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Abstract: The color histogram is a statistical behavior for robust pattern search or matching; however,
difficulties have arisen in using it to discriminate among similar objects. Our method, called absent
color indexing (ABC), describes how to use absent or minor colors as a feature in order to solve
problems while robustly recognizing images, even those with similar color features. The proposed
approach separates a source color histogram into apparent (AP) and absent (AB) color histograms in
order to provide a fair way of focusing on the major and minor contributions together. A threshold for
this separation is automatically obtained from the mean color histogram by considering the statistical
significance of the absent colors. After these have been separated, an inversion operation is performed
to reinforce the weight of AB. In order to balance the contributions of the two histograms, four
similarity measures are utilized as candidates for combination with ABC. We tested the performance
of ABC in terms of the F-measure using different similarity measures, and the results show that it is
able to achieve values greater than 0.95. Experiments on Mondrian random patterns verify the ability
of ABC to distinguish similar objects by margin. The results of extensive experiments on real-world
images and open databases are presented here in order to demonstrate that the performance of our
relatively simple algorithm remained robust even in difficult cases.

Keywords: histogram matching; apparent colors; absent colors; mean color histogram; similarity
measures; margin

MSC: 68U10

1. Introduction

Pattern search or matching is the task of finding targets through the use of images or
through statistic or deterministic features extracted from images. Proposed image features
for pattern search have included gray features [1], texture features [2], color features [3],
and convolution features [4], where color features provide universally successful cues for
identification of individuals in many applications. These have been extensively utilized
in pattern search, computer vision, and image processing [5–7]. Analysis of color features
plays a vital role in various tasks, including object matching, background subtraction, video
tracking, and image retrieval [8–10].

Among color features, color histograms, a statistical measure of color distribution in
images, have been widely used to describe color information. Color histograms are benefi-
cial in that the color distribution in the template image is recorded without complicated
learning processes, they feature strong robustness against object deformation and scale
changes, and they provide effective statistics for utilizing discrete color distributions or
histograms over a given color space. Color histogram-based approaches [11] can thus be
effectively used to search for objects. However, these approaches reduce performance in
discriminatin between similar objects, because any histogram trades positional information
about the pixels for flexibility in matching. Swain et al. [12] proposed a combination of color
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histograms and intersection for searching a target location by histogram, where each bin
represents coarse color frequencies in a given color space or system. Although such color in-
dexing (CI) works well with changes in size or posture, it has difficulties handling changes
in noise and illumination. To address these problems, Stricker et al. [13] used a relation of
color histogram bins to generate a cumulative color histogram (CCH), whereby fixing the
color order accumulates bins with smaller color frequencies into bins with relatively larger
color values. This reduces sensitivity to noise interference and illumination changes, while
the accumulated histogram reduces sensitivity in the process of object discrimination. The
color co-occurrence histogram (CH) [14] method utilizes distance information of pairs of
certain colored pixels in an image space to generate a color co-occurrence histogram and set
a tolerance parameter to apply occlusion and deformation conditions in the algorithm. This
can be costly in terms of computation time, and although the process of classifying colors
uses Euclidian distances in RGB space, it can sometimes misclassify colors. Han et al. [15]
introduced the fuzzy color histogram (FCH) based on the fuzzy c-means clustering algo-
rithm, where an adjustable fuzzy membership matrix is defined to deal with different noise
interferences and applications. Verma et al. [16] improved the fuzzy color histogram method
(TFCM) and combined it with a spatial filter to solve the illumination problem for template
matching. A triangular membership function is proposed to connect each bin for fuzzy logic
implementation in a color histogram. The above-mentioned color histogram-based methods
focus on bins with high contribution or frequency to design similarity measures.

Meanwhile, numerous methods based on the merits of color histograms have been
proposed. Wang [17] introduced an image retrieval method based on color histograms
of local feature regions and combined it with a Harris–Laplace detector to obtain spatial
information before using the color histograms. The scheme in the method proposed by
Varish et al. [18] used a color histogram and the wavelet transform method, applying color
and texture features to enhance performance. Liu et al. [19] combined color histograms with
local binary pattern-based features for better classification. This approach generally shows
the possibility of combining color histograms or features with other schemes in classification
tasks, to which our method for utilizing absent colors as a new feature type may contribute.
Generally, these are not pure ways of using color histograms, and instead combine them
with other features to achieve experimental results based on color histograms. This makes
the overall algorithm more complex, preventing advantages in terms of computation time.

In this research, we explore ABC as a color feature for use in robust search or matching
methods for objects with varying sizes, postures, and levels of occlusion in the scene.
The key contribution of this study is that the proposed approach provides a balanced
method of focusing on the relative importance of AP and AB by separating the original
color histogram. In our prior work [20,21], ABC was formulated as the decomposition of
a color histogram into two disjointed histograms using fixed parameters to achieve good
performances in terms of feasible matching. In this study, we developed an automatic
threshold, hT, designed to obtain more effective absent colors. In particular, we propose
a more sophisticated version involving four specific techniques, including a mean color
histogram, a novel algorithm based on statistical significance as defined for the sorted mean
color histogram, a trial to investigate the availability of representative similarity measures
combined with the proposed method, and a statistical treatment of the margin obtained by
matching. The results of an evaluation of actual scenes and datasets are provided here in
order to demonstrate the robust performance of our proposed ABC method.

2. Absent Color Indexing

The motivation behind our proposed approach is to enhance colors in cases where the
objects to be searched have few positive features with existing color features. For example,
when identifying individuals, eye color is not a major color feature by volume, however, it
can provide a significant feature for identification.
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2.1. Definition of Absent Colors

By introducing absent colors to realize this idea, we propose a novel approach to
utilizing color histograms for robust pattern identification. This approach focuses on low-
frequency colors in any two histograms of the target image. When evaluating histogram
similarity, there must be four conditional combinations with respect to high and low
frequencies in their bins. If both bins include high frequencies, they have high similarity,
and if one is low and the other is high, it provides a low contribution to the total similarity.
The case where both have low frequencies is conventionally evaluated as having a low
contribution to similarity, however, the recognition of this as a common characteristic in
our trials formalizes their treatment in similarity evaluations as an effective new approach.
However, contamination by additional noise must be prevented in histograms when
designing algorithms, because noise can easily influence such low frequencies.

Table 1 defines histograms H and G in the same color space or specification as con-
sisting of high-frequency bins (hAP and gAP), low-frequency bins (hAB and gAB), and bins
with no entities (0 and 0). Below, we propose a detailed scheme for defining these using
a reasonable threshold value. As Table 1 shows, we define apparent colors (AP) as those
in high-frequency bins, while colors in low- and null-frequency bins provide candidate
absent colors (AB). There are nine possible arrangements of bins having the same colors,
as shown in Table 1. In the top row and the leftmost column, every pair includes hAP or
gAP, which are evaluated for similarity in almost all methods based on color histograms as
features; if both bins are AP, then their contribution to similarity may be larger, while those
including an AB element make a lower contribution. As mentioned in the previous section,
our motivation here is to focus on other items in the table, namely, those such as (hAB, gAB)
where both elements are AB. Such pairs are conventionally evaluated as minor elements in
similarity calculations. Note that the last possible combination, 0 and 0, is never evaluated
in any similarity evaluation scheme, because they represent colors not present in target
images and are thus beyond the scope of consideration.

Table 1. Combinations of apparent (AP) and absent (AB) colors.

Histograms
H

hAP hAB 0

G
gAP (hAP, gAP) (hAB, gAP) (0, gAP)

gAB (hAP, gAB) (hAB, gAB) (0, gAB)

0 (hAP, 0) (hAB, 0)

2.2. AP and AB Histograms

Illumination effects are handled by transforming RGB images to CIE L*a*b* color space
and removing the L* channel, avoiding sensitivity reduction by enhancing the contribution
of absent colors. We use the a* and b* channels to establish a two-dimensional color space
from the CIE L*a*b* color space. When establishing many color features in color statistics,
the CIE L*a*b* color space has a broader color range that is closer to human vision, allowing
brightness to be separated as an independent coordinate (the L* channel).

As an example, Figure 1 shows two images, 1 and 2. Let their color space have β1 × β2
bins or quantization. In order for images 1 and 2 to be evaluated as matched or unmatched,
their two-dimensional color histograms H =

{
hij
}
(i,j)=(1,1),··· ,(β1,β2)

and

G =
{

gij
}
(i,j)=(1,1),··· ,(β1,β2)

are represented in terms of the relative frequencies of clas-
sified colors in their bins, confirming their summation to be unity. Moving forward, for
explanation purposes we use H here as a representative example. Figure 2 shows the
relative histograms, H and G, for images 1 and 2, respectively.
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From the original two-dimensional color histogram H, we create a pair of two-dimensional
histograms, H = HP + H

′
, HP =

{
hP

ij

}
, and H

′
=
{

h
′
ij

}
as complements. We have omitted

the subscripts i and j in the formula for simplicity and to avoid confusion.

hP = h(1− φ(h)) = hφ(h), (1)

h′ = hφ(h), (2)

where φ(x) is an indicator function that shows classification such that φ(x) = 1 if x ≤ hT
and φ(x) = 0 otherwise. The threshold value, hT, is an important parameter in this study
and is defined in Section 2.3. Note that the initial values of the other elements without
any indication in the above definition are set to 0. HP includes major colors frequently
observed in image 1, while H

′
contains minor colors that are denoted as “absent” colors

because their occurrence is infrequent within the image. Both have the same structure as
the two-dimensional histogram H. The elements hP and h

′
represent the color frequencies.

We expect to systematically and effectively utilize information included in the histogram at
low frequencies through the decomposition process.

(a) (b)

Figure 1. Images 1 and 2 at 173× 100 pixels. (a) Image 1. (b) Image 2.

(a) (b)

Figure 2. Original color histograms (β1 = 10, β2 = 10). (a) H for image 1. (b) G for image 2.

From H
′
, we intend to make an opposite counterpart for the major color histogram as

a complementary feature in the original histogram. However, certain special cases, such as
zero frequency, should be considered. To briefly explain the cases of zero frequency (h

′
= 0)

during the inversion process of the absent color histogram H
′
, we temporarily assume that

H
′
, H, and G are one-dimensional histograms only in Figure 3.

In the first case (I) shown in Figure 3, if h
′
= 0 and h > hT, then hN = 0; In cases (II) and

(III), if h
′
= 0, h = 0 and g > 0, then hN = hT; finally, in case (IV), if h

′
= 0, h = 0 and g = 0,

then hN = 0. Table 2 summarizes these three transformations to provide a clear explanation.
After the above-mentioned inverting process, the absent color histogram HN =

{
hN

ij

}
is defined to represent small or zero frequencies in the original one, as follows:

hN = (hT − h
′
)φ(h)ψ(h) + hTψ(h)ψ(g). (3)
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Here, ψ(x) is another indicator function that satisfies the following conditions: ψ(x) = 1 if
x > 0; otherwise, ψ(x) = 0. Finally, it is necessary to normalize both HP and HN to satisfy
the condition that all components should sum to 1.

Table 2. Value of hN in conditions of h
′
= 0.

hN h
′
= 0, h > hT h

′
= 0, h = 0

g > 0 0 hT

g = 0 0 0

(a) (b)

Figure 3. Special cases of zero frequency h
′
= 0 during the inverting process. (a) shows the case (I)

when h
′
= 0 and h > hT. (b) shows the cases (II), (III), and (IV) when h

′
= 0, h = 0 and g > 0 or

g = 0.

(a) (b)

(c) (d)

Figure 4. Apparent and absent color histograms. (a) HP for image 1. (b) HN for image 1. (c) GP for
image 2. (d) GN for image 2.

Figure 4 shows major color histograms, HP and GP, and absent color histograms, HN

and GN, for images 1 and 2, respectively.

2.3. Threshold Definition

In the algorithm described in the last section, the threshold, hT, plays a main role
in defining apparent and absent colors. This section describes how to define hT in order
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to provide a meaningful algorithm with effective performance. We first introduce the
mean color histogram, M, to find an averaged tendency of the color distributions in
two histograms to be compared, then use it realize a stable definition of the threshold.
M =

{
mij
}
(i,j)=(1,1),··· ,(β1,β2)

is defined as

mij =
hij + gij

2
. (4)

Generating the mean color histogram is a critical phase before threshold selection.
The proportion of each color in the histogram is statistically analyzed for matching im-
ages, thereby improving the rationality and dynamism of threshold determination and
guaranteeing the accuracy of the final similarity measurement.

We next convert the two-dimensional histogram M to a sorted one-dimensional his-
togram Msorted, as follows:

Msorted =
{

msorted
i−1 ≥ msorted

i

}
. (5)

The threshold value, hT, can be defined by the following equation through use of an
order index s related to a significant rate α, by which we can separate the set of all bins into
sets of apparent and absent colors by considering the rarity of absent colors in the images.

hT =
msorted

s + msorted
s+1

2
. (6)

s = argmin

{
s

∑
i=1

msorted
i ≥ 1− α

}
. (7)

Using parameter s, a stable decomposition can be performed with no “chattering”
near the threshold value in comparison with a constant threshold. In the definition of the
absent color histogram, because zero frequency plays an important role in eliminating any
noise effects, we must remove near-zero frequencies in the absent color histogram. For
example, we compare frequencies as 0.2× hT in our experiments. Figure 5 shows the mean
color histogram for histograms H and G. Figure 6 is a Pareto chart [22] for this example. We
can use this information to determine the significant rate, α, which represents effectiveness
in revealing the rareness of absent colors and contributes to setting of the threshold value.

Figure 5. Mean color histogram.
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Figure 6. Pareto chart of parameter α and sorted histogram, Msorted.

Note that the mean color histograms can be used both to derive the threshold, hT,
and to calculate similarities based on apparent and absent colors, as described in the next
section.

2.4. Similarity Measures

Many measures for testing similarity between two histograms or probability density
functions have been proposed, including intersection, chi-square distance, Jensen–Shannon
divergence, and Bhattacharyya distance. This section describes these measures in combina-
tion with our ABC in order to demonstrate its universality in evaluating the similarity of
images, as described in Section 3.2. We expect this universality of ABC to make it useful as
an effective scheme for many applications.

2.4.1. Intersection

Intersection [23] has been used in many studies and applications because of its sim-
plicity. It is defined for two same-sized histograms, H and G, as follows:

I(H, G) =
(β1,β2)

∑
(i,j)=(1,1)

min
{

hij, gij
}

. (8)

For the two histogram types proposed in this paper, we define a scheme for combining
the two intersections using weighting coefficients, as follows:

S = wP I
(

HP, GP
)
+ wN I

(
HN, GN

)
, (9)

where wP and wN are weights for balancing the two types of intersections using the
constraint wP + wN = 1.

2.4.2. Chi-Square Distance

The chi-square test is a non-parametric test that is mainly used to compare two or
more sample rates. In order to measure similarity between two histograms, we use the χ2

statistic to observe frequencies. We define our version using the mean color histogram as
follows:

χ2(H, G) =
(β1,β2)

∑
(i,j)=(1,1)

(
hij −mij

)2

mij
+

(β1,β2)

∑
(i,j)=(1,1)

(
gij −mij

)2

mij
, (10)
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where mij is the element of the mean color histogram. Equation (10) can be simplified as

χ2(H, G) =
(β1,β2)

∑
(i,j)=(1,1)

(
hij − gij

)2(
hij + gij

) . (11)

The total distance between the histograms is defined using the following weights:

Dχ2 = wPχ2
(

HP, GP
)
+ wNχ2

(
HN, GN

)
. (12)

2.4.3. Jensen–Shannon Divergence

JS divergence [24] is a symmetric divergence measurement based on Kullback–Leibler
divergence [25]. By calculating divergences between histograms, a larger divergence
indicates smaller correlative relation and smaller similarity between the histograms. This is
defined as

DKL(H ‖ G) =
(β1,β2)

∑
(i,j)=(1,1)

hijlog
hij

gij
. (13)

We define a particular version of JS divergence as follows using the mean color
histogram M:

DJS(H, G) =
1
2

DKL(H ‖ M) +
1
2

DKL(G ‖ M). (14)

In this formula, the antilogarithm cannot be zero in logarithm calculations such that

log
hij
gij

can take a relatively minimum value. The JS divergence-based distance between the
histograms is defined as

DJSD = wPDJS

(
HP, GP

)
+ wNDJS

(
HN, GN

)
. (15)

2.4.4. Bhattacharyya Distance

In statistics, the Bhattacharyya distance [26] is often used to measure the dissimi-
larity of two discrete or continuous probability distributions. It is closely related to the
Bhattacharyya coefficient, which measures overlap between two statistical samples or
populations. The Bhattacharyya distance can be used to determine relative relationships
between two samples or to determine differences between two classes. Thus, the two
histograms can be considered as discrete probability distributions; the formula is

BD = −ln(BC(H, G)), (16)

where 0 ≤ BD ≤ ∞, 0 ≤ BC ≤ 1 and BC(H, G) is the Bhattacharyya coefficient,

BC(H, G) =
(β1,β2)

∑
(i,j)=(1,1)

√
hijgij. (17)

The distance between two sets of apparent and absent color histograms is defined as

DBD = wPBD
(

HP, GP
)
+ wNBD

(
HN, GN

)
. (18)

3. Experimental Evaluation

In this section, we consider the numerous challenges of ABC matching. In order to
analyze the performance of our method, we derive a signal-to-noise (SNR) formula for
adding reasonable noise to the Mondrian random pattern, as shown in Figure 7. We utilize
three common measurements, namely, the F-measure, Margin, and Fisher ratio (FR), to
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explain the essential strengths of the ABC. Finally, we utilize real data to evaluate the
matching effect of the ABC. The pseudo-code of ABC approach is shown in Algorithm 1.

Figure 7. Mondrian random pattern.

Algorithm 1 Proposed ABC approach

Input: Reference image SR and compared image SS.
Initial parameters: β1 = 10, β2 = 10, α = 0.2,
wP = 0.6, wN = 0.4

Output: Target location LT in the searched image.
repeat

1: Crop the compared image from position (i, j) in the scene.
2: Generate two-dimensional color histograms H and G by a* and b* channels.
3: Divide color histograms into apparent color histograms HP, GP and absent color
histograms H

′
, G

′
.

4: Invert absent color histograms H
′

and G
′

to HN and GN.
5: Calculate similarity R(i,j) by HP and GP, HN and GN.

until all locations are scanned, then find position LT with max(R(i,j));

3.1. Preparation of Signal and Noise

We first describe a color image, It =
{

tij
}

. We denote It by signal Is =
{

sij
}

, while
noise In =

{
nij
}

is defined as
It = Is + In. (19)

The variance of image It is represented as

σ2
t = E(It − µt)

2 =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[It(i, j)− µt]
2 (20)

where µt = µs + µn is the average value in image It, µs and µn are the average values of Is
and In, E(In) = µn = 0 describes the noise distributions obeyed by certain balanced and
unbiased Gaussian distributions, and m and n are the sizes of the images. As mentioned in
Equation (20),

σ2
t = E((Is + In)− (µs + µn))

2

= E
(
(Is − µs)

2
)
+ 2E((Is − µs)(In − µn)) + E

(
(In − µn)

2
)

= E
(
(Is − µs)

2
)
+ E

(
(In − µn)

2
)

= σ2
s + σ2

n,

(21)

where σ2
s and σ2

n represent the variance of the signal and noise in image Is and In. The
formulas are calculated as

σ2
s =

1
mn

m−1

∑
i=0

n−1

∑
j=0

[Is(i, j)− µs]
2. (22)
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σ2
n =

1
mn

m−1

∑
i=0

n−1

∑
j=0

[In(i, j)− µn]
2. (23)

The signal-to-noise ratio (SNR) is calculated as

SNR = 10 log
σ2

s
σ2

n
= 10 log

σ2
t − σ2

n
σ2

n
= 10 log

(
σ2

t
σ2

n
− 1
)

. (24)

Next, we analyzed the standard deviations σn of noise in stationary background
regions of the datasets [27,28], where we collected the small regions of interest (ROI) with
sizes of (100, 100) at the same positions in their background without any moving things:
(61, 531) in 50 frames of Biker, and (1, 1) in 50 frames of Walking, respectively. Then, σn can
be calculated from numerous estimated noise values in the difference images; In = It − Īt.
σt is from one of 50 images in each dataset.

Table 3 shows the SNR in the sampled images of these databases. The average value
of SNR in these two datasets is 36.01. In order to add noise to the noise-free Mondrian
random pattern, we utilized the knowledge on noise obtained from Table 3 and thereafter
added the noise of unbiased Gaussian distributions to the individual channels of the color
image by SNR = 36, 33, and 30, where a reduced SNR implies increased noise.

Table 3. Statistical characteristics of background noise.

R G B

Biker
σn 0.958 0.903 1.143

SNR 35.09 35.20 34.17

Walking
σn 1.021 0.953 1.028

SNR 36.48 37.90 37.23

3.2. Evaluation of ABC in Combination with Four Similarity Measures

In these experiments, we added artificial noise to the original images in order to
investigate the performance of our method against others. Figure 7 shows an example of
a synthetic Mondrian random pattern with no structures except for a colored circle as an
elemental shape.

We next add noise to the color image. We first separate the individual channels of
the color image and then add unbiased Gaussian noise of SNR = 36, 33, and 30 to each
channel before finally merging the channels into a color image. Therefore, CI, CCH, TFCM,
and ABC can be tested by use of these Mondrian random patterns embedded as typical
additional noise. We tested four similarity measures, as follows: first, reference images of
size 50× 50 in Figure 7 were randomly selected, then searches were performed for the best
matching positions in each noisy version. To evaluate each similarity measure, we use the
F-measure, as follows:

Precision =
TP

TP + FP
(25)

Recall =
TP

TP + FN
(26)

F-measure =
2× Precision× Recall

Precision + Recall
, (27)

where TP and FP indicate the numbers of true positives and false positives, respectively,
defined by a threshold value of intersection over union (IoU). TP can thus have an IoU
exceeding 0.75, while FP has a value below threshold 0.25. FN represents the number of
false negatives, where TP+FN is the entirety of the target image. F-measure is the harmonic
mean of Precision and Recall.
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Table 4 shows a performance evaluation in matching using ABC-based similarity
measures under different noise conditions. We found that in all cases, ABC could be used in
combination with these similarity measures using experimental parameters I = 10, J = 10,
α = 0.2, wAP = 0.6, and wAB = 0.4. We use Intersection in later experiments because of its
similarity in the range from 0 to 1, which makes it easier to compare with other approaches.

Table 4. Performance of ABC with various similarity measures.

F-Measure

SNR 36 33 30

ABC + Intersection 0.973 0.965 0.952

ABC + Chi-square 0.976 0.971 0.961

ABC + JS divergence 0.980 0.974 0.971

ABC + Bhattacharyya 0.974 0.970 0.968

3.3. Analysis by Margin and Fisher Ratio

In this section, we evaluate performance by comparing ABC with three other color
histogram-based matching methods, CI [12], CCH [13], and TFCM [16], as these methods
are frequently cited and have been used in many papers and studies.

Margin [29] is defined as the difference in similarity between the best and second-best
matching positions. The best-matching position is the maximum value at which the area
of IoU between ground truth and the searched position should exceed 0.90. The second-
best matching position is the maximum value at which the area of IoU is less than 0.15.
A larger margin provides stronger distinguishability in avoiding interference by similar
objects. Figure 8 shows example profiles. These are projected onto the horizontal axis by
3D similarity profiles for ABC, CI, CCH, and TFCM. We found that the margin of ABC was
much larger than that of the other three methods.

(a) (b)

(c) (d)

Figure 8. Projected profiles of similarity (No noise σ = 0). (a) ABC. (b) CI. (c) CCH. (d) TFCM.
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In order to statistically investigate the performance of ABC and others in terms of
margin, we independently extracted from random positions 100 reference images sized
50× 50, then searched for them within the reference image itself or in versions contaminated
with noise. For each image, we were able find the best position or peak as peak1 and the
second-best position as peak2. From the noisy image, we separated 100 pairs of peak1 and
peak2 and created their histograms, as shown in Figure 9. The similarity ranges of ABC, CI,
and CCH are the same from 0.3 to 1, and that of TFCM is the same from 0.8 to 1. In order to
better clarify this observation, we utilized Fisher’s ratio (FR) to evaluate the discriminating
power of any two-class discriminator. FR is defined as

FR =

(
mp1 −mp2

)2

σ2
p1 + σ2

p2
, (28)

where mp1, mp2, σ2
p1, and σ2

p2 represent the means and variances, respectively, of the peak1
and peak2 classes. Here, an increased numerator indicates an increased distance or interval
between classes, and a reduced denominator indicates the greater compactness of each class;
thus, FR can be greater when the feature space for classification is better for discrimination
or identification. Table 5 summarizes the FR obtained by CI, CCH, TFCM, and ABC in
cases of noisy Mondrian random patterns in which we varied the SNR from 36 to 30.

(a) (b)

(c) (d)

Figure 9. Distributions of margins between peak1 and peak2 for ABC, CI, CCH, and TFCM (SNR = 36).
(a) ABC. (b) CI. (c) CCH. (d) TFCM.

Table 5 indicates that the FR of ABC was superior to those of CI, CCH, and TFCM with
the case of SNR = 36, 33, and 30, and furthermore, that it maintained this performance
even in cases with a reduced SNR. As shown in Figure 10, the horizontal axis represents the
change in variance, and the vertical axis represents the change in mean value, which is the
size of the average margin. In these experiments, we used every set of ten images to observe
those distributions in the means and variances that construct the FR values. As a result,
there are two types of similarity measures, corresponding to the two approaches used to
increase FR: first, to increase the difference or distance between the means or centers of the
two classes, or second, to decrease their own variances. ABC adopts the former approach,
while TFCM uses the latter approach.
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Table 5. Margins in CI, CCH, TFCM and ABC.

CI CCH TFCM ABC

SNR Class Mean Std Mean Std Mean Std Mean Std

36
Peak1 0.952 0.034 0.935 0.041 0.999 3.6× 10−4 0.946 0.049
Peak2 0.583 0.060 0.590 0.069 0.902 0.020 0.456 0.055

FR 28.67 18.28 21.75 43.77

33
Peak1 0.937 0.038 0.915 0.042 0.999 2.2× 10−4 0.935 0.057
Peak2 0.575 0.058 0.591 0.072 0.910 0.021 0.455 0.064

FR 26.52 14.80 16.95 31.18

30
Peak1 0.919 0.040 0.898 0.045 0.998 5.7× 10−4 0.914 0.058
Peak2 0.579 0.053 0.592 0.065 0.908 0.024 0.465 0.064

FR 25.79 14.85 14.07 26.58

Figure 10. Analytical diagram of FR (SNR = 36).

3.4. Search in Cluttered Scenes

We designed search tasks in cluttered scenes and with actual objects under five condi-
tions: varied illumination, rotation, deformation, scaling, and occlusion [30–32]. In these
experiments, the reference in Figure 11a is of size 88× 44, and the five scenes are of the same
size, 360× 640. We first tested ABC performance under illumination change, as shown in
Figure 11. Except for TFCM, all were able to correctly find the position of the reference
under the illumination change condition. Observing their profiles, it can be seen that the
difference between the highest and second-highest peak under the ABC-based search was
larger than that under the other two. This observation can be confirmed from its profile
in Figure 12a, which verifies that ABC may have the best discrimination performance
among these classes. Figure 13 shows the other challenges of searching for the reference. In
Figure 13a, the doll was rotated by a small angle at the same location. In Figure 13b, the
doll’s clothing was deformed, and in Figure 13c the doll’s apparent size was reduced by
moving it back. Finally, in Figure 13d the doll was occluded by placing it behind another
doll; nonetheless, the different methods were able to find its true position.
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(a) (b)

Figure 11. Search in a cluttered scene. The red, blue, green, and black bounding boxes represent the
matching results of ABC, CI, CCH, and TFCM, respectively. (a) Reference. (b) Cluttered scene under
dark illumination.

(a) (b)

(c) (d)

Figure 12. Three-dimensional profiles of similarity. (a) Profile of ABC similarity. (b) Profile of CI
similarity. (c) Profile of CCH similarity. (d) Profile of TFCM similarity.

(a) (b)

(c) (d)

Figure 13. Search under rotation, deformation, scaling, and occlusion by ABC, CI, CCH, and TFCM
where the red, blue, green, and black bounding boxes represent the matching results of four ap-
proaches, respectively. (a) Rotation. (b) Deformation. (c) Scaling. (d) Occlusion.
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3.5. Tracking in Open Data

Tracking is a difficult task requiring a stable and reliable matching scheme for con-
secutive following of objects of interest. Many conventional tracking algorithms [33–35]
track targets by accurately updating the reference; here, however, our aim was to test
the fundamental feasibility of ABC in tracking tasks with no modification of the single
reference. Liquor [27] is an open dataset that includes interesting sequences of bottles
being picked up and moved by human hands in which rotation, deformation, scaling, and
occlusion happen over many consecutive frames. We used frames #1301–#1400 to test the
tracking performances of CI, CCH, TFCM, and ABC. In frames #1301–#1380, the target
bottle remains in the leftmost position. Other bottles are picked up by hands, passed in the
front of the target bottle, then moved to other positions. In frames from #1381 to the end,
the target is picked up and moved forward, including small out-of-plane rotations to the
left and right.

In the first frame, we defined the reference shown at the top left in Figure 14. We
used horizontal displacement, ∆x, of matched positions from the central ground truth
positions as a fundamental evaluator, because in these frames the bottle of interest was
moved mainly horizontally and other candidate mismatched bottles were placed on the
same level. Therefore, a smaller ∆x can show better tracking performance in the algorithms.
In this tracking experiment, we chose the following five typical situations for the target
bottle in order to demonstrate ABC performance: (1) In frame #1304, all three methods
were able to find reasonable positions, because the bottle is not moved; (2) because of the
large occlusion in frame #1320, only ABC was able to capture the lower-left position of the
target, while the other three methods were misled to unreasonable places; (3) because of
the partial occlusion in frame #1351, the result from CCH was largely shifted; (4) in frame
#1354, possibly the most difficult case of full occlusion, none of the four methods wre able
to identify the target; and (5) in frame #1395, where the bottle is lifted and moved to the
right, only ABC maintained stable tracking of the bottle.

Figure 14. Tracking by ABC (α = 0.2), CI, CCH and TFCM.

We next tested the effectiveness of introducing significance level, α, to determine hT
using the same data frames. In preparation, we scanned all possible positions in frames
#1301–#1400 to find the average, h̄T, and its variance, σ2

hT
, which were obtained as 0.05 and

6.96× 10−4, respectively, by introducing α = 0.02. Based on this result, it is reasonable to
compare the two cases of α = 0.02 and hT = 0.05, which can be selected as representative
constant values. Figure 15 shows that in these two cases, there was no apparent difference
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in performance except for the case of frame #1373, where the constant hT failed to find the
correct position.

Figure 15. Comparison of two cases for threshold selection.

Table 6 shows the number of mismatches in the Liquor dataset for frames #1301–#1400.
The size of the reference image is 210× 73 pixels. If |∆x| exceeds 73, the searched position
does not overlap with the ground truth. We thus set 20, 30, 40, or 50 pixels to observe the
number of mismatches. For example, if |∆x| exceeds 20, the result is incorrect matching. As
a result, ABC could not find targets under large occlusion conditions, although it remained
robust in other frames. In Figure 16, we show the performance of the Skiing [27] dataset for
frames #31–#60. The reference image is defined at the top left, and the size is 41× 39 pixels.
The challenges are deformation and rotation. (1) In frame #32, ABC, CI, CCH, and TFCM
can search for the correct positions because the skiier does not change significantly in the
sky. (2) In frames #38, #45, and #58, only ABC can match the target. This is because ABC
provides a good balance between the major and absent colors. In the comparison process,
red and yellow colors are major colors for the reference image, and are the absent colors
for the compared images. (3) In frame #50, the proportion of yellow pixels is decreased
because of the large deformation. Therefore, four methods cannot match the target. Table 7
shows the number of mismatches in the Skiing dataset for frames #31–#60. The number of
mismatches proves the performance of our proposed ABC approach. ABC is more robust
in the matching process.

Table 6. Number of mismatches in 100 frames.

CI CCH TFCM ABC

|∆x| ≥ 20 15 28 49 16

|∆x| ≥ 30 15 22 40 7

|∆x| ≥ 40 15 20 18 4

|∆x| ≥ 50 15 19 16 3
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Figure 16. Matching performance in Skiing dataset.

Table 7. Number of mismatches in 30 frames.

CI CCH TFCM ABC

|∆x| ≥ 20 25 24 23 5

|∆x| ≥ 30 24 24 23 4

|∆x| ≥ 40 23 23 23 4

|∆x| ≥ 50 23 23 23 4

ABC has several merits: technical simplicity, invariance with respect to in-plane
rotation and distortion, and scaling as shown in the previous sections; however, it retains
demerits as well, particularly the necessity of color and a reasonable image size in order
to keep the histograms effective and avoid loss of positional information. In many of our
experiments, we showed its effectiveness in tracking and searching problems, where a
rapid method is generally needed in both the preparation or off-line processing and in
on-line or real-time calculation. When sufficient data can be obtained from the training
images, it may be possible to utilize different methods of machine learning, such as CNN or
effective classifiers, to solve these problems. We suggest the combination of the proposed
technique with these methods in order, for instance, to reduce the size and cost of training
as well as to raise the total performance in processing. For example, in certain hierarchical
approaches, ABC can represent an effective way of nominating possible candidates for
continuing either the following detailed classification or other applications. In this type of
utilization, it is preferable for absent colors to be somewhat independent of or orthogonal
to any other features in order to maintain better performance in total.

3.6. Computational Cost

We calculated the computation cost of ABC using Visual Studio 2015 and the OpenCV
2.4.13 library, without parallel processing or GPU acceleration. The hardware used was
a Windows 10 PC with a 2.81 GHz Intel Core i5-8400 CPU and 8 GB of RAM. We tested
reference images of size 50× 50 that were scanned and searched pixel-by-pixel in a scene of
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size 100× 100. The entire computation required 0.1029 s per the OpenCV timing function
and 0.1030 s per the QueryPerformanceCounter function.

4. Conclusions

Here, we have proposed a novel method based on color histogram, called absent color
indexing for robust pattern search. By reorganizing a color histogram into two complemen-
tary histograms, we observed that the new feature of absent colors can effectively increase
the margins, resulting in high reliability or distinguishability in matching in many different
tasks. In the proposed method, low-frequency colors or ones that are relatively non-existent
in the color histogram bins are enhanced by inversion for fair treatment. A novel way
of obtaining an important parameter for histogram decomposition is provided through
specifying the statistical significance level in the mean histogram. Mondrian random pat-
terns were effectively used as a general type of pictures for fundamental evaluation of
the proposed method in comparison experiments with several representative competitors.
Experimental results using real-world images and datasets showed that the proposed
method has good performance. In future works, we hope to investigate the applicability of
ABC to real tasks such as human tracking and WEB search, as well as to problems where
color features are highly important and greater reliability may be necessary.
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