
Citation: Zhu, C.; Chen, Z.; Sun, Q.

Stochastic Transcription with

Alterable Synthesis Rates.

Mathematics 2022, 10, 2189. https://

doi.org/10.3390/math10132189

Academic Editors: Jia Li, Jianshe Yu

and Bo Zheng

Received: 24 May 2022

Accepted: 21 June 2022

Published: 23 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Stochastic Transcription with Alterable Synthesis Rates
Chunjuan Zhu 1, Zibo Chen 2 and Qiwen Sun 2,*

1 Basic Department, Guangdong Construction Polytechnic, Guangzhou 510631, China; cjzhuhappy@sina.com
2 Guangzhou Center for Applied Mathematics, Guangzhou University, Guangzhou 510006, China;

zibochen2022@sina.com
* Correspondence: qwsun@gzhu.edu.cn

Abstract: Background: Gene transcription is a random bursting process that leads to large variability
in mRNA numbers in single cells. The main cause is largely attributed to random switching between
periods of active and inactive gene transcription. In some experiments, it has been observed that
variation in the number of active transcription sites causes the initiation rate to vary during elongation.
Results: We established a mathematical model based on the molecular reaction mechanism in single
cells and studied a stochastic transcription system consisting of two active states and one inactive
state, in which mRNA molecules are produced with two different synthesis rates. Conclusions: By
calculation, we obtained the average mRNA expression level, the noise strength, and the skewness of
transcripts. We gave a necessary and sufficient condition that causes the average mRNA level to peak
at a limited time. The model could help us to distinguish an appropriate mechanism that may be
employed by cells to transcribe mRNA molecules. Our simulations were in agreement with some
experimental data and showed that the skewness can measure the deviation of the distribution of
transcripts from the mean value. Especially for mature mRNAs, their distributions were almost able
to be determined by the mean, the noise (or the noise strength), and the skewness.

Keywords: stochastic transcription; alterable synthesis rates; average transcript level; noise strength;
skewness

MSC: 34K05; 92C37; 92C40

1. Introduction

The process of synthesizing a ribonucleic acid (RNA) copy of a deoxyribonucleic
acid (DNA) molecule is called transcription, which is involved in virtually all significant
physiological processes and necessary for all forms of life. It is now well established that
transcription is a complex and stochastic process and occurs in a bursting fashion both in
prokaryotes [1,2] and eukaryotes [3,4]. From RNA polymerase binding at the promoter to
RNA splicing and processing, numerous successive steps are involved in this process, and
each one is stochastic. The accumulation of stochasticity in the whole transcription event
results in fluctuations in transcripts in single cells.

In the last three decades, experimental works and theoretical works have interacted
and helped to move each other forward. Bartman et al. [5] showed that transcriptional
burst initiation and polymerase pause release could regulate transcription together. The
enhancer and transcription factors regulate transcriptional outputs by modulating the
transcriptional burst or frequency [6,7]. Many novel models have been established and
used to interpret experimental phenomena. Peccoud and Ycart [8] established a two-state
gene expression model in which the promoter stochastically switches between an OFF and
an ON state. Tang [9] constructed a three-state model by dividing the OFF state into two
substates to evaluate the dynamical and stationary mean transcript level. Cao et al. [10]
studied the effect of RNA polymerase recruitment and polymerase pause release and
derived the distributions of mRNA and protein numbers. At the same time, many effective
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approaches have been developed to calculate the distributions of mRNAs and proteins. For
instance, Sun et al. [11] and Zhu et al. [12] derived the distribution of mRNA molecules
produced in a system activated by cross-talking pathways. Chen and Jiao [13] presented an
approach to calculating mRNA distribution with time. Cao and Grima [14] extended the
two-state transcription model to dividing cells. Distributions of mRNAs and proteins in a
complex expression system were studied in [15,16].

The mRNA production rates always have global effects on RNA synthesis and should
play a role in transcription. For example, in dividing cells, the mRNA production rate
depends on the cell size and gene copies [17]. The average mRNA level does not double
between the interphase and the mitotic phase, and the noise and noise strength depend
on the cell cycle duration [18]. Jiao and Tang [19] proposed a novel index, which relates
to the transcription level and the noise, to quantify transcription noise’s impact on cell
fate commitment. When the production rate was periodic with a fixed period, the average
mRNA and the noise were derived [20].

With the development of observation techniques, large amounts of data on gene
expression can be measured and collected everyday. However, an increasing amount of
data demonstrate that bursting kinetics are highly gene-specific [4,21]. Thus, we should
seek to develop a suitable mathematical model to explore the transcription mechanisms of
the targeted gene.

Using single-molecule fluorescence in situ hybridization (smFISH), Senecal et al. [6]
quantified the transcriptional activity of the protooncogene c-Fos and measured the nascent
and mature c-Fos mRNA amounts. They found that several transcriptions after different
levels of serum induction showed similar induction kinetics; that is, mRNA levels increased
rapidly to reach a maximum and then returned to basal expression after 1∼2 h. Moreover,
we can clearly see that the distributions of nascent and mature mRNAs are positively
skewed. To understand the molecular mechanisms of the experimental phenomenon
reported by Senecal et al. [6], we modify and analyze the two-ON transcription model that
they introduced in their paper, and we derive the temporal profiles of the average mRNA
level and the mRNA distribution.

In this paper, we describe the two-ON transcription model, detailed in Section 2. The
transcriptional output and stochasticity are often quantified by the mean and the noise
strength. To depict the distribution of transcripts in more detail, we introduce the skewness
to describe the asymmetry of such distribution. For a random variable X, E[X] denotes the
mean value, while the noise strength and the skewness are defined by

φ[X] =
σ2[X]

E[X]
and S[X] =

ρ[X]

σ3[X]

where σ2[X] and ρ[X] denote the second and the third central moments, respectively. Since
σ2[X] and ρ[X] are determined by the first to the third raw moments, we only need to
calculate E[X], E[X2] and E[X3]. Thus, we present the master equations of the transcription
system and the differential equations of the three moments in Section 2. We show the
analytical form of the average mRNA level and give a necessary and sufficient condition
such that the average level could peak at a limited time point in Section 3. Moreover, we
give a detailed procedure to calculate the skewness but do not present the exact form for
the sake of brevity. By using the measured experimental data in [6], we simulate our results
in Section 4 and identify more potential properties of the distribution from the skewness by
the simulations.

2. Model Specification
2.1. The Characterization of the Gene Transcription Mechanism

The model is established based on the experimental observations in [6]. When ana-
lyzing the serum induction data, Senecal et al. [6] found that there is a temporary increase
in the initiation rate during elongation. They conjectured that there may exist a second
active state with a higher initiation rate. The experimental phenomenon differs from other
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models, and the data or parameters cannot be fitted by existing models. This observation
motivates us to study the stochastic dynamics of gene transcription with the existence of
two active states in detail, and give the analytical form of the average mRNA level and the
distribution of transcripts.

We assume that there are two active states with different initiation rates to produce
mRNA molecules and one inactive state with no production taking place. As shown
in Figure 1, it can be postulated that the gene promoter randomly transfers within the
OFF state, the first ON state, and the second ON state with constant rates. To activate
transcription, it takes an exponentially distributed time of rate λ to open the DNA duplex
to form a transcription bubble and bind an RNA polymerase to a special region. The
RNA chain is synthesized with synthesis rate ν1 when the RNA polymerase moves along
the DNA. The sojourn time in the first ON state is assumed to be independently and
exponentially distributed with a rate γ1. As observed in [6], a second ON state with an
independent initiation rate ν2 is added that can be reached at high p-ERK levels from the
first ON state, and the system resides at this state for a time, which is independently and
exponentially distributed with a rate γ2. Following such an observation, we assume that,
at the exit of the first ON state, the promoter may transfer to the second ON state with a
probability p, or to the OFF state with a probability q = 1− p. At the exit of the second ON
state, the promoter returns to the first ON state. Then, the promoter makes a selection again,
similar to the previous instance. When the RNA polymerase dissociates at a terminator
site, the transcription stops and the DNA duplex reforms. The promoter returns to the
OFF state. Throughout the whole transcription process, transcripts are turned over with a
degradation rate δ > 0.

First ON

OFF

Second ON

𝛿

𝜈1

𝜈2

𝜆

𝛾2

𝑞𝛾1
𝑝𝛾1

Figure 1. The stochastic transition of transcription with two active states and one inactive state.

As is common, we use the mean, the noise strength to depict the average transcription
level, and the fluctuation of transcripts in single cells. Let M(t) denote the transcript
number of a gene of interest in single cells at time t. In individual cells, M(t) is a natural
number that varies over a large region. Usually, we expect to count the average transcript
number produced per cell in a population of isogenic cells. This value, called the mean, is
given by the first moment of M(t), i.e.,

m(t) = E[M(t)].

To determine the numbers of transcripts in individual cells deviating from the mean, we
employ the noise strength, defined by

φ(t) = E
[
[M(t)−m(t)]2

m(t)

]
=

σ2(t)
m(t)

=
µ(t)−m2(t)

m(t)
,

to characterize the fluctuation of transcripts, where µ(t) = E[M2(t)] is the second moment
of transcripts. Furthermore, we also introduce the probability mass function Pm(t), defined by

Pm(t) = Prob{M(t) = m}
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to show the distribution of transcripts.
To better depict the distribution Pm(t), we introduce the skewness of transcripts, which

is defined as

S(t) = E
[

M(t)−m(t)
σ(t)

]3

=
k3(t)− 3µ(t)m(t) + 2m3(t)

σ3(t)
,

where k3(t) = E[M3(t)] is the third moment of transcripts. It measures the deviation of the
transcript distribution from a symmetric distribution.

2.2. The Master Equations

For any given time t ≥ 0, we let X = X(t) specify the system state. We write X(t) = O
when the promoter is in the OFF state at time t, and X(t) = E1 and X(t) = E2 when the
promoter is in the first ON and the second ON states, respectively. Then, X(t) randomly
transfers among the three functional states O, E1, and E2. We define Pm,O(t) to be the
probability that the promoter resides at the OFF state with m transcripts at time t in single
cells, i.e.,

Pm,O(t) = Prob{M(t) = m, X(t) = O}, m = 0, 1, 2, · · · . (1)

Similarly, we give two other probabilities, namely

Pm,E1(t) = Prob{M(t) = m, X(t) = E1}, (2)

Pm,E2(t) = Prob{M(t) = m, X(t) = E2}, (3)

to denote the probabilities that the promoter resides at the first ON and the second ON
states with m transcripts at time t, respectively.

By using a standard procedure in the stochastic process, we calculate the time evolu-
tions of these probabilities. Suppose that the system is in the first ON state and m copies of
the mRNA are present in the cell at time t + ∆t for an infinitesimal time increment ∆t > 0.
Then, one of the following events must occur at time t:

1. (M(t), X(t)) = (m, E1), with no production or elimination of transcripts and transfer
of the system states taking place during the time interval (t, t + ∆t). This event has a
probability Pm,E1(t) · (1− ν1∆t)(1−mδ∆t)(1− γ1∆t).

2. (M(t), X(t)) = (m + 1, E1), with one transcript being eliminated during (t, t + ∆t).
This event has a probability Pm+1,E1(t) · (m + 1)δ∆t.

3. (M(t), X(t)) = (m − 1, E1), with one transcript being produced during (t, t + ∆t).
This event has a probability Pm−1,E1(t) · ν1∆t.

4. (M(t), X(t)) = (m, E2), the system being transferred from the second ON state to the
first one during (t, t + ∆t). This event has a probability Pm,E2(t) · γ2∆t.

5. (M(t), X(t)) = (m, O), the system being transferred from the OFF state to the first
ON state during (t, t + ∆t). This event has a probability Pm,O(t) · λ∆t.

Adding the five probabilities together gives Pm,E1(t + ∆t). By dividing the resulting
equality by ∆t and then letting ∆t→ 0, we obtain

P′m,E1
(t) =− (ν1 + mδ + γ1)Pm,E1(t) + ν1Pm−1,E1(t)

+ (m + 1)δPm+1,E1(t) + γ2Pm,E2(t) + λPm,O(t), (4)

P′m,O(t) =− (mδ + λ)Pm,O(t) + (m + 1)δPm+1,O + qγ1Pm,E1(t), (5)

P′m,E2
(t) =− (ν2 + mδ + γ2)Pm,E2(t) + ν2Pm−1,E2(t)

+ (m + 1)δPm+1,E2(t) + pγ1Pm,E1(t), (6)

where p + q = 1, p, and q are the respective probabilities that the second ON state and
the OFF state are selected when the transfer of the system states occurs. The three time
evolutions (4)–(6) constitute the master equations of the gene transcription system.
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In addition, we need to calculate the following two probabilities to depict the activation
rate of the promoter. The dynamical transcriptional efficiencies in the two ON states are
determined by probabilities

PE1(t) =
∞

∑
m=0

Pm,E1(t) and PE2(t) =
∞

∑
m=0

Pm,E2(t).

and the total efficiency is determined by summing the two efficiencies, i.e.,

PE(t) = PE1(t) + PE2(t).

The probability PE(t) also indicates the ratio of cells that are producing transcripts in cell
population at time t. Similarly, we define the transcriptional inefficiency by

PO(t) =
∞

∑
m=0

Pm,O(t)

to indicate the ratio of cells that are in silence. Summing the three probabilities (1)–(3) gives
the probability mass function Pm(t), which is

Pm(t) = Pm,O(t) + Pm,E1(t) + Pm,E2(t). (7)

2.3. The Differential Equations

Without loss of generality, we assume that the transcription starts from the gene OFF
state, and we count only the newly produced transcripts. Then, the initial condition is

P0,O(0) = 1, P0,E1(0) = P0,E2(0) = 0, Pm,O(0) = Pm,E1(0) = Pm,E2(0) = 0 for m > 0. (8)

Adding the master Equations (4)–(6) in m, we obtain a closed system of PO(t), PE1(t)
and PE2(t), i.e., the interrelation of these three probabilities is governed by ordinary differ-
ential equations 

P′O(t) = qγ1PE1(t)− λPO(t),
P′E1

(t) = λPO(t) + γ2PE2(t)− γ1PE1(t),
P′E2

(t) = pγ1PE1(t)− γ2PE2(t),
(9)

and the initial values for them can be determined by (8) and are given as

PO(0) = 1, PE1(0) = 0, PE2(0) = 0. (10)

Solving the initial value problem (9) and (10), we derive the analytical forms of PO(t), PE1(t)
and PE2(t) as shown in the following lemma.

Lemma 1. If the durations for which the promoter resides in the OFF and two ON states are
exponentially distributed with rates λ, γ1, γ2, and the initial condition holds, then

PO(t) =
qγ1γ2

αβ
−

α2 − (γ1 + γ2)α + qγ1γ2

α(β− α)
e−αt −

β2 − (γ1 + γ2)β + qγ1γ2

β(α− β)
e−βt,

PE1(t) =
λγ2

αβ
−

λ(γ2 − α)

α(β− α)
e−αt −

λ(γ2 − β)

β(α− β)
e−βt,

PE2(t) =
pλγ1

αβ
−

pλγ1

α(β− α)
e−αt −

pλγ1

β(α− β)
e−βt,

(11)

where the two constants α and β are unequal and satisfy

α + β = λ + γ1 + γ2, αβ = pλγ1 + λγ2 + qγ1γ2. (12)
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The total frequency of elongation PE(t) is

PE(t) =
λ(pγ1 + γ2)

αβ
− λ(pγ1 + γ2 − α)

α(β− α)
e−αt − λ(pγ1 + γ2 − β)

β(α− β)
e−βt, (13)

which increases continuously to approach a stationary value P∗E , where

P∗E = lim
t→∞

PE(t) =
λ(pγ1 + γ2)

αβ
.

We rewrite P∗E as

P∗E =
1/γ1 + p/γ2

1/γ1 + p/γ2 + q/λ
.

The denominator in the above fraction is the average duration of each transcription cycle
and the numerator is the sum of the durations in the two active states in one cycle. It is
easy to deduce that the system is the classical two-state transcription model when p = 0.
When p = 1, promoter leakage occurs during gene transcription [22,23].

Before giving the main proof, we first give the definition of the Laplace transform.

Definition 1 ([24]). The Laplace transform of a function f defined on D f = (0, ∞) is

F(s) =
∫ ∞

0
e−st f (t)dt,

defined for all s ∈ DF ⊂ R where the integral converges.

The Laplace transform converts a differential equation for an unknown function into
an algebraic equation for a transformed function. More detailed properties of the Laplace
transform can be found in [24]. Next, we give the proof of Lemma 1.

Proof. The differential Equation (9) are a closed system, and the initial condition (10) holds.
By applying the Laplace transform to (9), we obtain a system of algebraic equations

sL(PO)− 1 = qγ1L(PE1)− λL(PO),
sL(PE1) = λL(PO) + γ2L(PE2)− γ1L(PE1),
sL(PE2) = pγ1L(PE1)− γ2L(PE2).

Solving this system, we have

L(PO) =
s2 + (γ1 + γ2)s + qγ1γ2

s[s2 + (α + β)s + αβ]
,

L(PE1) =
λ(s + γ2)

s[s2 + (α + β)s + αβ]
,

L(PE2) =
pλγ1

s[s2 + (α + β)s + αβ]
.

(14)

Then, using the inverse Laplace transform to (14), we derive the three probabilities as given
in (11). As there are two gene ON states during elongation, the frequency of elongation is
derived by summing the two probabilities PE1(t) and PE2(t).

From (12), α and β are two real distinct roots, i.e., α =
[
λ + γ1 + γ2 −

√
[λ + γ1 + γ2]2 − 4(pλγ1 + λγ2 + qγ1γ2)

]/
2,

β =
[
λ + γ1 + γ2 +

√
[λ + γ1 + γ2]2 − 4(pλγ1 + λγ2 + qγ1γ2)

]/
2.
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It is easy to prove that α ≤ pγ1 + γ2 ≤ β. Differentiating (13) with respect to t gives

P′E(t) =
λ

β− α
e−βt

[
(pγ1 + γ2 − α)e(β−α)t − (pγ1 + γ2 − β)

]
> 0

for all t > 0, which means that PE(t) increases in the time interval (0, ∞).

By definition, the average transcript level m(t) is defined to be the sum of mPm(t),
where Pm(t) is given in (7). Multiplying (7) by m and summing the products leads to

m(t) = E[M(t)] =
∞

∑
m=0

mPm(t) =
∞

∑
m=0

m
[

Pm,O(t) + Pm,E1(t) + Pm,E2(t)
]
. (15)

By differentiating (15) with respect to t and substituting (4)–(6) into the result, we derive
the time evolution of m(t), i.e.,

m′(t) =
∞

∑
m=0

m
[

P′m,O(t) + P′m,E1
(t) + P′m,E2

(t)
]
= ν1PE1(t) + ν2PE2(t)− δm(t). (16)

From the initial condition (8), we know that m(0) = 0. Before giving the second and the
third moments of transcripts, we define three joint average levels, as follows:

m0(t) =
∞

∑
m=0

mPm,O(t), m1(t) =
∞

∑
m=0

mPm,E1(t) and m2(t) =
∞

∑
m=0

mPm,E2(t).

From (15), the mean m(t) can be rewritten as

m(t) = m0(t) + m1(t) + m2(t). (17)

The second moment of transcript number M(t) is

µ(t) = E[M2(t)] =
∞

∑
m=0

m2Pm(t) =
∞

∑
m=0

m2
[

Pm,O(t) + Pm,E1(t) + Pm,E2(t)
]
. (18)

Differentiating (18) and with the assistance of (4)–(6) again, we obtain its time evolution as

µ′(t) = 2ν1m1(t) + 2ν2m2(t) + ν1PE1(t) + ν2PE2(t) + δm(t)− 2δµ(t). (19)

The initial condition for µ(t) is µ(0) = 0. We rewrite the second moment µ(t) as

µ(t) = µ0(t) + µ1(t) + µ2(t),

where µ0(t), µ1(t), and µ2(t) are defined as

µ0(t) =
∞

∑
m=0

m2Pm,O(t), µ1(t) =
∞

∑
m=0

m2Pm,E1(t) and µ2(t) =
∞

∑
m=0

m2Pm,E2(t).

Next, we give the time evolution of k3(t). By definition, the third moment k3(t) is

k3(t) = E
[

M3(t)
]
=

∞

∑
m=0

m3Pm(t) =
∞

∑
m=0

m3[Pm,O(t) + Pm,E1(t) + Pm,E2(t)]. (20)

Differentiating (20) with respect to t, we derive the time evolution as

k′3(t) =ν1[PE1(t) + 3m1(t) + 3µ1(t)] + ν2[PE2(t) + 3m2(t) + 3µ2(t)]

− δ[m(t)− 3µ(t) + 3k3(t)]. (21)

From the initial condition (8), the initial value is k3(0) = 0.
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Solving (16), (19), and (21) with their initial values gives the exact forms of the average
transcript level m(t), the second moment µ(t), and the third moment k3(t). Then, we can
derive the analytical forms of the variance σ2(t), the noise strength φ(t), and the skewness
S(t) for their definitions, respectively.

3. Results
3.1. The Average Transcription Levels

In statistics, the expected value is a long-term average value of random variables. In
this paper, it indicates the anticipated number of transcripts produced in single cells. It also
indicates the probability-weighted average of all possible transcript numbers produced
in a homologous genetic cell. In the following theorem, we give the analytical form of the
average transcript level, which shows how many transcripts one expects to count per cell.

Theorem 1. Assume that there are two activated states and one inactivated state; then, the average
transcript level is given by

m(t) =
ν1λγ2 + ν2 pλγ1

αβδ
− ν1λ(γ2 − δ) + ν2 pλγ1

δ(α− δ)(β− δ)
e−δt

− ν1λ(γ2 − α) + ν2 pλγ1

α(β− α)(δ− α)
e−αt − ν1λ(γ2 − β) + ν2 pλγ1

β(α− β)(δ− β)
e−βt, (22)

where α + β = λ + γ1 + γ2, αβ = pλγ1 + λγ2 + qγ1γ2.

When α = δ or β = δ, the level (22) is not well defined, but we can derive the mean
m(t) by taking the limits in (22) as α→ δ or β→ δ.

Proof. Since the two probabilities PE1(t) and PE2(t) have been derived, the average tran-
script level m(t) can be obtained directly by solving (16) with the initial condition m(0) = 0.
To derive the second and the third moments, we need to calculate the exact forms of m1(t)
and m2(t). Here, we use the Laplace transform to solve them. Multiplying (4)–(6) by m and
summing the products leads to

m′0(t) = qγ1m1(t)− (λ + δ)m0(t),
m′1(t) = ν1PE1(t) + λm0(t) + γ2m2(t)− (γ1 + δ)m1(t),
m′2(t) = ν2PE2(t) + pγ1m1(t)− (γ2 + δ)m2(t).

(23)

From the initial condition (8), we find that m0(0) = m1(0) = m2(0) = 0. Note that the
analytical forms PE1(t) and PE2(t) have been given in Lemma 1. Thus, the differential
system (23) is closed.

By applying the Laplace transform to the system (23), we obtain three algebraic
equations, namely

sL(m0) = qγ1L(m1)− (λ + δ)L(m0),
sL(m1) = ν1L(PE1) + λL(m0) + γ2L(m2)− (γ1 + δ)L(m1),
sL(m2) = ν2L(PE2) + pγ1L(m1)− (γ2 + δ)L(m2).

Solving these algebraic equations and substituting (14), we derive

L(m0) =
qν1λγ1(s + γ2)(s + δ + γ2) + pqν2λγ2

1γ2

s(s + α)(s + β)(s + δ)(s + δ + α)(s + δ + β)
,

L(m1) =
ν1λ(s + δ + λ)(s + δ + γ2)(s + γ2) + pν2λγ1γ2(s + δ + λ)

s(s + α)(s + β)(s + δ)(s + δ + α)(s + δ + β)
,

L(m2) =
pλγ1

[
ν1(s + δ + λ)(s + γ2) + ν2[(s + δ)(s + δ + λ + γ1) + pλγ1]

]
s(s + α)(s + β)(s + δ)(s + δ + α)(s + δ + β)

.

(24)
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Then, applying the inverse Laplace transform to them, we obtain the exact forms of
m0(t), m1(t) and m2(t). For example, we rewrite L(m0) as

L(m0) =
A
s
+

B
s + α

+
C

s + β
+

D
s + δ

+
E

s + δ + α
+

F
s + δ + β

.

Then, reducing the above fraction to a common denominator gives

qν1λγ1(s + γ2)(s + δ + γ2) + pqν2λγ2
1γ2 =A(s + α)(s + β)(s + δ)(s + δ + α)(s + δ + β)

+ · · ·+ Fs(s + α)(s + β)(s + δ)(s + δ + α).

Let s = 0, and we obtain

A =
qν1λγ1γ2(δ + γ2) + pqν2λγ2

1γ2

αβδ(δ + α)(δ + β)
.

Then, let s = −α,−β, · · · ,−δ− β, and we obtain B, C, · · · , F. Thus, m0(t) is given as

m0(t) =
qν1λγ1γ2(δ + γ2) + pqν2λγ2

1γ2

αβδ(δ + α)(δ + β)
−

qν1λγ1γ2(γ2 − δ) + pqν2λγ2
1γ2

δ(α− δ)(β− δ)αβ
e−δt

−
qν1λγ1(γ2 − α)(δ + γ2 − α) + pqν2λγ2

1γ2

α(β− α)(δ− α)δ(δ + β− α)
e−αt

−
qν1λγ1(γ2 − β)(δ + γ2 − β) + pqν2λγ2

1γ2

β(α− β)(δ− β)(δ + α− β)δ
e−βt

−
qν1λγ1(γ2 − α)(γ2 − δ− α) + pqν2λγ2

1γ2

(δ + α)δ(β− δ− α)α(β− α)
e−(δ+α)t

−
qν1λγ1(γ2 − β)(γ2 − δ− β) + pqν2λγ2

1γ2

(δ + β)(α− δ− β)δβ(α− β)
e−(δ+β)t.

Similarly, we obtain exact forms of m1(t) and m2(t), which are

m1(t) =
[ν1(δ + γ2) + pν2γ1]λγ2(δ + λ)

αβδ(δ + α)(δ + β)
− [ν1(γ2 − δ) + pν2γ1]λ

2γ2
δ(α− δ)(β− δ)αβ

e−δt

− [ν1(δ + γ2 − α)(γ2 − α) + pν2γ1γ2]λ(δ + λ− α)

α(β− α)(δ− α)δ(δ + β− α)
e−αt

− [ν1(δ + γ2 − β)(γ2 − β) + pν2γ1γ2]λ(δ + λ− β)

β(α− β)(δ− β)(δ + α− β)δ
e−βt

− [ν1(γ2 − α)(γ2 − δ− α) + pν2γ1γ2]λ(λ− α)

(δ + α)δ(−β− δ− α)α(β− α)
e−(δ+α)t

− [ν1(γ2 − β)(γ2 − δ− β) + pν2γ1γ2]λ(λ− β)

(δ + β)(α− δ− β)δβ(α− β)
e−(δ+β)t,

m2(t) =

[
ν1(δ + λ)γ2 + ν2[δ(δ + λ + γ1) + pλγ1]

]
pλγ1

αβδ(δ + α)(δ + β)
− [ν1(γ2 − δ) + pν2γ1]pλ2γ1

δ(α− δ)(β− δ)αβ
e−δt

−
[
ν1(δ + λ− α)(γ2 − α) + ν2[(δ− α)(δ + λ + γ1 − α) + pλγ1]

]
pλγ1

α(β− α)(δ− α)δ(δ + β− α)
e−αt

−
[
ν1(δ + λ− β)(γ2 − β) + ν2[(δ− β)(δ + λ + γ1 − β) + pλγ1]

]
pλγ1

β(α− β)(δ− β)(δ + α− β)δ
e−βt

−
[
ν1(λ− α)(γ2 − δ− α) + ν2[pλγ1 − α(λ + γ1 − α)]

]
pλγ1

(δ + α)δ(β− δ− α)α(β− α)
e−(δ+α)t

−
[
ν1(λ− β)(γ2 − δ− β) + ν2[pλγ1 − β(λ + γ1 − β)]

]
pλγ1

(δ + β)(α− δ− β)δβ(α− β)
e−(δ+β)t.
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We rewrite them as

m0(t) = m∗0 + m0(t), m1(t) = m∗1 + m1(t), m2(t) = m∗2 + m2(t), (25)

for the sake of brevity, where m0(t), m1(t), andm0(t) are damped exponentially and m∗0
m∗1 , m∗2 are given as

m∗0 =
qν1λγ1γ2(δ + γ2) + pqν2λγ2

1γ2

αβδ(δ + α)(δ + β)
,

m∗1 =
[ν1(δ + γ2) + pν2γ1]λγ2(δ + λ)

αβδ(δ + α)(δ + β)
,

m∗2 =

[
ν1(δ + λ)γ2 + ν2[δ

2 + (λ + γ1)δ + pλγ1]
]
pλγ1

αβδ(δ + α)(δ + β)
.

From (17), summing m0(t), m1(t), and m2(t) also gives the average transcript level m(t).

From (22), the level m(t) has a limit when time t reaches infinity, i.e.,

m∗ = lim
t→∞

m(t) =
ν1λγ2 + ν2 pλγ1

δ(pλγ1 + λγ2 + qγ1γ2)
=

ν1/γ1 + pν2/γ2

p/λ + 1/γ1 + q/γ2
· 1

δ
.

The limitation implies that the stationary level can be characterized as

Burst size in 1st ON + Burst size in 2nd ON
Average transcription duration

×Average lifetime of mRNAs.

Since the initial value of m(t) is set to 0 and the gene resides in the OFF state, we wish
to know the temporal profile of m(t) thereafter. The following theorem gives a necessary
and sufficient condition causing m(t) to peak at some time point.

Theorem 2. Assume that the three parameters α, β, and δ are real distinct numbers. If

min{α, β, δ} > ν1γ2 + pν2γ1

ν1
(26)

holds, then the mean level m(t) peaks at some time τ1.

Proof. Differentiating m(t) twice with respect to t gives

m′(t) =
ν1λ(γ2 − α) + ν2 pλγ1

(β− α)(δ− α)
e−αt +

ν1λ(γ2 − β) + ν2 pλγ1

(α− β)(δ− β)
e−βt

+
ν1λ(γ2 − δ) + ν2 pλγ1

(α− δ)(β− δ)
e−δt,

m′′(t) =− α[ν1λ(γ2 − α) + ν2 pλγ1]

(β− α)(δ− α)
e−αt − β[ν1λ(γ2 − β) + ν2 pλγ1]

(α− β)(δ− β)
e−βt

− δ[ν1λ(γ2 − δ) + ν2 pλγ1]

(α− δ)(β− δ)
e−δt.

At time t = 0, we have m′(0) = 0 and m′′(0) = ν1λ. Thus, m(t) is increasing at t = 0, and
there exists a T1 > 0 such that m′(t) > 0 for t ∈ (0, T1).

Since α, β and δ are distinct, we assume that α < β < δ. Then, m′(t) can be rewritten as

m′(t) = e−δt · H(t),
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where

H(t) =
ν1λ(γ2 − α) + ν2 pλγ1

(β− α)(δ− α)
e(δ−α)t +

ν1λ(γ2 − β) + ν2 pλγ1

(α− β)(δ− β)
e(δ−β)t

+
ν1λ(γ2 − δ) + ν2 pλγ1

(α− δ)(β− δ)
.

Taking the limit as t→ ∞, we obtain

lim
t→∞

H(t) = −∞

when α > (ν1γ2 + ν2 pγ1)/ν1. Then, there exists a large T2 > 0, such that H(t) < 0 for
all t > T2. Taking these together, we find that there exists a unique τ1 ∈ (T1, T2) such
that m′(τ1) = 0. To prove the uniqueness, we only need to show that H(t) has a unique
critical point.

Differentiating H(t) gives

H′(t) =
ν1λ(γ2 − α) + ν2 pλγ1

β− α
e(δ−α)t +

ν1λ(γ2 − β) + ν2 pλγ1

α− β
e(δ−β)t.

Then, H′(t) = 0 has only one root over (0, ∞). Combining H(0) = 0 and H′(0) = ν1λ > 0,
we obtain that τ1 is unique. For other cases, we achieve the same conclusion by using
similar discussions.

We wish to determine when the condition (26) can be satisfied. Noticing that the
degradation rate δ is independent of the five parameters in (ν1γ2 + ν2 pγ1)/ν1 and β > α
holds, we only need to guarantee α > (ν1γ2 + ν2 pγ1)/ν1. When ν1 ≤ ν2 holds, we will
show α < (ν1γ2 + ν2 pγ1)/ν1. We use the method of proof by contradiction. Suppose, on
the contrary, that α ≥ (ν1γ2 + ν2 pγ1)/ν1. Then, λ + γ1 > γ2 + 2ν2 pγ1/ν1 and(

λ +
ν1 − 2pν2

ν1
γ1 − γ2

)2
≥ (λ + γ1 + γ2)

2 − 4(pλγ1 + λγ2 + qγ1γ2)

hold. It follows that

λ + γ1 ≤
(pν2

2 − ν2
1)γ1 + (ν1ν2 − ν2

1)γ2

ν1ν2 − ν2
1

.

However, this contradicts λ + γ1 > γ2 + 2ν2 pγ1/ν1. Thus, the inequality α ≥ (ν1γ2 +
ν2 pγ1)/ν1 must be false. Therefore, α < (ν1γ2 + ν2 pγ1)/ν1.

When ν1 > ν2 holds, α > (ν1γ2 + ν2 pγ1)/ν1 is equivalent to

(ν1 − ν2)ν1(λ− γ2) > (ν1ν2 − pν2
2)γ1.

From the above analysis, we derive that, for a transcription system, the mean level m(t)
always exhibits increasing behavior if the mRNA molecules are stable. It is interesting to see
that, only when mRNA molecules are easily degraded, the mean level m(t) increases very
abruptly and reaches its maximal value. It then decays and approaches its stationary value.

3.2. The Noise and the Skewness of Transcripts

In the past two decades, the noise η2(t) and the noise strength φ(t) have been widely
used to characterize the fluctuations of transcripts in cell populations. The noise is defined
as the ratio between the variance and the mean square, and the noise strength is the ratio of
the variance to the mean. Both of them are completely determined by the mean level m(t)
and the second moment µ(t). Thus, to derive the noise and the noise strength, we only
need to calculate the second moment.
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By definition, the second moment of transcripts is

µ(t) = E[M2(t)] =
∞

∑
m=0

m2Pm(t).

Multiplying (4)–(6) by m2 and taking the sum, we derive (19) with the initial value µ(0) = 0.
By solving the initial value problem, and we can obtain the exact form of µ(t).

Theorem 3. Under the same condition of Theorem 1, the second moment µ(t) = E[M2(t)] of
transcripts M(t) takes the form

µ(t) = µ∗ + µ(t),

where the first coefficient is given by

µ∗ = m∗ +
ν2

1 λγ2(δ + λ)(δ + γ2) + 2ν1ν2 pλγ1γ2(δ + λ) + ν2
2 pλγ1(δ

2 + δ(λ + γ1) + pλγ1)

αβδ2(δ + α)(δ + β)
,

and µ(t) is damped exponentially.

The second moment µ(t) approaches a stationary value µ∗ when the time t reaches
infinity. Then, the variance is determined by the mean m∗ and µ∗, i.e.,

σ2∗ =µ∗ − (m∗)2

=m∗ + (m∗)2 · αβδ− (α + β)δλ− δ2λ

λ(δ + α)(δ + β)
+

(ν2
1 γ2 + pν2

2 γ1)(δ + λ) + pqν2
2 γ2

1λ

αβδ(δ + α)(α + β)
.

and the stationary noise strength is

φ∗ = 1 + m∗ · αβδ− (α + β)δλ− δ2λ

λ(δ + α)(δ + β)
+

(ν2
1 γ2 + pν2

2 γ1)(δ + λ) + pqν2
2 γ2

1λ

(ν1λγ1 + pν2λγ1)(δ + α)(α + β)
, (27)

which is greater than 1.
Next, we provide the process by which to calculate the third moment of transcripts.

Since the analytical form of the third moment is too long, we omit this expatiatory expres-
sion from the text. Multiplying (4)–(6) by m2 and summing the products, we have

µ′0(t) = δm0(t) + qγ1µ1(t)− (λ + 2δ)µ0(t),
µ′1(t) = ν1PE1(t) + (2ν1 + δ)m1(t) + λµ0(t) + γ2µ2(t)− (γ1 + 2δ)µ1(t),
µ′2(t) = ν2PE2(t) + (2ν2 + δ)m2 + pγ1µ1(t)− (γ2 + 2δ)µ2(t).

(28)

From the initial condition (8), we find that µ0(0) = µ1(0) = µ2(0) = 0. Note that the
analytical forms PE1(t) and PE2(t) have been derived in Lemma 1, m0(t), m1(t) and m2(t)
have been given in the proof of Theorem 1 . Applying the Laplace transform to (28),
we obtain

sL(µ0) = δL(m0) + qγ1L(µ1)− (λ + 2δ)L(µ0),
sL(µ1) = ν1L(PE1) + (2ν1 + δ)L(m1) + λL(µ0) + γ2L(µ2)− (γ1 + 2δ)L(µ1),
sL(µ2) = ν2L(PE2) + (2ν2 + δ)L(m2) + pγ1L(µ1)− (γ2 + 2δ)L(µ2).

Solving these equations, we obtain the Laplace transforms of µ0(t), µ1(t) and µ2(t), which
are linearly combined by L(PE1),L(PE2) and L(m0),L(m1),L(m2). Then, substituting (14)
and (24) into the above equations gives L(µ0),L(µ1) and L(µ2).
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Next, we use the Laplace transform (21) and obtain

L(k3) =ν1[L(PE1) + 3L(m1) + 3L(µ1)] + ν2[L(PE2) + 3L(m2) + 3L(µ2)]

− δ[L(m)− 3L(µ) + 3L(k3)],

which can be rewritten as

L(k3) =
ν1[L(PE1) + 3L(m1) + 3L(µ1)] + ν2[L(PE2) + 3L(m2) + 3L(µ2)] + δ[3L(µ)−L(m)]

s + 3δ
.

Substituting (14), (24), L(µ1), and L(µ2) into the above equation, we obtain a fraction with
respect to s. It is easy to solve the algebraic equation and convert the transformed function
back into the original function. This function k3(t) is the third moment of transcripts. Let
k∗3 be the limit of k3(t). By the definition, we obtain the analytical form of the skewness,
which takes the form

S(t) = S∗ + S(t),

where S(t) decays exponentially, and

S∗ =
k∗3 − 3µ∗m∗ + 2(m∗)3

(σ∗)3 .

4. Simulation and Discussion

With the development of detection techniques, such as single-molecule fluorescence
in situ hybridization (smFISH) [25] and the single-cell RNA sequencing method (scRNA-
seq) [26], huge amounts of experimental data are obtained through the real-time monitoring
of transcription in individual living cells. These data have been applied to reveal random
gene expression, identify gene regulatory mechanisms, and investigate the dynamics of
physiological processes. In the following, we use numerical simulations to demonstrate the
predictions achievable with our model. Data were analyzed and numerical simulations
were performed using Matlab 9.4.0.813654 (R2018a https://ww2.mathworks.cn, accessed
on 4 March 2022) [27].

4.1. Comparison of Frequencies in Different Transcription Systems

By definition, the frequency PE(t) can be used to depict the ratio of cells that the target
genes are transcribing as mRNA molecules. The real-time value of PE(t) can be derived by
monitoring fluorescent proteins, and its dynamics have been widely discussed [9,28].

In the two-state transcription system, the promoter switches randomly between active
and inactive states. The dynamics of frequency are very simple, increasing continuously
and approaching a stationary value, as shown in Figure 2A. When there are two OFF states,
the system transfers between the two OFF states and the ON state, and the frequency has
two modes, as shown in Figure 2B: one is increasing and approaching its limit value (red
curve), while the other one is an oscillatory function (blue curve). Since it is damped by
the exponential function, the oscillation in the frequency of elongation may not be easily
observed in experiments. The transcription regulated by cross-talking pathways was firstly
established in 2012 [28]. In this system, the frequency also has two modes, as shown in
Figure 2C. One mode shows that the frequency increases from 0 to approach its stationary
value (red curve), and the other one is that the frequency may reach its stationary value
in a limited time and remain above this level thereafter (blue curve). This means that
cross-talking signaling pathways are capable of inducing more cells to transcribe than
the steady-state level after a short time period of signal transduction. The two-ON-state
transcription system established here has only one mode; that is, the frequency is increasing
continuously and approaching its stationary value, as shown in Figure 2D.

https://ww2.mathworks.cn
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By the above comparison, when the frequency exhibits a simple behavior, as shown
by the red curves, it is difficult to distinguish which system is used to transcribe mRNA
molecules. Only when a more complex behavior exists, such as shown by the blue curves
in (C) and (D), can we eliminate some impossible systems. To confirm the transcription
mechanism, we need more information from experimental data. In the next subsection, we
compare the mean levels to further analyze the system that will be used.
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Figure 2. The temporal profiles of elongation frequency in different transcription systems; (A) two-
state transcription system; (B) three-state transcription system; (C) the cross-talking transcription
system; (D) two-ON transcription system.

4.2. Comparison of Mean Levels

From the real-time monitoring of transcription in individual living cells, we could
obtain the average nascent/mature mRNA levels at different time points. In Theorem 1,
we have given the dynamical expression of the average mRNA level for the transcription
model that is established in Section 2. By comparing the analytical form with the observed
data, we could confirm or rule out the established model.

In Figure 3, we compare the dynamical behaviors of average mRNA levels produced
in different systems. As shown in Figure 3A, the average mRNA levels produced in the
two-state transcription model increase over (0, ∞) and approach their stationary values.
In the three-state transcription model, the average mRNA levels exhibit two different
behaviors: one is increasing monotonically—see the red curve in Figure 3B—and the other
is damped oscillating—see the blue curve in Figure 3B—which may not be easily observed
in experiments. For the situation wherein the transcription is activated by two competitive
pathways, Sun et al. [29] gave a necessary and sufficient condition for the existence of the
expression peak value; see Figure 3C. For the two-ON transcription model that we have
established in this paper, the average mRNA levels also exhibit two behaviors; see Figure 3D.
We also give a necessary and sufficient condition for the existence of the expression peak
value. The expression peak occurs only when the mRNA is easily degraded, and the
synthesis rate is larger in the first ON state.

From Figure 3, we find that the average mRNA levels produced by the cross-talking
pathway activated transcription system and the two-ON transcription system are similar.
More properties of the levels produced by the cross-talking pathway activated transcription
system can be found in [12,30].
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Figure 3. The mean transcription levels produced in different systems. (A) two-state transcription
system; (B) three-state transcription system; (C) the cross-talking transcription system; (D) two-ON
transcription system.

4.3. The Distribution of Transcripts

Usually, the mass probability function Pm is difficult to calculate. Only under some
special cases can it be derived [12,31]. In this subsection, we use the experimental data
to simulate the distribution of transcripts produced in the two-ON transcription system.
Using the smFISH approach, Senecal et al. [6] measured c-Fos transcription and derived
the c-Fos mature and nascent mRNA numbers in individual cells. The data that we collated
are as follows:

TO f f = 9.24 min, TOn1 = 1.916 min, TOn2 = 4.23 min,
δNascent = 1.25 min−1, δMature = 0.0462 min−1,

νOn1 = 6.16 min−1, νOn2 = 13.6 min−1, p = 0.293, q = 0.707.
(29)

The average durations for which the promoter resides at the OFF and the two ON states
follow exponential distributions with rates 0.1082, 0.5219 and 0.2364, respectively. The
probability that the system leaves the first ON state and enters the second ON state is
0.293. Then, the transfer rate from the first ON state to the second ON state is 0.1529, and
the rate from the first ON state to the OFF state is 0.3690. The synthesis rates are 6.16
during the first ON state and 13.6 in the second ON state. The degradation rate for mature
mRNA is set at 0.0462 min−1; thus, the half-life is approximately 15 min [6,32]. In our
simulation, the nascent mRNAs are assumed to degrade as a first-order reaction with a
constant δNascent = 1.25 min−1, and then the condition (26) holds.

Utilizing a modified finite-state projections analysis [33], we derived the distribution
of mRNA molecules at different time points; see Figure 4 for details. When ν1 < ν2, the
nascent mRNA molecules exhibit a decaying distribution; that is, Pm(t) is decreasing in
m. When the time t takes a large value, the skewness is small, causing the distribution to
display a long distribution tail; see Figure 4A. For mature mRNAs, the distribution exhibits
a unimodal distribution when time t is large. The skewness is positive, meaning that the
distribution has a long right tail.
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Figure 4. (A) The distribution of nascent mRNAs when ν1 < ν2 at different times; (B) the distribution
of mature mRNAs when ν1 < ν2 at T = 120 min. Parameters are given in (29).

To make condition (26) hold, we exchange the synthesis rates in the two ON states
and accelerate the active rate in the OFF state. The data are given as

TO f f = 0.33 min, TOn1 = 1.916 min, TOn2 = 4.23 min,
δNascent = 1.25 min−1, δMature = 0.0462 min−1,

νOn1 = 13.6 min−1, νOn2 = 6.16 min−1, p = 0.293, q = 0.707.
(30)

For the nascent mRNA molecules, the insert in Figure 5A shows the temporal profile of
the nascent mRNA level. The average mRNA level peaks at t = 3.5 min and then decreases
slowly. Compared with the profile of the mature mRNA level, the peak in mRNA levels
occurs only when the half-life of transcripts is short, and the DNA duplex is easily opened
to form a transcription bubble. This conclusion has also been proven in the competing
pathway transcription system [29]. The histogram shows that the distribution changes
from a decaying distribution to a bimodal distribution and then to a unimodal distribution
at different time points. The skewness of distributions is positive, implying that all four
distributions have a right distribution tail. By calculation, we find that the distribution
has the smallest positive skewness at the moment that the transcript expression peaks. At
steady state, the mean mRNA level and the skewness finally level out at around 8 and 0.445.

For the mature mRNA molecules, the skewness is negative, which means that the
distribution right tail has been shortened and the transcript numbers in single cells are
mainly distributed around the mean value. In addition, we also find when the half-life of
mRNAs increases, the skewness will be reduced further.

After serum induction, mature mRNA numbers at different time points were deter-
mined by using single-molecule FISH to quantify c-Fos transcription [6]. The numbers
show that the mature mRNA levels decreased rapidly and returned to basal expression after
reaching a maximum. Our model cannot simulate such a quick reduction, but it simulates
the expression of the phosphorylated kinases ERK1/2 well. The diversity between the two
expressions may be caused by different transcription mechanisms [4,21]:
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Figure 5. (A) The distribution of nascent mRNAs when ν1 > ν2 at different times; (B) the distribution
of mature mRNAs when ν1 > ν2 at T = 120 min. Parameters are given in (30).

We show the temporal profiles of noise strength in Figure 6. Similar to the average
mRNA level, the behavior of the noise strength of both nascent and mature RNA is simple
when the synthesis rate ν2 is greater, as shown by the blue curves in Figure 6. If the
synthesis rate ν1 is greater, the noise strength exhibits a more complex behavior, as shown
by the red curves.
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Figure 6. (A) Noise strengths of nascent mRNAs for cases ν1 < ν2 and ν1 > ν2; (B) noise strengths of
mature mRNAs for cases ν1 < ν2 and ν1 > ν2.

5. Conclusions

Transcription kinetics are highly gene-specific [4,21]. To confirm the corresponding
regulation mechanisms used by genes during transcription, many experimental tech-
niques [34,35] and theoretical models with multiple stages [36,37] or in non-Markovian
biochemical reaction systems [16,38] have been established during the last three decades.
Using smFISH, Senecal et al. [6] detected up to four active c-Fos transcription sites per
cell. Temporal variation in the number of active sites results in the switching of different
initiation rates during elongation. By assuming that there are two active states and one
inactive state of the promoter switching randomly to produce mRNA chains, we established
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a transcription model. Using this model, we studied the temporal behavior of transcription
and its corresponding mechanism.

We derived the exact forms of the average transcript level and the noise strength, and
then proved that this level may peak only when the transcripts are unstable, the synthesis
rate in the first active state is higher and the DNA chain is easily unwound to form a stable
preinitiation complex. We compared the behaviors of the elongation frequencies and the
average transcript levels with those of three other transcription systems. If the transcription
of a gene obeys the model described in Figure 1, the elongation frequency shows a simple
behavior, which is increasing. The average level may increase continually or peak at some
time point. Through these comparisons, we can reject some impractical models.

We also calculated the noise strength to characterize the fluctuation in the mRNA
numbers, which shows a complex behavior when the synthesis rate in the first ON state
is greater than that in the second one. To better depict the distribution of transcripts, we
provided an effective method to calculate the skewness. For a further analysis, we will
confirm all parameters related to transcription systems from experimental data with the
help of appropriate algorithms [33,39,40] and parameter estimations [41,42]. These data
help us to simulate and analyze behaviors of transcription. When the synthesis rate of the
second active state is greater than that of the first one, the skewness is always positive, and
the distribution of transcripts is skewed to the right, which is in agreement with published
results [6]. However, the average mRNA level is increasing, and it cannot peak at some time
point. We modified some experimental data and simulated transcription again. When the
system has a higher synthesis rate in the first ON state, the distribution of transcripts is also
right-skewed when the degradation rate is large. We found that, when the degradation rate
decreases, the skewness also decreases. When the half-life of transcripts is large enough,
the distribution could change to be left-skewed and has a fatter left tail. Our simulations
can match some mRNA numbers and distributions well, especially for nascent mRNA.
However, for other genes, there is a gap between our simulations and observed data of
mature mRNA. The basic reason for this is that the intrinsic regulation mechanism remains
unknown, which motivates us to make a further attempt in the future.

An enhancer could affect transcription through enhancer–promoter interactions, which
depend on its contact probability with the promoter [7]. Enhancer contacts modulate burst
frequency [7] or transcription initiation [43]. Variations in the enhancer number and
their distances to the promoter cause the contacts to vary at discrete times, resulting in
variation in the initiation rates. Our results give a potential method with which to study the
contact probability and to explore the linear or nonlinear relationships among the enhancer,
promoter, and initiation rate.

Author Contributions: Conceptualization, C.Z., Z.C.; methodology, Q.S.; validation, C.Z.; formal
analysis, Z.C.; investigation, C.Z.; resources, C.Z.; data curation, Z.C.; writing—original draft prepa-
ration, C.Z., Q.S.; writing—review and editing, C.Z.; supervision, Q.S.; project administration, C.Z.,
Q.S.; funding acquisition, C.Z., Q.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (12171113,
12101148), the Natural Science Foundation of Guangdong of China (2022A1515010242), the Natural
Science Projects of Universities in Guangdong Province of China (2020KTSCX237), and the Project of
Guangdong Construction Polytechnic (ZD2020-02).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We thank the reviewers and Feng Jiao for their insightful comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2022, 10, 2189 19 of 20

References
1. Elowitz, M.B.; Levine, A.J.; Siggia, E.D.; Swain, P.S. Stochastic gene expression in a single cell. Science 2002, 297, 1183. [CrossRef]

[PubMed]
2. Golding, I.; Paulsson, J.; Zawilski, S.M.; Cox, E.C. Real-time kinetics of gene activity in individual bacteria. Cell 2005, 123, 1025.

[CrossRef]
3. Blake, W.J.; Kaern, M.; Cantor, C.R.; Collins, J.J. Noise in eukaryotic gene expression. Nature 2003, 422, 633. [CrossRef] [PubMed]
4. Suter, D.M.; Molina, M.; Gatfield, D.; Schneider, K.; Schibler, U.; Naef, F. Mammalian genes are transcribed with widely different

bursting kinetics. Science 2011, 332, 472. [CrossRef] [PubMed]
5. Bartman, C.R.; Hamagami, N.; Keller, C.A.; Giardine, B.; Hardison, R.C.; Blobel, G.A.; Raj, A. Transcriptional burst initiation and

polymerase pause release are key control points of transcriptional regulation. Mol. Cell 2019, 79, 519. [CrossRef] [PubMed]
6. Senecal, A.; Munsky, B.; Proux, F.; Ly, N.; Braye, F.E.; Zimmer, C.; Mueller, F.; Darzacq, X. Transcription factors modulate c-Fos

transcriptional bursts. Cell Rep. 2014, 8, 75–83. [CrossRef] [PubMed]
7. Zuin, J.; Roth, G.; Zhan, Y.; Cramard, J.; Redolfi, J.; Piskadlo, E.; Mach, P.; Kryzhanovska, M.; Tihanyi, G.; Kohler, H.; et al.

Nonlinear control of transcription through enhancer-promoter interactions. Nature 2022, 604, 571–577. [CrossRef] [PubMed]
8. Peccoud, J.; Ycart, B. Markovian modeling of gene-product synthesis. Theor. Popul. Biol. 1995, 48, 222. [CrossRef] [PubMed]
9. Tang, M. The mean and noise of stochastic gene transcription. J. Theor. Biol. 2008, 253, 271–280. [CrossRef]
10. Cao, Z.; Filatova, T.; Oyarzun, D.A.; Grima, R. A stochastic model of gene expression with polymerase recruitment and pause

release. Biophys. J. 2020, 119, 1002–1014. [CrossRef]
11. Sun, Q.; Cai, Z.; Zhu, C. A novel dynamical regulation of mRNA distribution by cross-talking pathways. Mathematics 2022,

10, 1515. [CrossRef]
12. Zhu, C.; Han, G.; Jiao, F. Dynamical regulation of mRNA distribution by cross-talking signaling pathways. Complexity 2020,

2020, 6402703. [CrossRef]
13. Chen, J.; Jiao, F. A novel approach for calculating exact forms of mRNA distribution in single-cell measurements. Mathematics

2022, 10, 27. [CrossRef]
14. Cao, Z.; Grima, R. Analytical distributions for detailed models of stochastic gene expression in eukaryotic cells. Proc. Natl. Acad.

Sci. USA 2020, 117, 4682–4692. [CrossRef]
15. Jia, C.; Grima, R. Frequency domain analysis of fluctuations of mRNA and protein copy numbers within a cell lineage: Theory

and experimental validation. Phys. Rev. X 2021, 11, 021032. [CrossRef]
16. Zhang, J.; Zhou, T. Markovian approaches to modeling intracellular reaction processes with molecular memory. Proc. Natl. Acad.

Sci. USA 2019, 116, 23542–23550. [CrossRef]
17. Zopf, C.J.; Quinn, K.; Zeidman, J.; Maheshri, N. Cell-cycle dependence of transcription dominates noise in gene expression. PLoS

Comput. Biol. 2013, 9, e1003161. [CrossRef]
18. Sun, Q.; Jiao, F.; Lin, G.; Yu, J.; Tang, M. The nonlinear dynamics and fluctuations of mRNA levels in cell cycle coupled

transcription. PLoS Comput. Biol. 2019, 15, e100701. [CrossRef]
19. Jiao, F.; Tang, M. Quantification of transcription noise’s impact on cell fate commitment with digital resolutions. Bioinformatics

2022, 38, 3062–3069. [CrossRef]
20. Sun, Q.; Jiao, F.; Yu, J. The dynamics of gene transcription with a periodic synthesis rate. Nonlinear Dynamcis 2021, 104, 4477–4492.

[CrossRef]
21. Larson, D.R. What do expression dynamics tell us about the mechanism of transcription? Curr. Opin. Genet. Dev 2011, 21, 591–599.

[CrossRef]
22. Huang, L.; Yuan, Z.; Liu, P.; Zhou, T. Effects of promoter leakage on dynamics of gene expression. BMC Syst. Biol. 2015, 9, 16.

[CrossRef] [PubMed]
23. Smith, S.; Grima, R. Plasticity of the truth table of low-leakage genetic logic gates. Phys. Rev. E 2018, 98, 062410. [CrossRef]

[PubMed]
24. Weisstein, E.W. Laplace Transform. Available online: https://mathworld.wolfram.com/ (accessed on 8 August 2020). [CrossRef]
25. Raj, A.; van den Bogaard, P.; Rifkin, S.A.; van Oudenaarden, A.; Tyagi, S. Imaging individual mRNA molecules using multiple

singly labeled probes. Nat. Methods 2008, 5, 877–879.
26. Tang, F.; Barbacioru, C.; Wang, Y.; Nordman, E.; Lee, C.; Xu, N.; Wang, X.; Bodeau, J.; Tuch, B.B.; Siddiqui, A.; et al. mRNA-Seq

wholetranscriptome analysis of a single cell. Nat. Methods 2009, 6, 377–382. [CrossRef]
27. MathWorks. Matlab 9.4.0.813654 (R2018a). Available online: https://ww2.mathworks.cn (accessed on 4 March 2020). [CrossRef]
28. Sun, Q.; Tang, M.; Yu, J. Temporal profile of gene transcription noise modulated by cross-talking signal transduction pathways.

Bull. Math. Biol. 2012, 74, 375–398.
29. Yu, J.; Sun, Q.; Tang, M. The nonlinear dynamics and fluctuations of mRNA levels in cross-talking pathway activated transcription.

J. Theor. Biol. 2014, 363, 223–234. [CrossRef]
30. Jiao, F.; Zhu, C. Regulation of gene activation by competitive cross talking pathways. Biphysical J. 2020, 119, 1204–1214. [CrossRef]
31. Jiao, F.; Ren, J.; Yu, J. Analytical formula and dynamic profile of mRNA distribution. Discret. Contin. Dyn. Syst. B 2020, 25,

241–257. [CrossRef]
32. Shyu, A.B.; Greenberg, M.E.; Belasco, J.G. The c-Fos transcript is targeted for rapid decay by two distinct mRNA degradation path-

ways. Genes Dev. 1989, 3, 60–72. [CrossRef]

http://doi.org/10.1126/science.1070919
http://www.ncbi.nlm.nih.gov/pubmed/12183631
http://dx.doi.org/10.1016/j.cell.2005.09.031
http://dx.doi.org/10.1038/nature01546
http://www.ncbi.nlm.nih.gov/pubmed/12687005
http://dx.doi.org/10.1126/science.1198817
http://www.ncbi.nlm.nih.gov/pubmed/21415320
http://dx.doi.org/10.1016/j.molcel.2018.11.004
http://www.ncbi.nlm.nih.gov/pubmed/30554946
http://dx.doi.org/10.1016/j.celrep.2014.05.053
http://www.ncbi.nlm.nih.gov/pubmed/24981864
http://dx.doi.org/10.1016/j.celrep.2014.05.053
http://www.ncbi.nlm.nih.gov/pubmed/24981864
http://dx.doi.org/10.1038/s41586-022-04570-y
http://www.ncbi.nlm.nih.gov/pubmed/35418676
http://dx.doi.org/10.1006/tpbi.1995.1027
http://dx.doi.org/10.1016/j.jtbi.2008.03.023
http://dx.doi.org/10.1016/j.bpj.2020.07.020
http://dx.doi.org/10.3390/math10091515
http://dx.doi.org/10.1155/2020/6402703
http://dx.doi.org/10.3390/math10010027
http://dx.doi.org/10.1073/pnas.1910888117
http://dx.doi.org/10.1103/PhysRevX.11.021032
http://dx.doi.org/10.1073/pnas.1913926116
http://dx.doi.org/10.1371/journal.pcbi.1003161
http://dx.doi.org/10.1371/journal.pcbi.1007017
http://dx.doi.org/10.1093/bioinformatics/btac277
http://dx.doi.org/10.1007/s11071-021-06569-y
http://dx.doi.org/10.1016/j.gde.2011.07.010
http://www.ncbi.nlm.nih.gov/pubmed/21862317
http://dx.doi.org/10.1186/s12918-015-0157-z
http://www.ncbi.nlm.nih.gov/pubmed/25888718
https://mathworld.wolfram.com/
http://dx.doi.org/10.1103/PhysRevE.98.062410
http://dx.doi.org/10.1038/nmeth.1253
https://ww2.mathworks.cn
http://dx.doi.org/10.1038/nmeth.1315
http://dx.doi.org/10.1007/s11538-011-9683-z
http://dx.doi.org/10.1016/j.jtbi.2014.08.024
http://dx.doi.org/10.1016/j.bpj.2020.08.011
http://dx.doi.org/10.3934/dcdsb.2019180


Mathematics 2022, 10, 2189 20 of 20

33. Munsky, B.; Khammash, M. The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys.
2006, 124, 044104. [CrossRef]

34. Müller, G.A.; Stangner, K.; Schmitt, T.; Wintsche, A.; Engeland, K. Timing of transcription during the cell cycle: Protein complexes
binding to E2F, E2F/CLE, CDE/CHR, or CHR promoter elements define early and late cell cycle gene expression. Oncotarget
2017, 8, 97736–97748. [CrossRef] [PubMed]

35. Caveney, P.M.; Norred, S.E.; Chin, C.W.; Boreyko, J.B.; Razooky, B.S.; Retterer, S.T.; Collier, C.P.; Simpson, M.L. Resource sharing
controls gene expression bursting. ACS Synth. Biol. 2017, 6, 334–343. [CrossRef]

36. Jia, C. Simplification of Markov chains with infinite state space and the mathematical theory of random gene expression bursts.
Phys. Rev. E 2017, 96, 032402. [CrossRef] [PubMed]

37. Jia, C. Kinetic foundation of the zero-inflated negative binomial model for single-cell RNA sequencing data. SIAM J. Appl. Math
2020, 80, 1336–1355. [CrossRef] [PubMed]

38. Yang, X.; Chen, Y.; Zhou, T.; Zhang, J. Exploring dissipative sources of non-Markovian biochemical reaction systems. Phys. Rev. E
2021, 103, 052411. [CrossRef]

39. Peng, J.; Kocarev, L. First encounters on Bethe lattices and Cayley trees. Commun. Nonlinear Sci. Numer. Simul. 2021, 95, 105594.
[CrossRef] [PubMed]

40. Gao, L.; Peng, J.; Tang, C. Optimizing the first-passage process on a class of fractal scale-free trees. Fractal Fract. 2021, 5, 184.
[CrossRef]

41. Chen, L.; Zhu, C.; Jiao, F. A generalized moment-based method for estimating parameters of stochastic gene transcription.
Math. Biosci. 2022, 345, 108780. [CrossRef]

42. Cao, Z.; Grima, R. Accuracy of parameter estimation for auto-regulatory transcriptional feedback loops from noisy data. J. R. Soc.
Interface 2019, 16, 20180967. [CrossRef]

43. Larke, M.S.C.; Schwessinger, R.; Nojima, T.; Telenius, J.; Beagrie, R.A.; Downes, D.J.; Oudelaar, A.M.; Truch, J.; Graham, B.;
Bender, M.A.; et al. Enhancers predominantly regulate gene expression during differentiation via transcription initiation. Mol. Cell
2021, 81, 983–997.e7. [CrossRef]

http://dx.doi.org/10.1101/gad.3.1.60
http://dx.doi.org/10.1063/1.2145882
http://www.ncbi.nlm.nih.gov/pubmed/16460146
http://dx.doi.org/10.18632/oncotarget.10888
http://dx.doi.org/10.1021/acssynbio.6b00189
http://www.ncbi.nlm.nih.gov/pubmed/27690390
http://dx.doi.org/10.1103/PhysRevE.96.032402
http://www.ncbi.nlm.nih.gov/pubmed/29346865
http://dx.doi.org/10.1137/19M1253198
http://dx.doi.org/10.1103/PhysRevE.103.052411
http://www.ncbi.nlm.nih.gov/pubmed/34134237
http://dx.doi.org/10.1016/j.cnsns.2020.105594
http://dx.doi.org/10.3390/fractalfract5040184
http://dx.doi.org/10.1016/j.mbs.2022.108780
http://dx.doi.org/10.1098/rsif.2018.0967

	Introduction
	Model Specification
	The Characterization of the Gene Transcription Mechanism
	The Master Equations
	The Differential Equations

	Results
	The Average Transcription Levels
	The Noise and the Skewness of Transcripts

	Simulation and Discussion
	Comparison of Frequencies in Different Transcription Systems
	Comparison of Mean Levels
	The Distribution of Transcripts

	Conclusions
	References

