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Abstract: In many real-world environments, machine breakdowns or worker performance instabilities
cause uncertainty in job processing times, while working environment changes or transportation
delays will postpone finished production for customers. The factors that impact the task processing
times and/or deadlines vary. In view of the uncertainty, job processing times and/or job due dates
cannot be fixed numbers. Inspired by this fact, we introduce a scenario-dependent processing time
and due date concept into a single-machine environment. The measurement minimizes the total job
tardiness in the worst case. The same problem without the presence of processing time uncertainty
has been an NP-hard problem. First, to solve this difficult model, an exact method, including a
lower bound and some dominance properties, is proposed. Next, three scenario-dependent heuristic
algorithms are proposed. Additionally, a population-based iterated greedy algorithm is proposed
in the hope of increasing the diversity of the solutions. The results of all related algorithms are
determined and compared using the appropriate statistical tools.

Keywords: iterated greedy; scheduling; total tardiness; scenario-dependent

MSC: 90B35; 68M20

1. Introduction

The operational parameters of a scheduling problem cannot be fixed or predetermined.
For example, the processing time might be influenced by machine breakdowns or altered by
the number of ordered items (products), the release date might be delayed by unexpected
factors, and the due date might have to be adjusted earlier/later for customers. Therefore,
these parameters in a scheduling problem can be treated as uncertain. For example, the
travel time of a caregiver might vary and the service time of an elder could be prolonged in
the home health industry. In home healthcare situations, assigning caregivers and routes
of services is a practical and important issue. For example, [1] supplied a framework to
make a robust scheduling problem for an institution. Other examples were presented in
the facility location problem by [2], in the discrete time/cost trade-off problem by [3], and
in random quality deteriorating hybrid manufacturing by [4].

To address these situations, researchers attempt to search job sequences or job sched-
ules to reduce the risk or to minimize one or several aspects of loss measures. This led to the
robust approach to solve a scheduling model with scenario-dependent effects [5,6]. There
were two deterministic methods (in contrast to stochastic methods) to model the uncertain
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parameters of a scheduling problem discussed in the relevant literature. The uncertain
parameters were either bounded within an interval (continuous case) or described by a
finite number of scenarios (discrete case) [5,6]. The discrete scenario robust scheduling
problem was first studied by [6]. Taking a finite number of scenarios into consideration,
they discussed three robust measures in a single-machine setting, i.e., the absolute robust,
the robust deviation, and the relative robust deviation [7]. The main objective function is to
seek an optimal job schedule among all possible permutations over all possible scenarios.
Other studies pertinent to machine scheduling in the face of uncertainty for discrete cases
include [8,9]. Additionally, some recent distributionally robust optimization scheduling
problems with uncertain processing times or due dates include [10,11].

The total tardiness measure is very important in practice. Tardiness relates to backlog
(of order) issues, which may cause customers to demand compensation for delays and
loss of credit. In addition to the single-machine operation environment, the total tardiness
minimization has been investigated in other work environments, e.g., flow-shop, job shop,
parallel, and order scheduling problems (refer to [12,13], respectively). Readers can refer to
the review papers by [14,15] on the total (weighted) tardiness criterion in the scheduling
area. More recently, [16] introduced the scenario-dependent idea into a parallel-machine
order scheduling problem where the tardiness criterion is minimized.

However, the performance measure total tardiness together with the uncertainty of
parameters is rarely discussed in the literature for deterministic models of scheduling
problems. Moreover, [17] noted that “single-machine models often have properties that
have neither machines in parallel nor machines in series. The results that can be obtained
for single machine models not only provide insights into a single machine environment,
they also provide a basis for heuristics that are applicable to more complicated machine
environments . . . ” (see page 35 in [17]). Therefore, we introduce scenario-dependent due
dates and scenario-dependent processing times to a single-machine setting, in which the
criterion is the sum of tardiness of all given jobs.

This work provides several contributions: We introduce a scenario-dependent process-
ing time and due date concept to a single-machine scheduling problem to minimize the
sum of job tardiness in the worst case. We derive a lower bound and several properties to
increase the power capability of a branch-and-bound (B&B) method for an exact solution.
In addition, we propose three different values for a parameter in one local search heuristic
method and a population-based iterative greedy algorithm for near-optimal solutions. The
organization of this article is as follows: Section 2 states the formulation of the investi-
gated problem. Section 3 derives one lower bound and eight dominances used in the B&B
method, introduces three different values for a parameter in one local search heuristic
method and a population-based iterative greedy (PBIG) method, and proposes details of
the branch-and-bound method. Section 4 presents tuning parameters in the iterative greedy
algorithm. Section 5 reports and analyses the related simulation results. The conclusions
and suggestions are summarized in Section 6.

2. Problem Statement

In this section, the study under consideration is formally described. There is a set
J of n jobs {J1, J2, . . . , Jn} to be processed on a single-machine environment. The machine
can execute at most one job at a time, preemption is not allowed, and their ready times
are zero. Another assumption is that there are two scenarios of job parameters (due dates
and processing times) to capture the uncertainty of the two parameters discretely. As-
sume that t(v)j represents the processing time while d(v)j represents the due date of job

Jj for scenario v = 1, 2. Furthermore, for scenario v, let C(ν)
j (σ) represent the completion

time of job Jj, where σ is a job sequence (schedule). The tardiness of Jj is defined to be

T(υ)
j (σ) = max

{
0, C(ν)

j (σ)− d(v)j

}
, and the total tardiness for all n jobs is ∑ T(υ)

j (σ) for
scenario v. Without considering the uncertainty of the parameters, the classic tardiness min-
imization scheduling problem in a single-machine environment, denoted by 1

∣∣∣∣∑ Tj(σ) ,
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has been shown to be an NP-hard problem. Accordingly, the considered problem can
be denoted by MIN

σ
MAX

ν
(1
∣∣∣∣∣∣∑ T(υ)

j (σ), t(υ)j ) and as an NP-hard problem ([18,19]) That

is, under the assumptions that t(v)j and d(v)j are uncertain and can be captured discretely
by scenario v = 1, 2, we are required to find an optimal robust schedule σ∗ such that

σ∗ ∈ arg min
σ∈all permutations

{
max
ν=1,2

∑n
j=1 Tν

j (σ)

}
. In other words, the aim of this study is to

seek a robust single-machine schedule incorporating scenario-dependent due dates and
scenario-dependent processing times in which the tardiness measurement for the worst
scenario can be minimized (optimal).

3. Heuristics and Branch-and-Bound Method

In this section, we derive some properties and a lower bound to use in the branch-
and-bound method, develop three different values for a parameter in one local search
heuristic method, and provide a population-based iterative greedy (PBIG) algorithm.

3.1. Properties

In this section, nine properties and one lower bound will be built with the pur-
pose of aiding the search for optimal robust solutions quickly in a branch-and-bound
method ([20–22]). Let σ1 = (δ, i, j, δ′) and σ2 = (δ, j, i, δ′) present two full schedules,
where δ and δ′ denote two partial sequences. To conclude that σ1 dominates σ2, the
following suffices:

maxv=1,2

{
T(v)

i (σ1) + T(v)
j (σ1)

}
< maxv=1,2

{
T(v)

j (σ2) + T(v)
i (σ2)

}
,

and
C(v)

j (σ1) ≤ C(v)
i (σ2), v = 1, 2.

In addition, for scenario ν, let s(υ) denote the starting time of job i and the starting
time of job j in the subsequence δ, of σ1 and σ2. The details for proving Properties 2–9 are
similar to those of Property 1; thus, only the proof for Property 1 is given here.

Property 1. If s(1) + t(1)i + t(1)j < d(1)j , s(2) + t(2)i + t(2)j < min
{

d(2)j , d(2)i

}
, and s(1) + t(1)i <

d(1)i < s(1) + t(1)i + t(1)j , then σ1 dominates σ2.

Proof. In the following, we compute the total tardiness of sequence σ1 and sequence σ2.
The desired results are obtained.

By the definition of tardiness, for the sequence σ1, the following are easily seen:

T(1)
i (σ1) = max

{
0, C(1)

i (σ1)− d(1)i

}
= max

{
0,
(

s(1) + t(1)i

)
− d(1)i

}
,

T(1)
j (σ1) = max

{
0, C(1)

j (σ1)− d(1)j

}
= max

{
0,
(

s(1) + t(1)i + t(1)j

)
− d(1)j

}
.

Now, the given conditions s(1) + t(1)i < d(1)i and s(1) + t(1)i + t(1)j < d(1)j imply that

T(1)
i (σ1) = 0 and T(1)

j (σ1) = 0, respectively. (1)

T(2)
i (σ1) = max

{
0, C(2)

i (σ1)− d(2)i

}
= max

{
0,
(

s(2) + t(2)i

)
− d(2)i

}
,
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T(2)
j (σ1) = max

{
0, C(2)

j (σ1)− d(2)j

}
= max

{
0,
(

s(2) + t(2)i + t(2)j

)
− d(2)j

}
. From the

given condition s(2) + t(2)i + t(2)j < min
{

d(2)i , d(2)j

}
, then

T(2)
i (σ1) = 0 = T(2)

j (σ1). (2)

Similarly, for the sequence σ2, the given condition s(1) + t(1)i + t(1)j < d(1)j implies that

T(1)
j (σ2) = max

{
0, C(1)

j (σ2)− d(1)j

}
= max

{
0,
(

s(1) + t(1)j

)
− d(1)j

}
= 0. (3)

The given condition d(1)i < s(1) + t(1)i + t(1)j implies that

T(1)
i (σ2) = max

{
C(1)

i (σ2)− d(1)i , 0
}
= max

{(
s(1) + t(1)j + t(1)i

)
− d(1)i , 0

}
=
[
s(1) + t(1)i + t(1)j − d(1)i

]
> 0. (4)

Thus, combining Equations (1) through (4), the desired inequality is the following:

maxv=1,2

{
T(v)

i (σ1) + T(v)
j (σ1)

}
= 0 < maxv=1,2

{
T(v)

j (σ2) + T(v)
i (σ2)

}
=
[
s(1) + t(1)i + t(1)j − d(1)i

]
.

�

Property 2. If d(2)j > s(2) + t(2)i + t(2)j , s(1) + t(1)i + t(1)j < min
{

d(1)j , d(1)i

}
, and s(2) + t(2)i +

t(2)j > d(2)i > s(2) + t(2)i , then σ1 dominates σ2.

Property 3. If s(2)+ t(2)i + t(2)j < min
{

d(2)j , d(2)i

}
, d(1)i <s(1)+ t(1)i , and s(1)+ t(1)i + t(1)j < d(1)j ,

then σ1 dominates σ2.

Property 4. If d(2)i <s(2)+ t(2)i , s(1)+ t(1)i + t(1)j < min
{

d(1)j , d(1)i

}
, and s(2)+ t(2)i + t(2)j < d(2)j ,

then σ1 dominates σ2.

Property 5. If d(1)i <d(1)j , t(1)i < t(1)j , and s(2) + t(2)i + t(2)j < min
{

d(2)j , d(2)i

}
, then σ1

dominates σ2.

Property 6. If d(2)i <d(2)j , s(1) + t(1)i + t(1)j < min
{

d(1)j , d(1)i

}
, and t(2)i < t(2)j , then σ1

dominates σ2.

Property 7. If t(2)i < t(2)j , s(1) + t(1)j < d(1)j , d(2)i < s(2) + t(2)i , d(2)j < s(2) + t(2)j , and

s(1) + t(1)i < d(1)i <s(1) + t(1)j , then σ1 dominates σ2.

Property 8. If t(1)i < t(1)j , s(2) + t(2)j < d(2)j , d(1)i < s(1) + t(1)i , d(1)j < s(1) + t(1)j , and s(2) +

t(2)i < d(2)i <s(2) + t(2)j , then σ1 dominates σ2.

Property 9. If ∀s = 1, 2, t(s)i < t(s)j , and d(s)i < d(s)j , then σ1 dominates σ2.

3.2. A Lower Bound

Continuing the results of the dominance rules, the searching power of the B&B method
is closely related to a lower bound to cut branching nodes. Next, we will introduce a simple
lower bound for use in the B&B method. Let σ =

{
J[1], J[2], · · · , J[k], US

}
be a schedule
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where the US denotes q (=n-k) unscheduled jobs under scenario v = 1, 2. Following the
definition of the completion times in US, we have the following:

C(s)
[k+l](US) = s(s) + ∑l

i=1 t(s)
[k+i], l = 1, . . . , q; s = 1, 2.

The total tardiness of an active node can be obtained for the unscheduled k+l jobs
under scenario v = 1, 2 and is the following:

T(v)
[k+l](US) = max

{
s(v) + ∑l

i=1 t(v)
(k+i) − d(v)

(k+l), 0
}

, l = 1, . . . , q; v = 1, 2.

where t(v)
(k+1) ≤ . . . ≤ t(v)

(k+q) are increasing sequences of t(v)k+1, . . . , t(v)k+q and d(v)
(k+1) ≤ . . . ≤

d(v)
(k+q) are increasing sequences of d(1)k+1, . . . , d(1)k+q, v = 1, 2. Let AS =

{
J[1], J[2], · · · , J[k]

}
;

thus, we obtain the following lower bound:

Lower bound = (∑k
i=1 T(1)

[i] (AS) + ∑q
i=k+1 T(1)

[i] (US) + ∑k
i=1 T(2)

[i] (AS) + ∑q
i=k+1 T(2)

[i] (US)
)

/2.

3.3. Three Different Values for a Parameter in One Local Search Heuristic

It is well known that the total tardiness single-machine problem can be optimized
by the earliest due dates (EDD) first (see [17]). Applying the EDD rule to trade-off the
scenario-dependent due dates (as in Step 1 in the Hmdd025 heuristic) for the optimal robust
job sequences for the considered problem, we adopt three different values for a parameter
in one local search heuristic. They are based on the weighted due dates from different
scenarios and are as follows:

Hmdd025 heuristic (denoted by HA_025):
Step 0: Input α = 0.25;

Step 1: Compute mdd(i) = αd(1)i + (1− α)d(2)i , i = 1, 2, . . . , n;
Step 2: Find a schedule by the smallest to the largest values of {mdd(i), i = 1, 2, . . . , n},
say σ0;
Step 3: Improve σ0 by a pairwise interchange method;
Step 4: Output the final schedule and its corresponding total tardiness.

Hmdd050 heuristic (denoted by HA_050):
Step 0: Input α = 0.50;
Steps 1 to 4 are similar to Steps 1 to 4 of the Hmdd025 heuristic.

Hmdd075 heuristic (denoted by HA_075):
Step 0: Input α = 0.75;
Steps 1 to 4 are similar to Steps 1 to 4 of the Hmdd025 heuristic.

3.4. A Population-Based Iterated Greedy Algorithm

The classic counterpart model with no scenario-dependent parameters is shown to be
an NP-hard problem [17]. This implies that our problem is also an NP-hard problem [18].
Thus, to solve this difficult problem, one must use a heuristic or metaheuristic. The [23,24]
successfully introduced the iterative greedy (IG) algorithm to address discrete optimization
problems. It has been extensively adopted by researchers as a result of its ease of execution
and has been acknowledged to yield high-quality solutions [25,26]. In light of the above
successful cases, we then employ a population-based IG algorithm, which can avoid falling
into local extremum quickly and is capable of increasing the diversity of the solutions [27]
in comparison to the original IG, which employs one single solution.

When performing the procedures of the population-based iterated greedy population-
based (PBIG) algorithm, we create a group of m initial schedules as the current candidate
solutions. For each candidate population, we perform several cycles, including the destruc-



Mathematics 2022, 10, 2176 6 of 17

tion and construction steps, for a given number of iterations (ITRN). In the destruction
stage, we randomly remove a proportion of d/n jobs from the current schedule σ to create a
partial schedule σn−d with a proportion of 1-d/n jobs. Let σd be the schedule with a group
of p/n-proportion jobs based on the sequence shown in σ. Then, assign each job in σd to
reinsert in all possible subsequences in σn−d by applying the Nawaz–Enscore–Ham (NEH)
method and find the next seed with the minimum of maximum total tardiness until no
job is found in σp. In addition, following a design similar to that of [24], the temperature

formula (
[
T×∑2

v=1 ∑n
j=1 t(v)j

]
/(n× 2× 100)) as an acceptance probability is applied to

justify whether another newly created schedule can be rejected or not, where T is a control
number with 0 < T < 1. The details of the PBIG are summarized as following Algorithm 1:

Algorithm 1: Population-based iterated greedy (PBIG) algorithm.

Step 0: Input m, T, ITRN, and No_d(=d).
Step 1: Create m initial sequences σ1, σ2, . . . , σm and find their values of the objective function,
i.e., obj(σ1), obj(σ2), . . . , obj(σm).

Set σ∗∗ as the best sequence and its obj(σ∗∗).
Step 2: For each σi, i = 1, 2, . . . , m

Do i = 1, m
Set σ = σi and its obj(σ)
Do k = 1, ITRN

Divide σ into partial sequences σn−d and σd, where d is an integer.
Move each job in σd to insert in all possible in σn−d by the NEH
method to form a full best sequence σ∗ and compute its obj(σ∗).

Acceptance rule:
If obj(σ∗) < obj(σ), then

Replace σ by σ∗;
If obj(σ) < obj(σ∗∗),then

Replace σ∗∗ by σ;
End if;

Else
Ifr≤ exp(obj(σ)- obj(σ∗))/T), then
Replace σ by σ∗;/Note : 0 < r < 1 is a random number./

End if
End if
End do

End do
Output the final best sequence σ∗∗ and its obj(σ∗∗).

3.5. A Branch-and-Bound Method

The B&B method is well known and is widely used to search for optimal solutions
in combinational optimization models [20–22]. Therefore, the B&B method was adopted
to solve the problem being studied. The basic elements of B&B include an upper bound,
dominance properties, and a lower bound. We considered the depth-first method to
perform the B&B. The steps are provided as follows:

00: Input Job processing times {t(v)j , i = 1, 2, . . . , n, v = 1, 2} and due dates {d(v)j ,
i = 1, 2, . . . , n, v = 1, 2}; objective function: Minimize max

ν=1,2
∑n

j=1 Tν
j (σ). The best

solution is obtained from Sections 3.3 and 3.4 as an upper bound.
01: Step 1 Start to branch from level 0 by appending each job to create a new node.
02: Step 2 For each new node:

(i) Compute its lower bound based on the procedure of Section 3.2.
(ii) Evaluate if this lower bound is larger than the incumbent upper bound.
(iii) If yes, cut this node and all nodes below it in the branching tree.

03: Step 3 Apply properties in Section 3.1 to delete the unwanted nodes from the
branching tree.
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04: Step 4 Determine whether the node is full or not;

(i) If yes, find its objective function as max
ν=1,2

∑n
j=1 Tν

j (σ), and if

max
ν=1,2

∑n
j=1 Tν

j (σ) is smaller than the upper bound, replace the upper

bound by max
ν=1,2

∑n
j=1 Tν

j (σ).

(ii) If not, branch from the node with the minimum lower bound to create
a new node.

05 Step 5 Repeat Steps 2, 3, and 4 until all nodes have been explored.
06: Output The optimal solution l schedule as σ.

4. Tuning Parameters of the PBIG

The vector (No_d, T, No_repeat, Isize) represents the number of removed jobs, the
temperature, the frequency of repetitions, and the number of population groups used
in the PBIG method. These four parameters must be tuned before we execute PBIG to
solve the problem instances. Following a design the same or similar to that of [16,21,22],
we generated one hundred test instances for the small-size problem n = 10 and the large-size
problem n = 60. The maximum error percentage (max_EP) is defined as
max_EP = max

{
Hi−Oi

Oi
, i = 1, 2, . . . , 100

}
for the n = 10 case, where Oi represents the

optimal values received by running the B&B method and Hi records the solution obtained
by each heuristic. For the n = 60 case, the maximum relative deviation (max_TD) is defined
as max_TD = max

{
Hi−besti

besti
, i = 1, 2, . . . , 100

}
, where Hi is the value of the objective func-

tion found from each algorithm and besti is the smallest objective function between the
four methods. It is noteworthy that adopting the maximum error percentage (max_EP) or
the maximum relative deviation (max_TD) to explore the values of the parameters of the
PBIG can obtain good and stable quality solutions.

4.1. Tuning Parameters for the Small-Size Problem

For testing No_d, fixed No_repeat = 50, T = 0.5, and Isize = 2, the test range of No_d
was from 1 to 9 and each increment was 1 unit. The maximum error percentages (max_EP)
are shown in Figure 1. Figure 1 shows that there is a lowest point when No_d = 4, and
max_EP becomes larger as No_d increases after 4; thus, the appropriate fit of No_d is 4.

Figure 1. The max_EP plot as No_d varies.
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To tune the parameter T (temperature), the parameter No_repeat was fixed at 50 times,
No_d at 4, Isize at 2, and the test range of T was from 0.1 to 0.9. Each time, the increment
was 0.1 units. The maximum error percentage is shown in Figure 2. Figure 2 shows that
max_EP decreases with decreasing temperature but there is some undulation when T is
approximately 0.6. Then, as T > 0.6, max_EP gradually stabilizes and the lowest point is
when T is 0.8. Thus, the most suitable value of T is 0.8.

Figure 2. The behavior of max_EP as T changes.

For testing No_repeat, No_d = 4, T = 0.8, Isize = 2, the test range of No_repeat was
from 5 to 100, and each increment was 5 units. The max_EP is shown in Figure 3. As shown
in Figure 3, as No_repeat increases, max_EP decreases significantly and approaches a stable
state. However, the lowest maximum error percentage is at No_repeat = 90; thus, we set
No_repeat to 90.

Figure 3. The behaviour of max_EPs as No_repeat changes.
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Finally, the parameter Isize (the number of population groups) was calibrated; the
parameter No_d was fixed at 4, T was fixed at 0.8, and No_repeat (the number of repetitions)
was fixed at 90. The test range of Isize was from 2 to 10, and each increment was 1 unit.
The max_EP is shown in Figure 4. As seen from Figure 4, the parameter Isize is relatively
unstable, and the lowest value of max_EP is when Isize is 7; thus, Isize is chosen to be 7.

Figure 4. The max_EP plot as Isize varies.

Based on the tuning results, the parameters we selected for the small number of jobs
were (4, 0.8, 90, 7) for (No_d, T, No_repeat, Isize).

4.2. Tuning Parameters for the Large-Size Problem

The parameters calibrated in the small-size problem were used as the basis of the
tuning parameters for the large-size problem, i.e., No_repeat was 540 (= 90 ∗ 6) times,
T was 0.8, and Isize was 7. The test range of No_d was from 1 to 30, and each time, the
increment was 1 unit. The maximum value (across 100 instances) of the objective function
(total tardiness) is shown in Figure 5. Figure 5 shows that as No_d increases, the maximum
value of the total tardiness, coded as max_TD, will increase. Because the errors are to be
controlled within a predetermined 3%, the point No_d = 9, at which an approximately
3% increase in the max_TD is obtained from the lowest point (No_d at 5), was considered.
Therefore, a No_d value of 9 is selected as the best fit.

Figure 5. The plot of max_TD as No_d varies.



Mathematics 2022, 10, 2176 10 of 17

For testing No_repeat, the parameter No_d was fixed at 9, T at 0.8, and Isize at 7. The
test range of No_repeat was from 100 to 950, and each increment was 50 units. The max_TD
is shown in Figure 6. As shown in Figure 6, as No_repeat changes, max_TD reaches the
lowest point for No_repeat at 500; thus, the best fit of No_repeat is 500.

Figure 6. The plot of max_TD as No_repeat varies.

To test the parameter T (temperature), the parameter No_d was fixed at 9, No_repeat
at 500, and Isize at 7. The value of T was increased by 0.1 units each time, ranging from 0.1
to 0.9. The max_TD is shown in Figure 7. Figure 7 shows that the max_TD increases as T
increases from 0.3 to 0.5, and after 0.5 it drops rapidly to T = 0.8; thus, the parameter T is
set to 0.8.

Figure 7. Plot of max_TD as T varies.
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Finally, to tune the parameter Isize, the parameter No_d was fixed at 9, No_repeat
at 500, and T at 0.8. The test range of Isize was from 1 to 50, and each increment was
1 unit. The max_TD values are shown in Figure 8. Figure 8 shows that Isize oscillates
after 5, and that the oscillation range is set to be predetermined within 3% of the lowest
maximum objective function, which is at Isize = 17; therefore, Isize at 7 is the best fit. Based
on the tuning results, the preferred values of the parameters (No_d, No_repeat, T, Isize) are
(9, 500, 0.8, 17) for a large number of jobs.

Figure 8. Plot of max_TD as Isize varies.

5. Computational Experiments and Analysis of Results

This section performs several problem instance tests to check the computational
behaviors of the proposed heuristics and metaheuristics. The processing times, integers
t(1)j and t(2)j , were generated independently from two different uniform distributions

(i.e., U [1, 100] and U [1, 200], respectively, see [16]), while the due dates, d(v)j , υ = 1, 2,

are integers generated from a uniform distribution TPT(ν)·U
[
1− τ − ρ

2 , 1− τ + ρ
2
]
, where

TPT(ν) = ∑n
j=1 t(ν)j , ρ and τ represent the range of the due dates and the tardiness factor

(see [28]), respectively. The values of τ were designed as 0.25 and 0.5, and the values of
ρ were 0.25, 0.5, and 0.75. For each combination of τ and ρ, 100 instances were generated as
the test bank. In addition, as the number of explored nodes exceeds 108, the branch-and-
bound method is terminated and advances to the next set of instances. To determine the
behavior of the B&B method, three local heuristics, and the PBIG algorithm, the experiments
were examined for job sizes n = 8, 10, and 12 for the small-size problem and n = 60, 80, and
100 for the large-size problem. In total, 1800 problem instances were generated to solve the
proposed problem. The four proposed algorithms were coded in FORTRAN 90. They were
executed on a 16 GB RAM, 3.60 GHz, Intel(R) Core™ i7-4790 personal computer (64 bits)
with Windows 7.

We then presented the results obtained from the designed simulation experiments
to determine the efficiency of the proposed B&B method, three local heuristics, and the
PBIG method. Figure 9 and Tables 1–6 report the experimental results for the small-size
case, while Figures 10 and 11 and Tables 4–7 summarize the experimental results for the
large-size case.
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Figure 9. The distribution of the AEP.

Figure 10. Boxplot of RPDs for heuristics and the PBIG algorithm.

Figure 11. CPU times of heuristics and the algorithm for large n.
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The Ois represent the optimal values received by running the B&B method, and the
His record the solution obtained by each heuristic (or algorithm) for the test instances for
the small-size case. To evaluate the performances of the three heuristics and the PBIG
algorithm, the average error percentage (AEP =100[mean(H_i−O_i)/O_i]%) is used.

Table 1. The behavior of the B&B.

Node CPU_Time

n τ ρ Mean Max Mean Max

8 0.25 0.25 1364.95 8041 0.00 0.03
0.5 924.09 5872 0.00 0.03

0.75 649.00 3344 0.00 0.02
0.5 0.25 2169.63 12,975 0.01 0.03

0.5 1441.85 11,199 0.00 0.03
0.75 850.82 5707 0.00 0.02

10 0.25 0.25 18,383.94 155,332 0.08 0.58
0.5 11,381.24 89,998 0.05 0.37

0.75 6970.97 44,421 0.03 0.19
0.5 0.25 47,294.00 634,898 0.18 2.25

0.5 29,192.77 673,842 0.12 2.42
0.75 25,154.69 717,700 0.10 2.59

12 0.25 0.25 319,906.05 4,022,178 1.91 22.11
0.5 181,384.58 1,733,253 1.35 13.63

0.75 77,810.74 603,931 0.63 4.62
0.5 0.25 2,155,579.66 44,957,346 13.91 265.44

0.5 517,837.47 19,204,302 3.74 125.30
0.75 108,610.00 2,626,869 1.00 19.44

mean 194,828.14 4,195,067 1.28 25.51

Table 1 presents the capability of the B&B method. All tested problem instances could
be solved before 108 nodes. The computation CPU times, including the average execution
times and maximum execution times (in seconds), increased dramatically as n increased
(Columns 6 and 7, Table 1). As n increased, the mean and maximum nodes also increased
(Columns 4 and 5, Table 1). Table 2 reports the results of CPU times and node numbers for
the small-size n, τ, and ρ.

Table 2. Summary of the results of the B&B method.

Node CPU_Time

Mean Max Mean Max

n 8 1233.390 7856.333 0.002 0.027
10 23,062.935 386,031.833 0.093 1.400
12 560,188.083 12,191,313.167 3.757 75.090

τ 0.25 68,752.840 740,707.778 0.450 4.620
0.5 320,903.432 7,649,426.444 2.118 46.391

ρ 0.25 424,116.372 8,298,461.667 2.682 48.407
0.5 123,693.667 3,619,744.333 0.877 23.630

0.75 36,674.370 666,995.333 0.293 4.480

Regarding the behaviors of the three heuristics and the PBIG, their AEPs are displayed
in Table 3. All AEPs of the three heuristics and the PBIG algorithm increased slightly as
n increased. Overall, the PBIG algorithm, with a mean AEP of less than 0.14% for n = 8,
10, and 12, performed the best. Figure 9 indicates the AEPs (output results) of the three
heuristics and the PBIG algorithm. Since the computer execution times are all less than
0.1 s, they are not reported here.
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Table 3. The AEPs of the heuristics and the PBIG algorithm.

HA_025 HA_050 HA_075 PBIG

n 8 10.301 8.121 9.948 0.004
10 14.283 9.408 12.235 0.027
12 17.045 16.276 21.333 0.130

τ 0.25 18.925 13.966 19.432 0.011
0.5 8.827 8.570 9.578 0.096

ρ 0.25 7.850 7.623 7.642 0.020
0.5 10.806 8.890 12.193 0.046
0.75 22.972 17.291 23.681 0.094

For the behaviors of the proposed four algorithms, we performed an analysis of
variance (ANOVA) on the AEPs. As shown in Table 4 (Columns 2 and 3), the Kolmogorov–
Smirnov test was significant, with a p value < 0.01. This implies that the samples of
AEPs do not follow the normal distribution. Therefore, based on the ranks of AEPs, the
Kruskal–Wallis test was utilized to determine if the populations of AEPs came from the
same population or not. Column 2 of Table 5 confirmed that the proposed three heuristics
and the PBIG algorithm were indeed significantly different, with a p value < 0.001.

Table 4. Normality Tests for small n and large n.

Small n Large n

Method of Normality Test Statistic p Value Statistic p Value

Shapiro–Wilk normality test 0.7957 <0.0001 0.6225 <0.0001
Kolmogorov–Smirnov test 0.1753 <0.0100 0.1805 <0.0100
Cramer–von Mises normality test 0.5897 <0.0050 0.6418 <0.0050
Anderson–Darling normality test 3.5444 <0.0050 4.2936 <0.0050

Table 5. Kruskal–Wallis Test.

Kruskal–Wallis Test

Small n Large n

Chi-square 40.8017 29.6735
DF 3 3
Pr > Chi-square <0.0001 <0.0001

In addition, heuristics HA_025, HA_050, HA_075, and the PBIG were further used to
conduct pairwise differences. The Dwass–Steel–Critchlow–Fligner (DSCF) procedure was
applied (see [29]). Table 6 confirms that the mean ranks of AEPs were grouped into two
subsets under the level of significance of 0.05. From Columns 3 and 4 of Table 6, the PBIG
(with the AEP of 0.005) was placed in a better behavior group, while HA_025 (with the
AEP of 0.014), HA_050 (with the AEP of 0.011), and HA_075 (with the AEP of 0.015) were
placed in a worse performance set.

Table 6. DSCF pairwise comparison.

Pairwise Comparison
DSCF

Small n Large n

Between Algorithms Statistic p Value Statistic p Value

HA_025 vs. HA_050 1.2976 0.7955 0.1790 0.9993
HA_025 vs. HA_075 0.4922 0.9855 2.3714 0.3359

HA_025 vs. PBIG 7.2880 <0.0001 5.2350 0.0012
HA_050 vs. HA_075 1.5213 0.7044 3.0426 0.1371

HA_050 vs. PBIG 7.2880 <0.0001 5.5035 0.0006
HA_075 vs. PBIG 7.2880 <0.0001 6.7563 <0.0001
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Regarding the test performance on the large-sized jobs, we tested the number of jobs
at n = 60, 80, and 100. For each combination of τ, ρ, and n, we generated one hundred
problem instances to evaluate the performances of the proposed methods. Overall, we
examined and tested 1800 random problem instances. The measurement is the relative
percent deviation (RPD), where RPD is defined as 100[mean(Hi − Besti)/Besti]%). It was
noted that Hi was the value of the objective function found in each algorithm, and Besti
was the smallest objective function between the four methods. All of the average RPDs of
the four algorithms are recorded in Table 7. As shown in Table 7, PBIG provided the lowest
value of RPDs, no matter the value of n. Figure 10 displays the boxplots of the RPDs for the
three heuristics and the PBIG algorithm.

Furthermore, using ANOVA to determine whether the RPDs follow a normal distribu-
tion or not, Table 4 (Columns 4 and 5) indicates that the normality assumption is not met,
since the p value < 0.01. Therefore, Column 3 of Table 5 indicates that a Kruskal–Wallis test,
which is based on ranks of RPDs, clearly states that “the RPD samples belong to different
distributions” when the p value < 0.001. Thus, the DSCF procedure was adopted to compare
the pairwise differences between the four methods. Columns 4 and 5 of Table 6 report that
the PBIG algorithm was placed in a better set; meanwhile, the other three heuristics belong
to another set for a large number of job cases. Furthermore, the boxplots in Figure 10 show
that the RPDs of the PBIG had a smaller range than those of the three heuristics. This
implies that the PBIG could find a stable and accurate solution when compared to the other
three heuristic methods in the large-size problem cases. For the computational time or CPU
times (in seconds), Figure 11 displays the boxplots of the times for the heuristics and PBIG
algorithm. Three heuristics take less than one second, while PBIG takes less than 15 s.

Table 7. The RPD values of the four algorithms.

HA_025 HA_050 HA_075 PBIG

n 60 214.519 72.929 47.249 2.521
80 69.519 33.830 50.049 1.773
100 71.282 35.274 52.304 2.665

τ 0.25 232.728 90.140 90.587 3.387
0.5 4.152 4.549 9.148 1.253

ρ 0.25 4.678 4.578 6.358 1.855
0.5 30.137 11.730 27.567 2.163
0.75 320.506 125.724 115.677 2.941

6. Conclusions

In this article, we introduced scenario-dependent due dates and scenario-dependent
processing times into a single-machine environment. We built one lower bound and eight
dominances in the B&B method for finding a robust optimal schedule for a small number of
jobs (up to n = 12). The reason for this was that the proposed properties and lower bound
in the B&B method were not strong. Three different values for a parameter in one local
search heuristic were proposed. Furthermore, a PBIG algorithm was provided to tackle
this problem for large-sized job cases. We also used statistical methods to evaluate and
examine the performances of all proposed algorithms. Undoubtedly, to search the robust
job sequences, the PBIG algorithm performs the best not only in optimality but also in
reliability (less dispersion), although the PBIG requires more CPU time.

Possible future studies include (1) the study of other scheduling problem characteristics
such as job ready times, which may also incur uncertain features. (2) One future study may
consider a scenario-dependent single-machine model with multiple objective functions.
(3) This paper only addressed two scenarios, and we may extend it to more than two
scenarios. One shortcoming of PBIG is that we use max_EP or max_TD to find the values
of parameters, instead of AEP. Therefore, one more future study may consider other
population-based genetic algorithms for this model.
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