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Abstract: In this work, the quantized Hill problem is considered in order for us to study the existence
and stability of equilibrium points. In particular, we have studied three different cases which give all
whole possible locations in which two points are emerging from the first case and four points from
the second case, while the third case does not provide a realistic locations. Hence, we have obtained
four new equilibrium points related to the quantum perturbations. Furthermore, the allowed and
forbidden regions of motion of the first case are investigated numerically. We demonstrate that the
obtained result in the first case is a generalization to the classical one and it can be reduced to the
classical result in the absence of quantum perturbation, while the four new points will disappear. The
regions of allowed motions decrease as the value of the Jacobian constant increases, and these regions
will form three separate areas. Thus, the infinitesimal body can never move from one allowed region
to another, and it will be trapped inside one of the possible regions of motion with the relative large
values of the Jacobian constant.

Keywords: Hill problem; quantum correction; equilibrium points; stability
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1. Introduction

Hill’s problem is a particularly limiting case for the restricted three-body problem
(RTBP). Researchers can obtain the Hill problem by using some scales and transformations
while taking limits, as mass parameter tends to zero. Hence, it is an interesting application
based problem, and many scientists have studied different versions of this problem by
considering different perturbation forces in the classical Hill problem. This means the
primary bodies possess point masses and move in circular orbits around their common
centre of mass or in elliptical trajectory, while the third body moves in space under the
effect of gravitational forces of the primary bodies without affecting their motions [1–4].

In [5], the authors have studied the Hill stability of satellites by utilising the RTBP
configuration. However, in [6–8], the authors have studied the same configuration with
various perturbations as radiation pressure and oblateness of the primaries. Additionally,
in [9–12], the authors have explored and analysed the Hill four bodies problem with its
application to the Earth–Moon–Sun system and satellite motion about binary asteroids. In
this context, Hill’s problem, with oblate secondary in three dimensions, has been illustrated
in [13], where the equilibrium points and their stability have been determined.

Further to the precedent work, the radiation pressure effect of the bigger primary and
the secondary oblateness on the new version of Hill’s problem are investigated in [14],
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where the authors illustrated that their study is more appropriate for astronomical applica-
tion. They also used iterative methods to identify the locations of equilibrium points and
used the linear stability analysis method to examine their stability properties. They proved
that all the equilibrium points are unstable for this model. In [15], the authors investigated
Hill’s problem because space missions required the knowledge of orbits with some proper-
ties, where periodic solutions are illustrated numerically due to the non-integrability of
this problem.

With the continuous contributions analysing the Hill body problem, the existence
of positions and stability of collinear equilibrium points in its generalized version under
radiation pressure and oblateness effects are studied in [16]; the authors also performed
the basins of attraction through the Newton–Raphson method for many values of used
parameters. Furthermore, in [17] the author investigated the basins of convergence in the
aforementioned problem; his numerical analysis revealed the extraordinary and beautiful
formations on the complex plane. In [18], the authors have performed the Hill’s problem
by assuming the primaries as the source of radiation pressure; they have determined the
asymptotic orbits at collinear points and the same to the lyapunov periodic orbits.

The spatial or planar restricted three-body problem (RTBP) under any kind of pertur-
bation is called the perturbed model. Otherwise, it can be called the phot–gravitational,
relativistic, or quantized problem in the case that the system is analysed under the effect of
radiation pressure, relativistic, or quantum corrections perturbation, respectively [19–23].
The analysis of the spatial quantized RTBP (i.e., the spatial of RTBP under the effect of
quantum corrections) is studied in [24], where the locations of equilibrium points and
the allowed and forbidden regions of motions are examined. Furthermore, the quantized
RTBP is developed to construct a new version of the Hill problem [25], where the equations
of motion for the Hill problem are evaluated under the quantum corrections. Thus, the
obtained system is called quantized Hill problem (QHP).

Recently, in [26], the authors investigated the Hill’s problem by assuming that the
infinitesimal body varies its mass according to Jeans law, they investigated numerically the
location of equilibrium points, regions of motion, and basins of attraction and also examined
the stability status of these points by using Meshcherskii’s space–time transformation.
Furthermore, in [27] the authors investigated the differences and similarities among the
classical perturbation theory, Poincaré–Lindstedt technique, multiple scales method, the
KB averaging method, and averaging theory, while the latter is used to find periodic orbits
in the framework of the spatial QHP. They stated that this model can be utilized to develop
a lunar theory and families of periodic orbits.

In the framework of RTBP, which can be reduced to the Hill model, some effective
contributions are outlined in [28–30], where the effects of lack of sphericity body shape and
radiation pressure on the primaries are studied. In addition, the effect of mass variation
in the frame of RTBP is investigated in [31–34], where the authors have also studied the
impact of these perturbations on the positions of equilibrium points, Poincaré surfaces of
section, regions of possible and forbidden motion, and basins of attraction and examined
the stability of these equilibrium points such that it is proven that, in most cases, these
points are unstable.

In general, the Hill body problem has a great significance in both stellar and solar
systems and in dynamical astronomy; it has received a considerable analysis in its own
literature. Primarily, it is formulated as a model to analyse the Moon’s motion around
the Earth under the effect of Sun perturbation. Furthermore, its model, with simple
modifications, can also serve as a model for the motion of a star in a star cluster under the
created perturbations from the galaxy. The importance of this problem motivated us to
study and analyse the Hill body problem under the perturbation of quantum corrections.

In this work, the QHP is considered to study the existence of equilibrium points
alongside examining their stability. Under the effect of quantum corrections, the locations of
equilibrium points have been analysed. In particular, we have studied three different cases
which give all possible locations, where two points are emerging from the first case and they
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are considered a generalization for the classical two points, as well as four points from the
second case, while the third case does not provide any realistic locations. Hence, we have
obtained four new equilibrium points related to the quantum perturbations. Furthermore,
We demonstrate that the obtained result in the first case can be reduced to the classical
result, while the four new points will disappear in the absence of quantum perturbation.

The paper is organized in six sections as follows: The literature surrounding the prob-
lem is given in Section 1. The equations of motion are preformed in Section 2. In Section 3,
we have determined the positions of equilibrium points. The stability of equilibrium points
are studied in Section 4. Furthermore, the numerical results are estimated in Section 5.
Finally, the conclusion of the work is presented in Section 6.

2. Equations of Motion

Following the same notations and procedure in [25], we can write the equations of
motion of the quantized Hill problem in the synodic coordinates system as:

ẍ − 2 ẏ =Vx,

ÿ + 2 ẋ =Vy,

z̈ =Vz,

(1)

where

V =
1
2

[
3 x2 + 4(α1 − α11)x− z2

]
+

1
r

(
1 +

α21

r
+

α22

r2

)
, (2)

and
r2 = x2 + y2 + z2. (3)

By integrating System (1), one can write the Jacobian integral as

ẋ2 + ẏ2 + ż2 = 2 V − JC, (4)

where JC is the Jacobian constant.
In System (1), the parameters α1, α11, and α21 represent very small amounts with order

of O(1/c2), but α22 is of order O(1/c3) where c is the speed of light. Therefore, the value
of α1 − α11 will tends to zero [27]. Hence α1 − α11

∼= 0. In this context, System (1) can be
rewritten as:

ẍ− 2ẏ = x[3− q(r)],

ÿ + 2ẋ =− y q(r),

z̈ =− z[1 + q(r)],

(5)

where

q(r) =
1
r3

(
1 +

2α21

r
+

3α22

r2

)
We would like to provide the reader with the following investigations about the

aforementioned perturbation parameters. In fact, the parameters α1, α11, and α21 identify
the size of the relativistic effect, while α22 estimates the quantum correction contribution.
However, all of these effects tend to zero in the case of large distances [21,35].
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3. Analysis of Equilibrium Points

The equilibrium points can be obtained by equating all the derivatives with respect to
time by zero in system (5), hence

x[3− q(r)] = 0,

y q(r) = 0,

z[1 + q(r)] = 0.

(6)

In the classical case, we mean that the quantum effect will be neglected, the parameter
α21 = α22 = 0, then the equilibrium points are given by (x, 0, 0) where re = 1/ 3

√
3 and

y = z = 0, hence x = ±1/ 3
√

3.
To find the equilibrium points under the quantized effect (α21 6= 0 and α22 6= 0), we

have to find the solutions of System (6); there are some cases which can be applied to
analyse the solutions of this system.

First case: q(r) = 3, then y = z = 0, and x 6= 0.

In this case, one obtains

1
r3

(
1 +

2α21

r
+

3α22

r2

)
= 3 (7)

Equation (7) gives a quintic equation in the following form

3r5 − r2 − 2α21r− 3α22 = 0 (8)

The solution of the fifth degree equation is generally too complicated, however the
equation has at least one real root. Instead, numerical approximations can be evaluated
using a root-finding algorithm for polynomials.

In fact, it is not our aim to find a solution of a quintic equation, but we aim to find the
quantum corrections’ impact on the locations of equilibrium points. Thus, we impose that
r = rq = re + ε, where ε is a very small quantity which embodies the effect of quantum
correction on the locations of equilibrium points after substituting r = rq = re + ε into
Equation (7) or Equation (8), keeping all terms with coefficients of ε and ε2 only, and
neglecting all terms with an order of O(ε3) or more. Hence, ε will satisfy two values, ε1
and ε2, which are given by

ε =
15r4

e − 2re − 2α21 ±
√

4α2
21 − 12α22 + 180α21r4

e + 360α22r3
e − 135r8

e + 72r5
e

2
(
1− 30r3

e
) , (9)

Substituting re = 1/ 3
√

3 in Equation (9), one obtains

ε =
1
18

(
2α21 − 32/3 ±

√
4α2

21 + 20 3
√

9α21 + 108α22 + 3 3
√

3
)

(10)

As α21 and α22 are very small quantities with order of O(c2) and O(c23), respectively,
we keep only terms with order of O(α21) and O(α22) and neglect the remanning terms.
Thereby, the approximated values of the perturbed parameter ε are governed by

ε11 =
1
3

(
2α21 + 3 3

√
3 α22

)
,

ε12 = − 1
3 3
√

3

(
1 +

4 3
√

3
3

α21 + 3 3
√

9 α22

) (11)

The parameter of ε embodies the effect of the quantum corrections and it must equal
zero in the absence of these corrections, i.e., when α21 = 0 and α22 = 0. However, the
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obtained solution of ε12 does not equal zero and gives an inconvenient solution; thus, the
value of ε12 is rejected. Hence, the proper approximated value of the parameter ε is given by

ε11 =
1
3

(
2α21 + 3 3

√
3 α22

)
(12)

Utilizing Equation (12) with relation to rq1 = re + ε11, then the distance rq1 at the
quantized equilibrium point is

rq1 =
1

3
√

3

(
1 +

2 3
√

3
3

α21 +
3
√

9 α22

)
(13)

As x = |rq1 |, we have two possible values for x and x1 = rq1 , x2 = −rq1 . Thus, the
quantized equilibrium points are (x1, 0, 0) and (x2, 0, 0), which is considered a general-
ization of the classical case and can be reduced to the classical one when α21 = 0 and
α22 = 0.

Second case: q(r) = 0, then x = z = 0, and y 6= 0.

This case could occur when the parameters of quantum corrections are negative, i.e.,
the values of α21 and α22 are negative [24]. Hence, q(r) = 0 when the solutions of the
following quadratic equation are possible

r2 + 2α21r + 3α22 = 0. (14)

The possible solutions of Equation (14) are

rq2 = −α21 −
√

α2
21 − 3α22

rq3 = −α21 +
√

α2
21 − 3α22

(15)

The solutions in Equation (15) are valid if the values of rq2 and rq3 are positive. To
investigate this property, first we remark that α21, α22, and α22/α21 have values with order
ofO(1/c2),O(1/c3), andO(1/c). Then, the approximated series solutions of Equation (15)
can be written as

rq2 = −2α21

[
1− 3

4

(
α22

α21

)
− 9

16

(
α22

α21

)2
]
+ O(

1
c5 )

rq3 = −3
2

α22

[
1 +

3
4

(
α22

α21

)]
+ O(

1
c5 )

(16)

It is clear that from Equation (16) the values of rq2 and rq3 are very small and positive
when α21 and α22, respectively, take negative values. Then, we have four new equilibrium
points corresponding to the second case under the perturbation of quantum corrections,
where y2 = |rq2 | and y3 = |rq3 |. The new four points are (0, y2, 0), (0,−y2, 0), (0, y3, 0), and
(0,−y3, 0)

Third case: q(r) = −1, then x = y = 0, and z 6= 0.

In this case, one obtains

1
r3

(
1 +

2α21

r
+

3α22

r2

)
= −1 (17)

Equation (17) gives also a quintic equation in the following form

r5 + r2 + 2α21r + 3α22 = 0 (18)
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To find the solution of Equation (18), we impose that r = rq = re + δ, where δ is
very small quantity which embodies the effect of quantum correction on the locations of
equilibrium points in the current case after substituting r = rq = re + δ into Equation (18)
and keeping all terms with coefficients of δ and δ2 only, neglecting all terms with order of
O(δ3) or more. Hence, δ will satisfy two values, ε31 and ε32, which are given by

ε31 = − 3
26

(
11

3 3
√

3
+ 2α21 +

√
4α2

21 −
20α21

3
√

3
− 52α22 −

29
3 3
√

9

)

ε32 = − 3
26

(
11

3 3
√

3
+ 2α21 −

√
4α2

21 −
20α21

3
√

3
− 52α22 −

29
3 3
√

9

) (19)

It is clear that from Equation (19) the obtained values of the perturbation parameter
δ is complex, which mean that the assumption of the third case does not lead to realistic
situations. Thus, this case does not give real equilibrium points and it is rejected.

4. Stability Status of Equilibrium Points

Next, to check the equilibrium points stability, we have to write the equations of
motion in to phase space. Thus, System (5) can be rewritten in the following form

ẍ− 2ẏ = Hx,

ÿ + 2ẋ = Hy,

z̈ = Hz.

(20)

where

H =
1
2

[
3 x2 − z2

]
+

1
r

(
1 +

α21

r
+

α22

r2

)
, (21)

Here, the Jacobian integral can be rewitten as

ẋ2 + ẏ2 + ż2 = 2 H − JC, (22)

The motion in the proximity of any of the equilibrium points (a, b, and c) can be
studied by putting x = a + ξ, y = b + η, and z = c + ζ in Equations (20) and (21). Then, we
can rewrite the equations of motion in the phase space as

ξ̇ = ξ1,

η̇ = η1,

ζ̇ = ζ1,

ξ̇1 = 2 η1 + H0
x x ξ + H0

x y η + H0
x z ζ,

η̇1 = − 2ξ1 + H0
y x ξ + H0

y y η + H0
y z ζ,

ζ̇1 = H0
z x ξ + H0

z y η + H0
z z ζ.

(23)

where the superscript zero means that the second derivatives of H are evaluated at the
related equilibrium point.

The characteristic polynomial of Equation (23) will be

f (λ) = λ6 + H5 λ5 + H4 λ4 + H3 λ3 + H2 λ2 + H1 λ + H0, (24)
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where

H0 = H0
x z H0

y y H0
z x − H0

x y H0
y z H0

z x − H0
x z H0

y z H0
z y

+ H0
x x H0

y z H0
z y + H0

x y H0
y x H0

z z − H0
x x H0

y y H0
z z,

H1 = 2 (H0
x z H0

z y − H0
y z H0

z x − H0
x y H0

z z + H0
y x H0

z z),

H2 =− 4 H0
z z − H0

x y H0
y x + H0

x x H0
y y − H0

x z H0
z x

− H0
y z H0

z y + H0
x x H0

z z + H0
y y H0

z z,

H3 = 2 (H0
x y − H0

y x),

H4 = 4− H0
x x − H0

y y − H0
z z,

H5 = 0.

(25)

We will examine the stability of equilibrium points in two cases only because there are
no equilibrium points in the third case.

4.1. First Case

In this case the equilibrium points (x1, 0, 0) and (x2, 0, 0) are in symmetry about the
Y-axis, therefore it is enough to examine the stability of only one of these two points. In
this context, we have to evaluate the values of Hi1 corresponding to (x1, 0, 0), which are
as follows:

H01 = − 3
x3

1
− 5

x6
1
− 2 α21

x4
1

(
3 +

11
x3

1
+

7
x6

1

)

− 3 α22

x5
1

(
3 +

12
x3

1
+

8
x6

1

)
− 2

x9
1

,

H11 = 0,

H21 = 1− 3
x3

1
− 8 α21

x4
1

(
1 +

2
x3

1

)

− 15 α22

x5
1

(
1 +

2
x3

1

)
− 3

x6
1

,

H31 = 0,

H41 = 2− 2 α21

x4
1
− 6 α22

x5
1

,

H51 = 0.

(26)

From Equations (24) and (26), we find

f (λ) = λ6 + H41 λ4 + H21 λ2 + H01, (27)

Here, H41 > 0, H21 < 0, and H01 < 0 show that the sign changes occur one at a time
time, thus there exists at least one positive real root. Therefore, the equilibrium point will
be unstable in this case.

4.2. Second Case

In this case, the equilibrium points (0, y2, 0) and (0, y3, 0) are symmetrical about the
X-axis, hence it is sufficient to examine the stability of only two of these four points. Addi-
tionally, we have to evaluate the values of Hi2 and Hi3, i = 0, 1, 2, 3, 4, and 5 corresponding
to (0, y2, 0) and (0, y3, 0), which are as follows:
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H02 =
6
y3

2
+

4
y6

2
+

2 α21

y4
2

(
9 +

10
y3

2
− 7

y6
2

)

+
12 α22

y5
2

(
3 +

3
y3

2
− 2

y6
2

)
− 2

y9
2

,

H12 = 0,

H22 = 1 +
6
y3

2
+

16 α21

y4
2

(
1− 1

y3
2

)

+
30 α22

y5
2

(
1− 1

y3
2

)
− 3

y6
2

,

H32 = 0,

H42 = 2− 2 α21

y4
2
− 6 α22

y5
2

,

H52 = 0,

(28)

and

H03 =
6
y3

3
+

4
y6

3
+

2 α21

y4
3

(
9 +

10
y3

3
− 7

y6
3

)

+
12 α22

y5
3

(
3 +

3
y3

3
− 2

y6
3

)
− 2

y9
3

,

H13 = 0,

H23 = 1 +
6
y3

3
+

16 α21

y4
3

(
1− 1

y3
3

)

+
30 α22

y5
3

(
1− 1

y3
3

)
− 3

y6
3

,

H33 = 0,

H43 = 2− 2 α21

y4
3
− 6 α22

y5
3

,

H53 = 0.

(29)

From Equations (24) and (28), we find

f (λ) = H6k λ6 + H4k λ4 + H2k λ2 + H0k, (30)

Here, H6k = 1 > 0, H4k < 0, H2k < 0, and H0k < 0, where k = 2, 3, show that the sign
changes occur one at a time, thus there exists at least one positive real root. Therefore, the
equilibrium point will be unstable in this case.

5. Numerical Results

In this section, we illustrate some dynamical properties numerically for the proposed
system (i.e., the quantized Hill system) such as the equilibrium points and the allowed
and forbidden regions of motion under the quantum corrections. In order to avoid the
reparation, we will present the numerical analysis on the first case of equilibrium points;
the same procedure can be carried out for the second case.

The locations of equilibrium points are shown in Figure 1, for which we have taken
zero as the derivatives with respect to time in Equation (5). Then, with the help of the
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well-known Mathematica Software, the collinear equilibrium points L1 and L2 under the
quantum corrections, as well as the unperturbed equilibrium points L̄1 and L̄2, are estimated
numerically. Both points exist either side of the origin on the X-axis and are in symmetry
about Y-axis. However, we mark that the distance between the perturbed points is more
than the distance between the unperturbed points. Of course, this perturbation will affect
the other dynamical properties.

L1 L2L1 L2

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

X

Y

Figure 1. Locations of equilibrium points.

One of the most dynamical properties which can be identified by the Jacobian integral
is the possible and forbidden regions of infinitesimal body motions, which are restricted to
the locations of v2 = 2H − CJ ≥ 0 where v is the velocity of the infinitesimal body. Hence,
Equation (22) can be used to determine the allowed or forbidden regions of motions, as in
Figure 2, where the coloured green areas identify the regions of possible motions, while the
white determine forbidden regions.

It is clear from Figure 2a that when the Jacobian constant is relatively small there is one
large area for possible region of motion, and the body could move from any region point
to another (or from L1 (L̄1) to L2 (L̄2)). When CJ becomes larger, the forbidden region is
extended, as in Figure 2b. With further increase in the value of CJ , the forbidden region
becomes larger, while the possible region of motion forms three septate areas starting from
the perturbed equilibrium points L1 and L2, as in Figure 2c. In addition, the body cannot
move from one to another, because the three areas are not connected. With further increase
in the value of CJ , the inner and two outer regions decrease while the separate areas start
from the unperturbed equilibrium points L̄1 and L̄2, as in Figure 2d. We remark that the
infinitesimal can never move from one allowed region to another, and the body will be
trapped inside one of the possible regions of motion with the relative large values of the
Jacobian constant, as in the case of Figure 2c,d.

The condition of v2 ≥ 0 does not provide information about the size or shape of the
orbit or the trajectory of the body; it can only identify the region where the infinitesimal
body could move.
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L1 L2L1 L2

-2 -1 0 1 2

-2

-1

0

1

2

X

Y

(a) JC = 2

L1 L2L1 L2

-2 -1 0 1 2

-2

-1

0

1

2

X

Y

(b) JC = 3.5

L1 L2L1 L2

-2 -1 0 1 2

-2

-1

0

1

2

X

Y

(c) JC = 5.0

L1 L2L1 L2

-2 -1 0 1 2

-2

-1

0

1

2

X

Y

(d) JC = 6.5

Figure 2. Regions of allowed (green area) and forbidden (white area) motion

The condition of v2 ≥ 0 does not provides information about the size or shape of the182
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6. Conclusions

In this work, the quantized Hill problem is considered to study the existence of equi-
librium points alongside examining their stability. Under the effect of quantum corrections,
the locations of equilibrium points have been analysed, we have studied three different
cases which give all possible locations, where two points emerge from the first case, taking a
place on the X-axis, and four points dos so from the second case and lie on Y-axis. The third
case does not provide a realistic location. Hence, we have obtained four new equilibrium
points related to the quantum perturbations.

In this context, we have tested the stability status of all of the equilibrium points and
we have found that all points are unstable. Further, we have illustrated the locations of
equilibrium points for the first case and the related allowed regions of motion numerically.
Similarly, we can perform these illustrations for the second case. Here, we found two
equilibrium points which are either side of the origin on the X-axis and in symmetry about
the Y-axis, as in Figure 1. The regions of possible and forbidden motion are investigated
for different values of Jacobian constant, as in Figure 2.

Finally, we demonstrate that the obtained result in the first case is a generalization of
the classical one, and it can be reduced to the classical result, while the four new points
will disappear in the absence of quantum perturbation. The regions of possible motions
decrease with the increasing value of Jacobian constant and these regions will form three



Mathematics 2022, 10, 2186 11 of 12

separate areas. Thus, the infinitesimal body can never move from one allowed region to
another, and it will be trapped inside one of the possible regions of motion with the relative
large values for the Jacobian constant.
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