
Citation: Kazancı, O.; Hoskova-

Mayerova, S.; Davvaz, B. Algebraic

Hyperstructure of Multi-Fuzzy Soft

Sets Related to Polygroups.

Mathematics 2022, 10, 2178. https://

doi.org/10.3390/math10132178

Academic Editors: Dario Fasino and

Domenico Freni

Received: 19 April 2022

Accepted: 20 June 2022

Published: 22 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Algebraic Hyperstructure of Multi-Fuzzy Soft Sets Related
to Polygroups
Osman Kazancı 1 , Sarka Hoskova-Mayerova 2,* and Bijan Davvaz 3

1 Department of Mathematics, Karadeniz Technical University, 61080 Trabzon, Türkiye; kazancio@yahoo.com
2 Department of Mathematics and Physics, University of Defence, Kounicova 65, 662 10 Brno, Czech Republic
3 Department of Mathematics, Yazd University, Yazd 89136, Iran; davvaz@yazd.ac.ir
* Correspondence: sarka.mayerova@unob.cz; Tel.: +420-973-44-2225

Abstract: The combination of two elements in a group structure is an element, while, in a hypergroup,
the combination of two elements is a non-empty set. The use of hypergroups appears mainly in
certain subclasses. For instance, polygroups, which are a special subcategory of hypergroups, are
used in many branches of mathematics and basic sciences. On the other hand, in a multi-fuzzy
set, an element of a universal set may occur more than once with possibly the same or different
membership values. A soft set over a universal set is a mapping from parameters to the family of
subsets of the universal set. If we substitute the set of all fuzzy subsets of the universal set instead of
crisp subsets, then we obtain fuzzy soft sets. Similarly, multi-fuzzy soft sets can be obtained. In this
paper, we combine the multi-fuzzy soft set and polygroup structure, from which we obtain a new
soft structure called the multi-fuzzy soft polygroup. We analyze the relation between multi-fuzzy
soft sets and polygroups. Some algebraic properties of fuzzy soft polygroups and soft polygroups are
extended to multi-fuzzy soft polygroups. Some new operations on a multi-fuzzy soft set are defined.
In addition to this, we investigate normal multi-fuzzy soft polygroups and present some of their
algebraic properties.

Keywords: multi-fuzzy soft set; multi-fuzzy soft polygroup; normal multi-fuzzy soft polygroup

MSC: 20N20; 20N25; 08A72

1. Introduction

The concept of a hyperstructure was first introduced by Marty [1], at the 8th Congress
of Scandinavian Mathematicians in 1934, when he defined hypergroups and started to
analyze their properties. Indeed, the notion of hypergroups is a generalization of groups.
Let H be a non-empty set and ◦ be a function (hyperoperation) from H × H to the family
of non-empty subsets of H. Then, (H, ◦) is a hypergroup, if ◦ is associative and a ◦ H =
H ◦ a = H, for all a ∈ H. The hypergroup is a very general structure. Some researchers
considered hypergroups with additional axioms. One of the axioms is the transposition axiom.
This axiom is considered by Prenowitz [2–4], and then Jantosciak introduced the notion of
transposition hypergroups [5]. A transposition hypergroup that has a scalar identity is called
a quasicanonical hypergroup [6,7] or polygroup [8–11]. One can consider the quasicanonical
hypergroups as a generalization of canonical hypergroups, introduced in [12]. Examples of
polygroups, such as double set algebras, Prenowitz algebras, conjugacy class polygroups
and character polygroups, can be found in [11]. This book contains the principal definitions,
illustrated with examples and basic results of the theory. The category of polygroups is a
category between the category of groups and transposition hypergroups; see Figure 1. More
precisely, each group is a polygroup, and each polygroup is a transposition hypergroup.
Recently, in [13], an excellent review of the several types of hypergroups was presented.
Interesting results can be also found in [14]. The theory of algebraic hyperstructures has
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become a well-established branch in algebraic theory and it has extensive applications in
many branches of mathematics and applied sciences; see [15–19].

Groups
Polygroups

Transposition
Hypergroups

Hypergroups

Figure 1. Each group is a polygroup, each polygroup is a transposition hypergroup, and each
transposition hypergroup is a hypergroup.

The theory of fuzzy sets proposed by Zadeh [20] has achieved great success in many
fields. Many researchers have applied the theory of fuzzy sets to hyperstructures. Firstly,
Zahedi [21] discussed the subject of polygroups and fuzzy subpolygroups, and then
Davvaz [22] presented the fuzzy subhypergroup concept, which is a generalization of
Rosenfeld’s fuzzy subgroup [23]. There are many articles dealing with the link between
fuzzy sets and hyperstructures; see [24–26].

Soft set theory, introduced by Molodtsov [27], has been considered as an effective
mathematical tool for modeling uncertainties. After Molodsov’s work, different appli-
cations of soft sets were investigated in [28,29]. The idea of a fuzzy soft set, which is
more general than fuzzy sets and soft sets, was first introduced by Maji et al. [30], and
the algebraic properties of this concept were examined. Both of these theories have been
applied to algebraic structures and algebraic hyperstructures—for instance, see [31,32].

Sebastian et al. in [33] proposed the concept of the multi-fuzzy set, which is a more
general fuzzy set using ordinary fuzzy sets as building blocks; its membership function
is an ordered sequence of ordinary fuzzy membership functions. Later, Yang et al. [34]
introduced the concept of the multi-fuzzy soft set, which is a combination of the multi-fuzzy
set and soft set, and studied its basic operations. They also introduced the application of
this concept in decision making. In recent years, multi-fuzzy sets have become a subject of
great interest to researchers and have been widely applied to algebraic structures. Some
researchers—for instance, Onasanya and Hoskova-Mayerova [35]—studied the concept of
multi-fuzzy groups, while Hoskova-Mayerova et al. [36] studied fuzzy multi-hypergroups
and also fuzzy multi-polygroups in [37]. Akın [38] studied the concept of multi-fuzzy
soft groups as a generalization of fuzzy soft groups, and Kazancı et al. [39] introduced
a novel soft hyperstructure called the multi-fuzzy soft hyperstructure and investigated
the notion of multi-fuzzy soft hypermodules and some of their structural properties on a
hypermodule.

In a multi-fuzzy set, an element of a universal set U may occur more than once with pos-
sibly the same or different membership values. For example, if U = {x1, x2, x3, x4, x5, x6},
then the set A = {< x1, (0.3, 0.8) >,< x2, (0.5, 0.7) >,< x3, (0.1, 0.3) >,< x4, (0.5, 0.4) >,
< x5, (0.8, 0.6) >,< x6, (0.4, 0.7) >} is a multi-fuzzy set. A soft set over a universe U is
a mapping F from parameters to P(U). For example, let U = {x1, x2, x3, x4, x5, x6} be a
set of apartments under consideration, and A = {e1, e2, e3, e4} be a set of parameters such
that e1 = beautiful, e2 = expensive, e3 = a good view, and e4 = near to the city center.
If F(e1) = {x1, x3}, F(e2) = {x1, x2, x5}, F(e3) = {x4, x6} and F(e4) = {x2, x3, x6}, then
(F, A) is a soft set. If we substitute the set of all fuzzy subsets of U instead of crisp subsets
of U, then we obtain fuzzy soft sets. Similarly, we can define multi-fuzzy soft sets.

In this paper, we combine three separated concepts: polygroups (or quasicanonical
hypergroups), soft sets and multi-fuzzy sets (as a generalization of fuzzy sets). Previously,
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the authors have worked only on the one of these subjects or at most two of them. Indeed,
we combine the multi-fuzzy soft set and polygroup structure, from which we obtain a new
soft structure called the multi-fuzzy soft polygroup. The relation between the generalization
of polygroups is indicated in Figure 2. To facilitate our discussion, we first review some
basic concepts of the soft set, fuzzy soft set, multi-fuzzy set and polygroup in Section 2. In
Section 3, we apply these to the notion of multi-fuzzy soft sets and polygroups and introduce
multi-fuzzy soft polygroups. Then, we study some of their structural characterizations in
Sections 4 and 5. Finally, we give the concept of a normal multi-fuzzy soft polygroup and
discuss some of their structural characteristics. Finally, some conclusions are pointed out in
Section 6.

Polygroups

Fuzzy polygroups

Multi-fuzzy polygroups Soft polygroups

Fuzzy soft polygroups

Multi-fuzzy soft polygroups

Figure 2. The relation between generalizations of polygroups.

2. Preliminaries

In this section, we provide some definitions and results of soft set theory that will help
in understanding the content of the article [27,28,31,32,40]. Let P(U) denote the power set
of U, where U is an initial universe set, E is a set of parameters and A ⊆ E.
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Definition 1 ([27]). Let A ⊆ E and F : A → P(U) be a set-valued function. Then, the pair
(F, A) is called a soft set over U. For all x ∈ A F(x) = {y ∈ U | (x, y) ∈ R} and R stand for an
arbitrary binary relation between an element of A and an element of U—that is, R ⊆ A×U. In
fact, a soft set over U is a parameterized family of subsets of the universe U.

Definition 2 ([30,31]). Let A ⊆ E and f : A → FS(U) be a mapping. Then, the pair ( f , A) is
called a fuzzy soft set over U, where FS(U) is the collection of all fuzzy subsets of U. That is, for
each a ∈ A, f (a) is a fuzzy set on U.

Definition 3 ([33]). A multi-fuzzy set (MF-set) Ã in U is a set of ordered sequences

Ã = {< u, (µi(u)) >: u ∈ U, µi ∈ FS(U), i = 1, 2, ..., k} and k is a positive integer.

The function µÃ = (µi(u)) is said to be the multi membership function of Ã denoted by MFÃ,
and k is called dimension of Ã. The set of all MF-sets of dimension k in U is denoted by MkFS(U).

It is obvious that the one-dimensional MF-set is Zadeh’s fuzzy set, and Atanassov’s
intuotionistic fuzzy set is a two-dimensional MF-set with µ1(u) + µ2(u) ≤ 1.

Definition 4 ([33]). Let Ã ∈ MkFS(U). If Ã = {u/(0, 0, ..., 0) : u ∈ U}, then Ã is said to be
the null MF-set, defined by Φ̃k. If Ã = {u/(1, 1, ..., 1) : u ∈ U}, then Ã is said to be the absolute
MF-set, denoted by 1̃k.

Definition 5 ([33]). Let

Ã = {< u, (µi(u)) >: i = 1, 2, ..., k} and B̃ = {< u, (νi(u)) >: i = 1, 2, ..., k} ∈ MkFS(U).

Then

(i) Ã v B̃ if and only if MFÃ ≤ MFB̃, i.e µi(u) ≤ νi(u),∀u ∈ U and 1 ≤ i ≤ k.
(ii) Ã = B̃ if and only if MFÃ = MFB̃, i.e µi(u) = νi(u),∀u ∈ U and 1 ≤ i ≤ k.
(iii) Ã t B̃ = {< u, (µi(u) ∨ νi(u)) >: i = 1, 2, ..., k}. That is MFÃtB̃ = MFÃ ∨MFB̃.
(iv) Ã u B̃ = {< u, (µi(u) ∧ νi(u)) >: i = 1, 2, ..., k}. That is MFÃuB̃ = MFÃ ∧MFB̃.

Definition 6 ([34]). Let f̃ : A → MkFS(U). Then, we call a pair ( f̃ , A) a multi-fuzzy soft set
(MFS-set) of dimension k over U. That is, for every a ∈ A, f̃ (a) = MFf̃ (a) ∈ MkFS(U). Here,

f̃ (a) may be considered a set of a-approximate elements of the multi-fuzzy soft set ( f̃ , A) for a ∈ A.

Let A ⊆ E. Denote the set of all MFS-sets of dimension k over U by MkFS
S (U, E)

Definition 7 ([34]). Let A, B ⊆ E and ( f̃ , A), (g̃, B) ∈ MkFS
S (U, E). Then, ( f̃ , A) v (g̃, B) if

and only if A ⊆ B and MFf̃ (a) v MFg̃(a) for all a ∈ A.

Definition 8 ([34]). Let ( f̃ , A) ∈ MkFS
S (U, E). Then, ( f̃ , A) is said to be a null MFS-set, denoted

by Φ̃k
A, if MFf̃ (a) = Φ̃k for all a ∈ A.

( f̃ , A) is said to be an absolute MFS-set defined by Ũk
A if MFf̃ (a) = 1̃k for each a ∈ A.

Definition 9 ([34]). Let ( f̃ , A), (g̃, B) ∈ MkFS
S (U, E).

(i) The ∧̃ -intersection ( f̃ , A)∧̃(g̃, B) is defined as (h̃, A× B), where h̃(a, b) = f̃ (a) u g̃(b), for
all (a, b) ∈ A× B.

(ii) The ∨̃ -union ( f̃ , A)∨̃(g̃, B) is defined as (h̃, A× B), where h̃(a, b) = f̃ (a) t g̃(b), for all
(a, b) ∈ A× B.
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(iii) The union ( f̃ , A)t̃(g̃, B) is defined as (h̃, C), where C = A∪ B and for all c ∈ C h̃(c) = f̃ (c)
if c ∈ A− B, h̃(c) = g̃(c) if c ∈ B− A and h̃(c) = f̃ (c) t g̃(c) if c ∈ A ∩ B.

Definition 10. Let ( f̃ , A), (g̃, B) ∈ MkFS
S (U, E).

(i) The restricted intersection of ( f̃ , A) and (g̃, B) is the MFS-set (h̃, C) with A ∩ B 6= ∅
where C = A ∩ B, and for all c ∈ C, h̃(c) = f̃ (c) u g̃(c). The situation is denoted by
( f̃ , A) u< (g̃, B) = (h̃, C).

(ii) The extended intersection of ( f̃ , A) and (g̃, B) is the MFS-set (h̃, C), where C = A ∪ B and
for all c ∈ C, h̃(c) = f̃ (c) if c ∈ A− B, h̃(c) = g̃(c) if c ∈ B− A and h̃(c) = f̃ (c) u g̃(c)
if c ∈ A ∩ B. In this case, we write ( f̃ , A) u= (g̃, B) = (h̃, C).

Definition 11. Let H be a non-empty set and let P∗(H) be the set of all non-empty subsets of H. A
hyperoperation on H is a map ◦ : H × H → P∗(H) and the pair (H, ◦) is called a hypergroupoid.

Definition 12 ([11,21]). A multi-valued system P =< P, ◦, e,−1 > is called a polygroup where
e ∈ P, −1 : P −→ P, ◦ : P× P −→ P∗(P) if the following axioms hold for all x, y, z in P.

(i) x ◦ (y ◦ z) = (x ◦ y) ◦ z,
(ii) x ◦ e = e ◦ x = x,
(iii) x ∈ y ◦ z implies y ∈ x ◦ z−1 and z ∈ y−1 ◦ x.

The following elementary properties follow from the axioms:

e ∈ x ◦ x−1 ∩ x−1 ◦ x, e−1 = e, (x−1)−1 = x, and (x ◦ y)−1 = y−1 ◦ x−1,

where A−1 = {a−1 | a ∈ A}.

Let P be a polygroup and K a non-empty subset of P; then, K is called a subpoly-
group of P if e ∈ K and < K, ◦, e,−1 > is a polygroup.

A subhypergroup N of a hypergroup is normal if aN = Na [5]. According to [7], a
quasicanonical subhypergroup N of a quasicanonical hypergroup H is called normal if and
only if it is a member of an appreciated quotient system of H by some congruence relation.

Example 1. Suppose that H is a subgroup of a group G. Define a system G//H =< {HgH | g ∈ G},
∗, H,−I >, where (HgH)−I = Hg−1H and

(Hg1H) ∗ (Hg2H) = {Hg1hg2H |h ∈ H}.

The algebra of double cosets G//H is a polygroup introduced in (Dresher and Ore [41]).

Example 2. Consider P = {0, 1, 2, a, b} and define ◦ on P by the following table:.

◦ 0 1 2 a b
0 0 1 2 a b
1 1 {0, 2} {1, 2} a b
2 2 {1, 2} {0, 1} a b
a a a a {0, 1, 2, b} {a, b}
b b b b {a, b} {0, 1, 2, a}

Then, P is a canonical hypergroup. Suppose that S3 is the symmetric group on a set with three
elements. We consider

P× S3 = {(p, x) | p ∈ P and x ∈ S3},

with the usual hyperoperation

(p1, x1)� (p2, x2) | p ∈ p1 ◦ p2 and x = x1 · x2},
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for all (p1, x1), (p2, x2) ∈ P × S3. Then, P × S3 is a non-commutative polygroup or
quasicanonical hypergroup.

3. Multi-Fuzzy Soft Polygroups

The concept of the MF-set was introduced by Sebastian et al. in [33]. By combining the
MF-set and soft set, Yang et al. introduced the concept of the MFS-set [34]. Both of these
theories have been applied to algebraic structures. At this point, we give a new type of
polygroup named the multi-fuzzy soft polygroup (MFS-polygroup). Since the concepts
of uncertainty and fuzziness can be better expressed with MFS-sets, their applications in
hyperalgebraic structures are extremely important. Thus, in this section, we provide a new
connection between the polygroup structure and MFS-set.

Definition 13. Let P be a polygroup and ( f̃ , A) ∈ MkFS
S (P, E). Then, ( f̃ , A) is said to be an

MFS-polygroup of dimension k over P if and only if, for all a ∈ A and x, y ∈ P,

(i) min{MFf̃ (a)(x), MFf̃ (a)(y)} ≤ inf
z∈x◦y

{MFf̃ (a)(z)},

(ii) MFf̃ (a)(x) ≤ MFf̃ (a)(x−1).

That is, for each a ∈ A, MFf̃ (a) is a multi-fuzzy subpolygroup.

The first condition requires that the polygroup is closed under multi-fuzzy soft hyperop-
eration ◦ and the second condition is a generalization of the inverse element under ◦.

To better understand this new algebraic structure, consider the following examples.

Example 3. Let P = {e, a, b, c} be a polygroup with the Cayley table:

◦ e a b c
e e a b c
a a a {e,a,b,c} c
b b {e,a,b} b {b,c}
c c {a,c} c {e,a,b,c}

Let A = {e1, e2, e3} be the set of parameters.
Consider the MF-set f̃ : A→ M3FS(P) defined as follows. f̃ : A→ M3FS(P) as follows.

MFf̃ (e1)
= {e/(0.9, 0.8, 0.7), a/(0.6, 0.5, 0.6), b/(0.4, 0.1, 0.2), c/(0.4, 0.1, 0.2)},

MFf̃ (e2)
= {e/(0.8, 0.5, 0.6), a/(0.7, 0.4, 0.5), b/(0.6, 0.3, 0.1), c/(0.6, 0.3, 0.1)},

MFf̃ (e3)
= {e/(0.8, 0.8, 0.7), a/(0.5, 0.6, 0.3), b/(0.3, 0.6, 0.2), c/(0.2, 0.5, 0.1)}.

Then, ( f̃ , A) is not an MFS-polygroup of dimension 3 over P since

inf
c∈c◦b
{MFf̃ (e3)

(c)} 6≥ min{MFf̃ (e3)
(c), MFf̃ (e3)

(b)}.

Example 4. Consider the polygroup given in Example 3 and define the MF-set f̃ : A→ M3FS(P)
as follows.

MFf̃ (e1)
= {e/(0.8, 0.6, 0.7), a/(0.4, 0.5, 0.6), b/(0.3, 0.4, 0.2), c/(0.3, 0.4, 0.2)},

MFf̃ (e2)
= {e/(0.8, 0.5, 0.6), a/(0.6, 0.4, 0.5), b/(0.4, 0.3, 0.4), c/(0.4, 0.3, 0.4)},

MFf̃ (e3)
= {e/(0.8, 0.8, 0.7), a/(0.5, 0.6, 0.3), b/(0.3, 0.6, 0.2), c/(0.3, 0.6, 0.2)}.

Then, for all a ∈ A, MFf̃ (a) is an MF-subpolygroup of P. By Definition 13, ( f̃ , A) is an
MFS-polygroup of dimension 3 over P.
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Example 5. Consider the polygroup given in Example 3 and define the MF-set f̃ : A→ M3FS(P)
as follows.

MFf̃ (e1)
= {e/(0.9, 0.8, 0.6), a/(0.8, 0.7, 0.6), b/(0.7, 0.6, 0.5), c/(0.7, 0.6, 0.5)},

MFf̃ (e2)
= {e/(0.8, 0.8, 0.6), a/(0.7, 0.6, 0.5), b/(0.4, 0.5, 0.2), c/(0.4, 0.5, 0.2)},

MFf̃ (e3)
= {e/(0.6, 0.7, 0.5), a/(0.5, 0.6, 0.4), b/(0.4, 0.3, 0.1), c/(0.3, 0.4, 0.1)}.

Then, it is clear to see that MFf̃ (e1)
and MFf̃ (e2)

are MF-subpolygroups of P. However,
MFf̃ (e3)

is not an MF-subpolygroup of P since

inf
b∈c◦c
{MFf̃ (e3)

(b)} 6≥ min{MFf̃ (e3)
(c), MFf̃ (e3)

(c)} = MFf̃ (e3)
(c).

By Definition 13 ( f̃ , A) is not an MFS-polygroup of dimension 3 over P.

The following example shows that every soft set (F, A) over P can be seen as an
MFS-set of dimension k over P.

Example 6. Let A ⊂ E and (F, A) be a soft set over P. For all a ∈ A, the MF-set χ̃F(a) : A →
MkFS(P) defined by

MFχ̃F(a)
(b) =

{
1̃k if b ∈ F(a)
Φ̃k, otherwise

for all b ∈ A. Then, (χ̃F(a), A) ∈ MkFS
S (P, E).

Proposition 1. Let ( f̃ , A) ∈ MkFS
S (P, E). If ( f̃ , A) is an MFS-polygroups, then, for all a ∈ A

and x, y ∈ P,

(i) MFf̃ (a)(x−1) = MFf̃ (a)(x),

(ii) inf
e∈x◦x−1

{MFf̃ (a)(e)} ≥ MFf̃ (a)(x).

Proof. (i) By Definition 13, MFf̃ (a)(x) ≤ MFf̃ (a)(x−1) for all a ∈ A and x ∈ P. Moreover,

MFf̃ (a)(x) = MFf̃ (a)(x−1)−1 ≤ MFf̃ (a)(x−1). This completes the proof of (i).

(ii) Suppose that x ∈ P. Since e ∈ x ◦ x−1 and ( f̃ , A) is an MFS-polygroup, then, for all
a ∈ A, we obtain

inf
e∈x◦x−1

{MFf̃ (a)(e)} ≥ min{MFf̃ (a)(x), MFf̃ (a)(x−1)}

= MFf̃ (a)(x).

The relationship between soft polygroups and MFS-polygroups is given in the follow-
ing theorem.

Theorem 1. Let F : A → P∗(P) be a soft set over P. Then, (F, A) is a soft polygroup over P if
and only if (χ̃F(a), A) ∈ MkFS

S (P, E) is an MFS-polygroup.

Proof. The proof follows by Example 6.

In Theorem 2, we show that the restricted intersection and the extended intersection
of two MFS-polygroups are also an MFS-polygroup.
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Theorem 2. Let ( f̃ , A), (g̃, B) ∈ MkFS
S (P, E) be two MFS-polygroups.

(i) ( f̃ , A) u< (g̃, B) ∈ MkFS
S (P, E) is an MFS-polygroup.

(ii) ( f̃ , A) u= (g̃, B) ∈ MkFS
S (P, E) is an MFS-polygroup.

Proof. (i) By Definition 10 (i), let ( f̃ , A) u< (g̃, B) = (h̃, C), where C = A ∩ B and for
all c ∈ C, h̃(c) = f̃ (c) u g̃(c). Since ( f̃ , A) and (g̃, B) are MFS-polygroups, we have for
arbitrary c ∈ C and for all x, y ∈ P

inf
z∈x◦y

{MFf̃ (c)(z)} ≥ min{MFf̃ (c)(x), MFf̃ (c)(y)},

MFf̃ (c)(x) ≤ MFf̃ (c)(x−1)and

inf
z∈x◦y

{MFg̃(c)(z)} ≥ min{MFg̃(c)(x), MFg̃(c)(y)},

MFg̃(c)(x) ≤ MFg̃(c)(x−1).

For arbitrary c ∈ C and for all x, y ∈ P,

inf
z∈x◦y

{MF̃h(c)(z)} = inf
z∈x◦y

{MFf̃ (c)ug̃(c)(z)}

= inf
z∈x◦y

{MFf̃ (c)(z) ∧MFg̃(c)(z)}

= inf
z∈x◦y

{MFf̃ (c)(z)} ∧ inf
z∈x◦y

{MFg̃(c)(z)}

≥ min{MFf̃ (c)(x), MFf̃ (c)(y)} ∧min{MFg̃(c)(x), MFg̃(c)(y)}

= min{MFf̃ (c)(x), MFg̃(c)(x)} ∧min{MFf̃ (c)(y), MFg̃(c)(y)}

= min{MFf̃ (c)ug̃(c)(x), MFf̃ (c)ug̃(c)(y)}

= min{MF̃h(c)(x), MF̃h(c)(y)}.

Moreover,

MF̃h(c)(x) = MFf̃ (c)ug̃(c)(x)

= min{MFf̃ (c)(x), MFg̃(c)(x)}

≤ min{MFf̃ (c)(x−1), MFg̃(c)(x−1)}

= MFf̃ (c)ug̃(c)(x−1)

= MF̃h(c)(x−1).

Therefore, ( f̃ , A) u< (g̃, B) is an MFS-polygroup of dimension k over P.
(ii) According to Definition 10 (ii), we can write ( f̃ , A)u= (g̃, B) = (h̃, C), C = A∪ B. If

c ∈ A− B, then h̃(c) = f̃ (c) is an MF-subpolygroup of P, since ( f̃ , A) is an MFS-polygroup
over P; if c ∈ B − A, then h̃(c) = g̃(c) is an MF-subpolygroup of P, since (g̃, B) is an
MFS-polygroup over P; if c ∈ A ∩ B, then h̃(c) = f̃ (c) u g̃(c) is an MF-subpolygroup of P
by (i). Therefore, ( f̃ , A) u= (g̃, B) is an MFS-polygroup of dimension k over P.

The following corollary follows from Theorem 2.

Corollary 1. Let {( f̃i, Ai) | i ∈ I} ∈ MkFS
S (P, E) be a family of MFS-polygroups. If ∩i∈I Ai 6=

∅. Then,

(i) (u<)i∈I( f̃i, Ai) ∈ MkFS
S (P, E) is an MFS-polygroup.

(ii) (u=)i∈I( f̃i, Ai) ∈ MkFS
S (P, E) is an MFS-polygroup.
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The union of two MFS-polygroups is not an MFS-polygroup. In Theorem 3, we provide
a condition for the union to be an MFS-polygroup as well.

Theorem 3. Let ( f̃ , A), (g̃, B) ∈ MkFS
S (P, E) be two MFS-polygroups. If A ∩ B = ∅, then

( f̃ , A)t̃(g̃, B) ∈ MkFS
S (P, E) is an MFS-polygroup.

Proof. By Definition 9(iii), we can write ( f̃ , A)t̃(g̃, B) = (h̃, C), where C = A ∪ B. Since
A ∩ B = ∅, it follows that either c ∈ A− B or c ∈ B− A for all c ∈ C. If c ∈ A− B, then
h̃(c) = f̃ (c) is an MF-subpolygroup of P and if c ∈ B − A, then h̃(c) = g̃(c) is an MF-
subpolygroup of P. Therefore, ( f̃ , A)t̃(g̃, B) is an MFS-polygroup of dimension k over P.

Theorem 4. Let ( f̃ , A), (g̃, B) ∈ MkFS
S (P, E) be two MFS-polygroups. Then, ( f̃ , A)∧̃(g̃, B) ∈

MkFS
S (P, E) is an MFS-polygroup.

Proof. By Definition 9(i), let ( f̃ A)∧̃(g̃, B) = (h̃, A× B). We know that for all a ∈ A, f̃ (a)
is an MF-subpolygroup of P and for all b ∈ B, g̃(b) is an MF-subpolygroup of P and so is
h̃(a, b) = MF̃h(a,b) = MFf̃ (a)ug̃(b) for all (a, b) ∈ A× B, because the intersection of two multi-

fuzzy subpolygroups is also an MF-subpolygroup. Hence, ( f̃ , A)∧̃(g̃, B) is an MFS-polygroup
of dimension k over P.

By Theorems 3 and 4, we obtain the following corollary.

Corollary 2. Let {( f̃i, Ai) | i ∈ I} ∈ MkFS
S (P, E) be a family of MFS-polygroups.

(i) If Ai ∩Aj = ∅ for all i, j ∈ I and i 6= j, then t̃i∈I( f̃i, Ai) ∈ MkFS
S (P, E) is an MFS-polygroup.

(ii) ∧̃i∈I( f̃i, Ai) ∈ MkFS
S (P, E) is an

MFS-polygroup.

The following theorem gives a condition for the ∨̃-union of two MFS-polygroups to
be an MFS-polygroup.

Theorem 5. Let ( f̃ , A), (g̃, B) ∈ MkFS
S (P, E) be two MFS-polygroups. If ( f̃ , A) @ (g̃, B) or

(g̃, B) @ ( f̃ , A), then ( f̃ , A)∨̃(g̃, B) ∈ MkFS
S (P, E) is an MFS-polygroup.

Proof. Suppose that ( f̃ , A) and (g̃, B) are MFS-polygroups of dimension k over P. By
Definition 9 (ii), we can write ( f̃ , A)∨̃(g̃, B) = (h̃, C), where C = A × B, and h̃(a, b) =
f̃ (a) t g̃(b) for all (a, b) ∈ C. Since ( f̃ , A) and (g̃, B) are MFS-polygroups of dimension k
over P, we obtain that for all a ∈ A, f̃ (a) is an MF-subpolygroup of P and for all b ∈ B, g̃(b)
is an MF-subpolygroup of P. By assumption, h̃(a, b) = f̃ (a) t g̃(b) is an MF-subpolygroup
of P for all (a, b) ∈ C. Hence, ( f̃ , A)∨̃(g̃, B) is an MFS-polygroup.

Definition 14. The sum of two MFS-sets ( f̃ , A) and (g̃, B) of dimension k over P, denoted by
( f̃ , A)⊕ (g̃, B), is the MFS-set (h̃, C), where C = A ∪ B and for all c ∈ C,

h̃(c) =


f̃ (c) if c ∈ A\B
g̃(c) if c ∈ B\A
f̃ (c)⊕ g̃(c) if c ∈ A ∩ B

For every z ∈ P,

( f̃ (c)⊕ g̃(c))(z) =
∨
{MFf̃ (c)(x) ∧MFg̃(c)(y), x, y ∈ P, z ∈ x ◦ y}.

The next theorem gives a condition for the sum of two MFS-polygroups to be an
MFS-polygroup.
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Theorem 6. Let ( f̃ , A), (g̃, B) ∈ MkFS
S (P, E) be two MFS-polygroups. If ( f̃ , A) ⊕ (g̃, B) =

(g̃, B)⊕ ( f̃ , A), then ( f̃ , A)⊕ (g̃, B) ∈ MkFS
S (P, E) is an MFS-polygroup.

Proof. The proof is straightforward.

Definition 15. Let ( f̃ , A) ∈ MkFS
S (P, E). The soft set

( f̃ , A)t = {(MFf̃ (a))t
| a ∈ A} where (MFf̃ (a))t

= {x ∈ P | MFS f̃ (a)(x) ≥ t},

for all t = (t1, t2, ..., tk), ti ∈ (0, 1]1 ≤ i ≤ k, is called a t-level soft set of the MFS-set ( f̃ , A),
where (MFf̃ (a))t

is a t-level subset of the MF-set MFf̃ (a).

The following theorem explores the relation between MFS-polygroups and t-level soft sets.

Theorem 7. Let ( f̃ , A) ∈ MkFS
S (P, E). Then, ( f̃ , A) is an MFS-polygroup if and only, if for

all a ∈ A and for arbitrary t ∈ (0, 1] with (MFf̃ (a))t
6= ∅, the t-level soft set ( f̃ , A)t is a soft

polygroup over P in Wanga’s sense [40].

Proof. Let ( f̃ , A) ∈ MkFS
S (P, E) be an MFS-polygroup. Then, for each a ∈ A, MFf̃ (a) is an

MF-subpolygroup of P. Suppose that t ∈ (0, 1] with (MFf̃ (a))t
6= ∅ and x, y ∈ (MFf̃ (a))t

.

Then, MFf̃ (a)(x) ≥ t, MFf̃ (a)(y) ≥ t. Thus,

t ≤ min{MFf̃ (a)(x), MFf̃ (a)(y)} ≤ inf
z∈x◦y

{MFf̃ (a)(z)}.

which implies MFf̃ (a)(z) ≥ t for all z ∈ x ◦ y. Therefore, x ◦ y ⊆ (MFf̃ (a))t
. Moreover, for

x ∈ (MFf̃ (a))t
, we have MFf̃ (a)(x−1) ≥ MFf̃ (a)(x) ≥ t. It follows that x−1 ∈ (MFf̃ (a))t

.

we obtain that (MFf̃ (a))t
is a subpolygroup of P for all a ∈ A. Consequently, ( f̃ , A)t is a

soft polygroup over P. Conversely, let ( f̃ , A)t be a soft polygroup over P for all t ∈ (0, 1].
Let t0 = min{MFf̃ (a)(x), MFf̃ (a)(y)} for some x, y ∈ P. Then, obviously, x, y ∈ (MFf̃ (a))t0

;

consequently, x ◦ y ⊆ (MFf̃ (a))t0
. Thus,

min{MFf̃ (a)(x), MFS f̃ (a)(y)} = t0 ≤ inf
z∈x◦y

{MFf̃ (a)(z)}.

Now, t0 = MFf̃ (a)(x) for some x ∈ P. Since, by the assumption, every non-empty

t-level soft set ( f̃ , A)t is a soft polygroup over P, x−1 ∈ (MFf̃ (a))t0
. Hence, MFf̃ (a)(x−1) ≥

t0 = MFf̃ (a)(x). As a result, we obtain that MFf̃ (a) is an MF-subpolygroup of P for all

a ∈ A. Consequently, ( f̃ , A) is an MFS-polygroup of dimension k over P.

4. The Behavior Image and Inverse Image of MFS-Polygroups

Definition 16. A pair (ϕ, ψ) is called an MF-soft function from P1 to P2, where ϕ : P1 → P2 and
ψ : E1 → E2 are functions.

Definition 17. Let ( f̃ , A) ∈ MkFS
S (P1, E1),(g̃, B) ∈ MkFS

S (P2, E2) and (ϕ, ψ) be an MF- soft
function from P1 to P2.



Mathematics 2022, 10, 2178 11 of 16

(i) The image of ( f̃ , A) under the MF-soft function (ϕ, ψ), denoted by (ϕ, ψ)( f̃ , A), is the MFS-
set (ϕ( f̃ ), ψ(A)) such that the MF-set ϕ( f̃ )(t) for any t ∈ ψ(A) is characterized by the
following MF-membership function:

MF
ϕ( f̃ )(t)(y) =


∨

ϕ(x)=y

∨
ψ(a)=t

MFf̃ (a)(x) if ∃x ∈ ϕ−1(y)

0, otherwise

for all y ∈ P2.
(ii) The pre-image of (g̃, B) under the MF-soft function (ϕ, ψ), denoted by (ϕ, ψ)−1(g̃, B), is the

MFS-set (ϕ−1(g̃), ψ−1(B)) such that the MF-set ϕ−1(g̃)(a) is characterized by the following
MF-membership function:

MFϕ−1(g̃)(a)(x) = MFg̃(ψ(a))(ϕ(x))

for all a ∈ ψ−1(B) and x ∈ P1.

If ϕ and ψ are injective (surjective), then (ϕ, ψ) is said to be injective (surjective).

Definition 18. Let P1, P2, be two polygroups and (ϕ, ψ) be an MF-soft function from P1 to P2. If ϕ
is a strong homomorphism of polygroups, then the pair (ϕ, ψ) is called an MF-soft homomorphism.
If ϕ is an isomorphism and ψ is a one-to-one mapping, then (ϕ, ψ) is said to be an MF-soft
isomorphism.

Theorem 8. Let P1, P2 be two polygroups and (ϕ, ψ) be an MF-soft homomorphism from P1 to
P2. If ( f̃ , A) ∈ MkFS

S (P1, E1) is an MFS-polygroup, then (ϕ, ψ)( f̃ , A) ∈ MkFS
S (P2, E2) is an

MFS-polygroup.

Proof. Let k ∈ ψ(A), u, v ∈ P2. If ϕ−1(u) = ∅ or ϕ−1(v) = ∅, the proof is straightforward.
Assume that there exists x, y ∈ P1, such that ϕ(x) = u and ϕ(y) = v. Since ( f̃ , A) ∈
MkFS

S (P1, E1) is an MFS-polygroup, it follows that for each a ∈ A

min{MFf̃ (a)(x), MFf̃ (a)(y)} ≤ MFf̃ (a)(z)

for all z ∈ x ◦ y. Let z∗ ∈ u ◦ v = ϕ(x ◦ y). We obtain z∗ = ϕ(z). Then, we have

min{
∨

ϕ(x)=u

MFf̃ (a)(x),
∨

ϕ(y)=v

MFf̃ (a)(y)} ≤
∨

ϕ(x)=u

∨
ϕ(y)=v

MFf̃ (a)(z).

Hence,

min{MF
ϕ( f̃ )(t)(u), MF

ϕ( f̃ )(t)(v)} ≤
∨

ψ(a)=t

∨
ϕ(x)=u

∨
ϕ(y)=v

MFf̃ (a)(z)

=
∨

ψ(a)=t

∨
ϕ(z)=z∗

MF
ϕ( f̃ )(t)(z)

for all z∗ ∈ u ◦ v. Then, we have

inf
z∗∈u◦v

{MF
ϕ( f̃ )(t)(z

∗)} ≥ min{MF
ϕ( f̃ )(t)(u), MF

ϕ( f̃ )(t)(v)}
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Moreover, for all u ∈ P2 where ϕ(x) = u and x ∈ P1, we have

MF
ϕ( f̃ )(t)(u

−1) =
∨

ϕ(x−1)=u−1

∨
ψ(a)=k

MFf̃ (a)(x−1)

≥
∨

ϕ(x)=u

∨
ψ(a)=t

MFf̃ (a)(x)

= MF
ϕ( f̃ )(t)(u)

Consequently, (ϕ, ψ)( f̃ , A) ∈ MkFS
S (P2, E2) is an MFS-polygroup.

Theorem 9. Let P1, P2 be two polygroups and (ϕ, ψ) be an MF-soft homomorphism from P1 to P2.
If (g̃, B) ∈ MkFS

S (P2, E2) is an MFS-polygroup, then (ϕ−1(g̃), ψ−1(B)) ∈ MkFS
S (P1, E1) is an

MFS-polygroup.

Proof. Let a ∈ ψ−1(B), x, y ∈ P1. For all z ∈ x ◦ y, we have

inf
z∈x◦y

{MFϕ−1(g̃)(a)(z)} = inf
z∈x◦y

{MFg̃(ψ(a))(ϕ(z))}

≥ min{MFg̃(ψ(a))(ϕ(x)), MFg̃(ψ(a))(ϕ(y))}
= min{MF(ϕ−1 g̃)(a)(x), MF(ϕ−1 g̃)(a)(y)}

Similarly, we obtain MF(ϕ−1 g̃)(a)(x−1) ≥ MF(ϕ−1 g̃)(a)(x). Therefore, we conclude that
(ϕ−1(g̃), ψ−1(B)) ∈ MkFS

S (P1, E1) is an MFS-polygroup.

5. Normal MFS-Polygroups

In this section, we define normal MFS-polygroups and study some of their basic
properties. We proved that the images of normal MFS-polygroups are the normal MFS-
polygroups under some conditions.

Definition 19. Let ( f̃ , A) ∈ MkFS
S (P, E) be an MFS-polygroup. Then, ( f̃ , A) is said to be normal

if and only if

inf
z∈x◦y

{MFf̃ (a)(z)} = inf
z′∈y◦x

{MFf̃ (a)(z
′)},

for all a ∈ A and x, y ∈ P.

It is obvious that if ( f̃ , A) is a normal MFS-polygroup, then

inf
z∈x◦y

{MFf̃ (a)(z) = inf
z′∈x◦y

{MFf̃ (a)(z
′)},

for all a ∈ A and x, y ∈ P.

Theorem 10. Let ( f̃ , A) ∈ MkFS
S (P, E) be an MFS-polygroup. Then, the following conditions are

equivalent:

(i) ( f̃ , A) is a normal MFS-polygroup,
(ii) inf

z∈x◦y◦x−1
{MFf̃ (a)(z)} = MFf̃ (a)(y), for all a ∈ A and x, y ∈ P,

(iii) inf
z∈x◦y◦x−1

{MFf̃ (a)(z)} ≥ MFf̃ (a)(y), for all a ∈ A and x, y ∈ P,

(iv) inf
z∈y−1◦x−1◦y◦x

{MFf̃ (a)(z)} ≥ MFf̃ (a)(y), for all a ∈ A and x, y ∈ P.
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Proof. (i)⇒ (ii): For any a ∈ A, suppose that x, y ∈ P and z ∈ x ◦ y ◦ x−1. Then, z ∈ x ◦ s,
where s ∈ y ◦ x−1. Since s ∈ y ◦ x−1, then y ∈ s ◦ (x−1)−1 = s ◦ x. Thus, by hypothesis,
we obtain

inf
z∈x◦s
{MFf̃ (a)(z)} = inf

y∈s◦x
{MFf̃ (a)(y)} = MFf̃ (a)(y).

That is, inf
z∈x◦y◦x−1

{MFf̃ (a)(z)} = MFf̃ (a)(y).

(ii)⇒ (iii): The proof is trivial.
(iii) ⇒ (iv): For any a ∈ A, suppose that x, y ∈ P and z ∈ y−1 ◦ x−1 ◦ y ◦ x. Then,

z ∈ y−1 ◦ s, where s ∈ x−1 ◦ y ◦ x. By (iii), we obtain inf
s∈x−1◦y◦x

{MFf̃ (a)(s)} ≥ MFf̃ (a)(y).

Since z ∈ y−1 ◦ s and letting ( f̃ , A) ∈ MkFS(P) be a MFS-polygroup, then we have

inf
z∈y−1◦s

{MFf̃ (a)(z)} ≥ min{MFf̃ (a)(y
−1), MFf̃ (a)(s)} = MFf̃ (a)(y).

That is, inf
z∈y−1◦x−1◦y◦x

{MFf̃ (a)(z)} ≥ MFf̃ (a)(y) for all a ∈ A and x, y ∈ P.

(iv) ⇒ (i): For any a ∈ A, suppose that x, y ∈ P and u ∈ x−1 ◦ y ◦ x. Then, u ∈
x−1 ◦ y ◦ x ⊂ y ◦ y−1 ◦ x−1 ◦ y ◦ x. Thus, u ∈ y ◦ s, where s ∈ y−1 ◦ x−1 ◦ y ◦ x. By (iv), we
obtain inf

s∈y−1◦x−1◦y◦x
{MFf̃ (a)(s)} ≥ MFf̃ (a)(y). On the other hand,

inf
u∈y◦s

{MFf̃ (a)(u)} ≥ min{MFf̃ (a)(y), MFf̃ (a)(s)} = MFf̃ (a)(y).

Now, let ω ∈ x ◦ y and v ∈ y ◦ x. Then, y ∈ v ◦ x−1 and so ω ∈ x ◦ y ⊂ x ◦ v ◦ x−1.
By the above result, MFf̃ (a)(ω) ≥ MFf̃ (a)(v). Similarly, we obtain MFf̃ (a)(v) ≥ MFf̃ (a)(ω).
Therefore,

inf
ω∈x◦y

{MFf̃ (a)(ω)} = inf
v∈y◦x

{MFf̃ (a)(v)},

for all a ∈ A and x, y ∈ P. Hence, ( f̃ , A) is a normal MFS-polygroup.

Lemma 1. Let ( f̃ , A) ∈ MkFS
S (P, E) be an MFS-polygroup. If MFf̃ (a)(x) < MFf̃ (a)(y) for all

a ∈ A and x, y ∈ P, then

inf
z∈x◦y

{MFf̃ (a)(z)} = inf
z′∈y◦x

{MFS f̃ (a)(z
′)} = MFf̃ (a)(x).

Proof. Let x, y ∈ P and z ∈ x ◦ y. Then,

MFf̃ (a)(z) ≥ min{MFf̃ (a)(x), MFf̃ (a)(y)} = MFf̃ (a)(x)

for all a ∈ A. Since z ∈ x ◦ y, then x ∈ z ◦ y−1. Thus,

inf
x∈z◦y−1

{MFf̃ (a)(x)} ≥ min{MFf̃ (a)(z), MFf̃ (a)(y
−1)}

= min{MFf̃ (a)(z), MFf̃ (a)(y)}.

If min{MFf̃ (a)(z), MFf̃ (a)(y)} = MFf̃ (a)(y), then MFf̃ (a)(x) ≥ MFf̃ (a)(y), a contra-
diction. Thus, min{MFf̃ (a)(z), MFf̃ (a)(y)} = MFf̃ (a)(z). Hence, MFf̃ (a)(x) ≥ MFf̃ (a)(z).
Consequently, inf

z∈x◦y
{MFf̃ (a)(z)} = MFf̃ (a)(x) for all a ∈ A and x, y ∈ P. Similarly, we

obtain inf
z′∈y◦x

{MFf̃ (a)(z
′)} = MFf̃ (a)(x) for all a ∈ A and x, y ∈ P.
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Theorem 11. Let ( f̃ , A) ∈ MkFS
S (P, E) be an MFS-polygroup. Then, ( f̃ , A) is normal if and

only if

MFf̃ (a)(x) = MFf̃ (a)(y)⇒ inf
z∈x◦y

{MFf̃ (a)(z)} = inf
z′∈y◦x

{MFf̃ (a)(z
′)},

for all a ∈ A and x, y ∈ P.

Proof. The proof of Theorem 11 follows from Lemma 1.

Theorem 12. Let ( f̃ , A) ∈ MkFS
S (P, E). Then, ( f̃ , A) is a normal MFS-polygroup if and only if

each of its non-empty level subsets is a normal soft polygroup over P.

Proof. Let ( f̃ , A) ∈ MkFS
S (P, E) be a normal MFS-polygroup. By Theorem 7, (MFf̃ (a))t

is a

soft polygroup over P for all a ∈ A. Now, we will show that (MFf̃ (a))t
is normal. Suppose

that y ∈ (MFf̃ (a))t
and x ∈ P. Then, we have

inf
z∈x◦y◦x−1

{MFf̃ (a)(z)} ≥ MFf̃ (a)(y) ≥ t.

It follows that MFf̃ (a)(z) ≥ t for all z ∈ x ◦ y ◦ x−1. That is, x ◦ y ◦ x−1 ⊂ (MFf̃ (a))t
. We

obtain that (MFf̃ (a))t
is a normal subpolygroup of P for all a ∈ A. Consequently, ( f̃ , A)t is

a normal soft polygroup over P. Conversely, let ( f̃ , A)t be a normal soft polygroup over P
for all t ∈ [0, 1]. By Theorem 7, ( f̃ , A) ∈ MkFS

S (P, E) is an MFS-polygroup. That is, MFf̃ (a)
is an MF-subpolygroup of P for all a ∈ A. We will show that MFf̃ (a) is normal. Assume

that x, y ∈ P, t0 = MFf̃ (a)(y). Then, MFf̃ (a)(y) ≥ t0. Since ( f̃ , A)t0
is normal, we have

x ◦ y ◦ x−1 ⊂ (MFS f̃ (a))t0
. Thus, z ∈ (MFf̃ (a))t0

for all z ∈ x ◦ y ◦ x−1. Therefore,

inf
z∈x◦y◦x−1

{MFf̃ (a)(z)} ≥ t0 = MFf̃ (a)(y).

We obtain that MFf̃ (a) is a normal MF-subpolygroup of P for all a ∈ A. Consequently,

( f̃ , A) is a normal MFS-polygroup.

Theorem 13. Let ( f̃ , A), (g̃, B) ∈ MkFS
S (P, E) be two normal MFS-polygroups. Then,

(i) ( f̃ , A) u< (g̃, B) is a normal MFS-polygroup.
(ii) ( f̃ , A) u= (g̃, B) is a normal MFS-polygroup.
(iii) If A ∩ B = ∅, then ( f̃ , A) t (g̃, B) is a normal MFS-polygroup.
(iv) ( f̃ , A)∧̃(g̃, B) is a normal MFS-polygroup.

Theorem 14. Let P1, P2 be two polygroups and (ϕ, ψ) be a surjective multi-fuzzy soft homomor-
phism from P1 to P2. If ( f̃ , A) ∈ MkFS

S (P1, E1) is a normal MFS-polygroup, then (ϕ, ψ)( f̃ , A) ∈
MkFS

S (P2, E2) is a normal MFS-polygroup.

Proof. For each t ∈ ψ(A) and u, v ∈ P2, there exists x, y ∈ P1, such that ϕ(x) = u and
ϕ(y) = v. Since ( f̃ , A) ∈ MkFS

S (P, E) is a normal MFS-polygroup, it follows that for each
a ∈ A

MFf̃ (a)(y) ≤ MFf̃ (a)(z)
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for all z ∈ x ◦ y ◦ x−1. Let z∗ ∈ u ◦ v ◦ u−1 = ϕ(x ◦ y ◦ x−1). We obtain z∗ = ϕ(z).
Then, we have ∨

ϕ(y)=v

MFf̃ (a)(y) ≤
∨

ϕ(x)=u

∨
ϕ(y)=v

∨
ϕ(x−1)=u−1

MFf̃ (a)(z).

Hence,

MF
ϕ( f̃ )(t)(v) ≤

∨
ψ(a)=t

∨
ϕ(x)=u

∨
ϕ(y)=v

∨
ϕ(x−1)=u−1

MFf̃ (a)(z)

=
∨

ψ(a)=t

∨
ϕ(z)=z∗

MF
ϕ( f̃ )(t)(z)

for all z∗ ∈ u ◦ v ◦ u−1. Then, we have

inf
z∗∈u◦v◦u−1

{MF
ϕ( f̃ )(t)(z

∗)} ≥ MF
ϕ( f̃ )(t)(v)}

Consequently, (ϕ, ψ)( f̃ , A) is a normal MFS-polygroup.

Theorem 15. Let P1, P2 be two polygroups and (ϕ, ψ) be an MF-soft homomorphism from P1 to P2.
If (g̃, B) ∈ MkFS

S (P2, E2) is a normal MFS-polygroup, then (ϕ−1(g̃), ψ−1(B)) ∈ MkFS
S (P1, E1)

is a normal MFS-polygroup.

Proof. Let a ∈ ψ−1(B), x, y ∈ P1. For all z ∈ x ◦ y ◦ x−1, we have

inf
z∈x◦y◦x−1

{MF(ϕ−1(g̃))(a)(z)} = inf
z∈x◦y◦x−1

{MFg̃(ψ(a))(ϕ(z))}

≥ MFg̃(ψ(a))(ϕ(y))

= MF(ϕ−1(g̃))(a)(y).

Therefore, (ϕ−1(g̃), ψ−1(B)) is a normal MFS-polygroup.

6. Conclusions

In real life, many problems often involve uncertainties that are difficult to describe
and solve with traditional mathematical tools. To investigate these uncertainties, many
researchers have proposed mathematical theory to address the problem of uncertainty.
Currently, mathematical theories dealing with the problem of uncertainty include fuzzy set
theory, soft set theory, multi-fuzzy set theory, probability theory and so on. The purpose
of this paper is to apply the MFS-set theory to algebraic hyperstructures, motivated by
the study of the algebraic structures of MF-sets. We generalized the concept of fuzzy
polygroups and studied the algebraic properties of MFS-sets in polygroup structures. Thus,
this paper provides a new connection between polygroup structures and MFS-sets. We
hope that our work enhances the understanding of MFS-polygroups for future researchers.
To extend this work, one should study the MFS-sets related to various hyperrings, which
can be researched further. A solution to a decision-making problem can be investigated
using a different algorithm in the future as well.

Author Contributions: Conceptualization, O.K. and B.D.; methodology, O.K., S.H.-M. and B.D.;
formal analysis, O.K.; investigation, O.K.; resources, O.K., S.H.-M. and B.D.; writing—original
draft preparation, O.K.; writing—review and editing, O.K., S.H.-M. and B.D.; supervision, B.D.;
project administration, S.H.-M.; funding acquisition, S.H.-M. All authors have read and agreed to the
published version of the manuscript.

Funding: The research was supported by VAROPS, granted by the Ministry of Defence of the
Czech Republic.



Mathematics 2022, 10, 2178 16 of 16

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are highly grateful to the referees for their constructive suggestions
for improving the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Marty, F. Sur une generalization de la notion de group. In Proceedings of the 8th Congress on Mathmatics Scandenaves, Stockholm,

Sweden, 14–18 August 1934; pp. 45–49.
2. Prenowitz, W. Projective geometries as multigroups. Am. J. Math. 1943, 65, 235–256. [CrossRef]
3. Prenowitz, W. Descriptive geometries as multigroups. Trans. Am. Math. Soc. 1946, 59, 333–380. [CrossRef]
4. Prenowitz, W. Spherical geometries and mutigroups. Can. J. Math. 1950, 2, 100–119. [CrossRef]
5. Jantosciak, J. Transposition hypergroups, Noncommutative Join Spaces. J. Algebra 1997, 187, 97–119. [CrossRef]
6. Bonansinga, P. Quasicanonical hypergroups. Atti Soc. Peloritana Sci. Fis. Mat. Natur. 1981, 27, 9–17. (In Italian)
7. Massouros, C.G. Quasicanonical hypergroups. In Proceedings of the 4th Internation Congress, on Algebraic Hyperstructures and

Applications, Xanthi, Greece, 27–30 June 1990; World Scientific: Singapore, 1991; pp. 129–136.
8. Ioulidis, S. Polygroups et certains de leurs properietes. Bull. Greek Math. Soc. 1981, 22, 95–104.
9. Comer, S.D. Polygroups derived from cogroups. J. Algebra 1984, 89, 397–405. [CrossRef]
10. Comer, S.D. Extension of Polygroups by Polygroups and their Representations Using Color Schemes; Lecture Notes in Mathematics, No

1004, Universal Algebra and Lattice Theory; Springer: Berlin/Heidelberg, Germany, 1982; pp. 91–103.
11. Davvaz, B. Polygroup Theory and Related Systems; World Scientific Publishing Co. Pte. Ltd.: Hackensack, NJ, USA, 2013.
12. Mittas, J. Hypergroupes canoniques. Math. Balk. 1972, 2, 165–179.
13. Massouros, C.; Massouros, G. An overview of the foundations of the hypergroup theory. Mathematics 2021, 9, 1014. [CrossRef]
14. Massouros, C.; Cristea, I. 1st Symposium on “Hypercompositional Algebra—New Developments and Applications (HAnDA)”.

AIP Conf. Proc. 2018, 340001. [CrossRef]
15. Corsini, P. Prolegomena of Hypergroup Theory, 2nd ed.; Aviani Editor: Tricesimo, Italy, 1993.
16. Corsini, P.; Leoreanu-Fotea, V. Applications of hyperstructures theory. In Advanced in Mathematics; Kluwer: Dordrecht, The

Netherlands, 2003.
17. Davvaz, B.; Leoreanu-Fotea, V. Hyperring Theory and Applications; Hadronic Press, Inc.: Palm Harber, FL, USA, 2007.
18. Davvaz, B.; Cristea, I. Fuzzy Algebraic Hyperstructures; Studies in Fuzziness and Soft Computing 321; Springer International

Publishing: Cham, Switzerland, 2015.
19. Vougiouklis, T. Hyperstructures and Their Representations; Hadronic Press: Palm Harbor, FL, USA, 1994.
20. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
21. Zahedi, M.M.; Bolurian, M.; Hasankhani, A. On polygroups and fuzzy subpolygroups. J. Fuzzy Math. 1995, 3, 1–15.
22. Davvaz, B. Fuzzy Hv-groups. Fuzzy Sets Syst. 1999, 101, 191–195. [CrossRef]
23. Rosenfeld, A. Fuzzy groups. J. Math. Anal. Appl. 1971, 35, 512–517. [CrossRef]
24. Corsini, P. A new connection between hypergroups and fuzzy sets. Southeast Asian Bull. Math. 2003, 27, 221–229.
25. Davvaz, B.; Corsini, P. Generalized fuzzy polygroups. Iran. J. Fuzzy Syst. 2006, 3, 59–75.
26. Kazancı, O.; Davvaz, B.; Yamak, S. A new characterization of fuzzy n-ary polygroups. Neural Comput. Appl. 2012, 19, 649–655.

[CrossRef]
27. Molodtsov, D. Soft set theory first results. Comp. Math. Appl. 1999, 37, 19–31. [CrossRef]
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