming that there are n tracklets (1, 2, ...j, ..., k, ..., n), and each tracklet has more
than 3 groups of measurements, the correlation between the jth tracklet and one of the
measurements in the kth tracklet is taken as an example.

After IOD and OD with WLSM, an improved state (xj) could be obtained for the jth

tracklet. Propagating xj and the error of xj to the kth tracklet, observation (Aj
k, Ej

k, ρ
j
k) and

the error of observation (∆Aj
k, ∆Ej

k, ∆ρ
j
k) can be calculated. The error of xj by OD with only

one tracklet was much smaller than the actual deviation of xj. In order to more accurately

calculate (∆Aj
k, ∆Ej

k, ∆ρ
j
k), the empirical error of the estimated orbit with one tracklet is

needed.
Since the observation error (∆A, ∆E, ∆ρR) of the receiving station was pairwise or-

thogonal, (A, E, ρR) should conform to the restriction of the error ellipsoid as shown in
Figure 3.

If the jth and kth tracklets belong to the same satellite, (A, E, ρR)k should satisfy
Equation (23): (

Ak − Aj
k

m∆Aj
k

)2

+

(
Ek − Ej

k

m∆Ej
k

)2

+

(
(ρR)k − (ρR)

j
k

m(∆ρR)
j
k

)2

< 1, (23)

m is the coefficient absorbing the inaccuracy of dynamic models and the error growth in
propagation.

The error of bistatic radar ranging (∆ρ) is affected by three factors:

∆ρR the error produced by the receiving station;

∆ρT the error produced by the transmitting station;

∆ρs the systematic error between the receiving station and the transmitting station.

∆ρ = f (∆ρR, ∆ρT , ∆ρs), (24)

∆ρs is mainly decided by the performance of time synchronization between different
stations. According to Guo [18], timing with a global navigation satellite system (GNSS)
is about 0.1 ns. Thus, ∆ρs � ∆ρR, ∆ρT at present. Assuming that the variation in ∆ρR
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and ∆ρT is mainly affected by J2 perturbation, and Equation (24) can be approximated to
Equation (25) in one tracklet:

ρR
ρ
∼=

∆ρR
∆ρ

, (25)

Equation (23) can be transformed into Equation (26),(
Ak − Aj

k

m∆Aj
k

)2

+

(
Ek − Ej

k

m∆Ej
k

)2

+

(
ρk − ρ

j
k

m∆ρ
j
k

)2

< 1. (26)

Figure 3. Error ellipsoid of observations of a receiving station.

Different from calculating the Mahalanobis distance of two orbits [11,19], each group
of observations was tested with Equation (26). If 70% measurements of the tracklet were
successfully correlated, the tracklet was successfully correlated. For tracklets with clean
data, the effect of the proposed approach is similar to that of calculating Mahalanobis
distance. However, tracklets with mixed measurements of different space debris appear
now and then, and mixed measurements could lead to a failure in an OD process or
an estimated orbit with huge error. With the proposed approach, correlation and data
cleansing can be accomplished in one step.

There were quite a few miscorrelations only with Equation (26). Orbit determination
with WLSM can also be used to screen out miscorrelations. Two tracklets were insufficient
for confirmation. Tests with real data were reported by Tommei [20], who found that the
correctness of correlation would be largely increased when at least 3 tracklets are confirmed
by the least-square method. In this work, only correlated observations, instead of the entire
tracklet, were used to implement the confirmation.

5. Discussion

Since the properties of azimuth and elevation observed by a receiving station are the
same with those observed by monostatic radars, which was discussed by Cordelli [21], ∆A
and ∆E are not discussed in the following. Two issues are discussed in detail:

1. the performance of orbit determination with WLSM for a single bistatic radar tracklet;
2. the effect of orbital elements’ accuracy and prediction duration on ∆ρ.
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5.1. Accuracy of Orbit Determination

In order to test the performance of orbit determination, 4298 tracklets of 3538 LEO
satellites were simulated. Detailed simulation strategies are shown in Table 3.

Table 3. Strategies of simulation.

Subject Content

Orbital elements Two-Line-Element (TLE)
Dynamic model sgp4
Minimal height threshold 200 km
Maximal height threshold 1700 km
Minimal time span 20 s
Maximal time span 300 s
Mean time span 120 s
σ of azimuth noise 0.1◦

σ of elevation noise 0.1◦

σ of ρ noise 50 m

For the initial orbit determination demonstration, the ρR calculation approach was
selected. Figure 4 gives the deviation between the estimated orbit elements by IOD and
the true orbital elements (TLE). µ is the mathematical expectation of the deviation which
represents the systematic bias of the estimated orbital elements.

Figure 4. Accuracy of ρR calculation approach.

The estimated inclination by IOD barely had systematic bias, and the error reached
σ ∼ 0.1◦. On the other hand, the systematic bias of the estimated semimajor axis by IOD
was as large as several kilometers, and the standard deviation was even larger.

Figure 5 gives the deviation between the estimated orbital elements by WLSM and the
true orbital elements (TLE).
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Figure 5. Accuracy of orbit determination with WLSM.

The accuracy of the estimated inclination by OD was only slightly higher than that of
the estimated inclination by IOD. However, the estimated semimajor axis was significantly
improved by OD with WLSM. The systematic bias of the estimated semimajor axis dropped
to the order of magnitude of ten meters, and the accuracy of the estimated semimajor axis
increased several dozens of times. This improvement was largely due to the proper use of
ρ. ρ had a strong restriction on the estimation of the semimajor axis, and this phenomenon
corresponded to the effect of weight discussed in Section 3.2.

Two more things were also noticed from the results of orbit determination:

• Orbit improvement with WLSM is indispensable. Since the error of the estimated orbit
elements by IOD was too large, the number of miscorrelations would grow rapidly as
the interval between tracklets increased. At the same time, the systematic bias of the
estimated semimajor axis would render the orbit propagation wrong.

• As mentioned in Section 4.2, an empirical error of the estimated orbit is needed to

calculate (∆Aj
k, ∆Ej

k, ∆ρ
j
k) in Equation (26). From Figure 5, the empirical error can be

obtained.

5.2. Variation in and Evolution of ∆ρ

∆ρ is mainly affected by the accuracy of orbit determination and the prediction du-
ration. In order to test the effect of different factors, the two stations in Table 1 and the
satellite in Table 2 were chosen to accomplish the experiment. Assuming that the prediction
duration was 1 day, Figure 6 shows the variation in ∆ρ with respect to the estimated orbit
element and its accuracy.

∆ρ was easily found to always be positively associated with the absolute error of an
orbital element. This feature can substantially simplify the calculation because the extreme
value is sufficient for calculating the confidence zone of ∆ρ instead of traversing all possible
errors of orbital elements. Figure 6 also shows that ∆ρ became smaller for the satellites of a
higher altitude with the same semimajor axis error. The effect of the right ascension of the
ascending node (Ω) was almost identical to that of inclination, which demonstrates that
the orbit plane had no direct relationship with ∆ρ.



Mathematics 2022, 10, 2197 11 of 13

Figure 6. ∆ρ with respect to the accuracy of the estimated orbital elements.

Assuming that the orbit was calculated with the tracklet in Pass 0, the orbit and its
error propagated to tracklets in Passes 1, 10, and 14. The evolution of ρ and ∆ρ is shown in
Figure 7.

Figure 7 shows that ρ in one tracklet could vary by several thousand kilometers for a
satellite with an altitude of 500 km, while ∆ρ only varies little. This shows that ∆ρ barely
had a relationship with ρ. σρ is not always positively associated with prediction duration.
If σρ drops, either the error of velocity or the error of azimuth and elevation grows.

Figure 7. Evolution of ρ and ∆ρ.

6. Conclusions

In this work, an efficient algorithm was presented to deal with the UCT correlation
problem. The algorithm was based on J2 analytic solutions for orbit and covariance
propagation. The lack of accuracy of Keplerian integral can be compensated to a certain
level by taking J2 perturbation into consideration.



Mathematics 2022, 10, 2197 12 of 13

The process of correlation starts with the IOD of a tracklet, followed by obtaining
an improved orbit with WLSM. An empirical error of the estimated state is used to form
the covariance. The OD with an analytic orbit and covariance propagation runs fast
for sparse data, which also significantly decreases the systematic bias of the estimated
semimajor axis, and the accuracy of the estimated semimajor axis increases several dozens
of times. The orbit and covariance are propagated to the epoch of the second tracklet, and
Equation (26) was used to perform the correlation. Instead of OD for the second tracklet
and comparing the estimated orbit, each pair of observations in the second tracklet were
separately correlated. If 70% observations of the tracklet were successfully correlated, the
tracklet was successfully correlated. With the proposed approach, correlation and data
cleansing can be accomplished in one step. However, only the correlated observations in
the tracklet are used in the next step to implement the confirmation, and update the orbit
and covariance. The accuracy of the semimajor axis increased with the weight of radar
ranging. This effect became stronger when σE 6= σA. On the other hand, the accuracy of
inclination decreased with the weight of radar ranging, and increased with the weight of
elevation. The error of bistatic radar ranging also became smaller for space debris of higher
altitude with the same semimajor axis error, and the orbit plane had no direct relationship
with the error of bistatic radar ranging.
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