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Supplementary Materials: Thermodynamic Modelling of
Transcriptional Control: A Sensitivity Analysis
Manuel Cambón and Óscar Sánchez

This file collects all the model derivations and mathematical proofs justifying the
results stated in the work “Thermodynamic Modelling of Transcriptional Control: A
Sensitive Analysis”.

Bibliographic references in this document are independent from those of the main
manuscript.

S1. Model Derivation

In this section, we will deduce brand-new expressions of the BEWARE operator. We
will work in a general framework, where we will assume that the gen expression is con-
trolled by a general number of cooperative transcription factors (TFs). In the literature, both
competition and cooperativity have been determinant factors that tend to convolute greatly
the mathematical expressions, even in the most simple case of two transcription factors.
Hence, in order to get to the right expression of the BEWARE operator, we first need to
declare briefly which are the model assumptions and, from there, how the competition
and cooperativity are defined. Let us consider a promoter of a gene p controlled transcrip-
tionally by the TFs T = {T1, ..., TM} by binding competitively to a module of n enhancers.
We consider that some of the TFs will increase the production rates of the protein P while
the rest try to repress the same rates. Thus, T is divided into two different families, Ma
activators TA = {T1, ..., TMa} and Mr = M−Ma repressors TR = {TMa+1, ..., TM} such that
T = {TA, TR}. The goal of the statistical thermodynamic model is to describe the synthesis
rate of P in terms of the TFs concentrations and their activator/repressor rol, that is,

d[P]
dt

= BEWARE([T1], ..., [TM]) (S1)

where “BEWARE()” is the function specifying the dependence on the TFs, and is subjected
to the biochemical mechanisms involved in all these processes. Our aim in this section is to
show a methodology for deriving explicit simple analytical expressions for the BEWARE
operator by using thermodynamic modelling. Although it is out of our main goals, let
us remark that the right-hand side of model (S1) is usually accompanied with with a
degradation contribution, −β[P], β being a degradation rate [1].

As mentioned in the introductory section, in this work, we will distinguish between
models based on either recruitment or stimulated mechanisms assumed for the RNA
Polymerase (RNAP). In order to clarify the difference between these two models, we
enumerate in the next paragraphs the main assumptions that are used in order to develop
them. We also outline in Figure 1 in the main manuscript the biochemical mechanisms,
which are mainly related with affinity, cooperativity or the manner in which TFs control
transcriptional activity.

S1.1. Thermodynamic Description of Microscopic Configurations: Assumptions

H1) Separated time scales: The reactions driving transcriptional control are much more
faster than the changes in TF concentrations and the synthesis of the protein P. Thus,
TFs/RNAP binding in enhancers/promoter will be considered in thermodynamical
equilibrium given by the Law of Mass Action [2]. For instance, in chick embryo neural
tube Shh signalling, it has been pointed out that changes in Gli protein concentrations
take place at a timescale of days compared to mRNA variations in timescales of
minutes or hours [1,3].
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The binding of a TF Ti to one of the n free binding sites, B, can be interpreted as the
chemical reaction

Ti + B
k(1)+i−−⇀↽−−
k(1)−i

BTi,

where the Law of Mass Action establishes that the complex BTi has a concentration at
equilibrium given by

[BTi] =
k(1)+i

k(1)−i

[Ti][B] :=
[Ti]

K(1)
i

[B] .

In the notation proposed, K(1)
i = k(1)−i /k(1)+i is the dissociation constant of the reaction,

with units of concentration so that the quotient [Ti ]

K(1)
i

is dimensionless. The superscript

(1) stands for the dissociation constant of a reaction that takes place in the absence
of another TF previously bound in the enhancer module. The dissociation constants
quantify the affinity of the TFs for their binding sites, being more affine those TFs with
lower dissociation constants. The binding of a RNA polymerase in a free promoter
follows the same rule, whose concentration at equilibrium is

[BRNAP] =
k+RP
k−RP

[RNAP][B] :=
[RNAP]

KRP
[B] .

Please note that KRP does not need any superscript since we are working with bi-
ological modules that are controlled by n enhancers but only one promoter, hence
the maximum number of bound RNA polymerases is reduced to one. In Figure 1, in
the main manuscript,these admissible bounds are indicated by black doubled sided
arrows.

H2) TFs binding sites, B, are constituted by n identical sites that can be occupied competitively
by any TF. The basic rule of this competition is that the dissociation constant of the
free sites configuration does not depend on their position but might depend on other
existing bound TFs in the same module.

Let us suppose the reaction of the binding between a molecule Ti and a free enhancer
configuration B occurred. Then, if a second molecule Tj binds to this configuration,
we have

Tj + BTi

k(2)+j−−⇀↽−−
k(2)−j

BTiTj

with respective equilibrium concentration

[BTiTj] =
[Ti][Tj]

K(1)
i K(2)

j

[B]

where now the superscript (2) denotes the dissociation constant for a reaction of a
TF that binds the operator with already one TF in some other site. Let us note that
previous expression is independent of the enhancers occupied since we are considering
them identical. Note that the product could be also obtained by simply changing the
order of linkage of the TFs, i.e.,

Ti + BTj

k(2)+i−−⇀↽−−
k(2)−i

BTjTi

although the corresponding concentration could not be the same as we explain in the
next paragraph.
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In biological literature [4–7], it has been observed that, in this competition for the
enhancers, a well known mechanism could be involved, called cooperativity, that
assumes that one ligand supports the binding of others [8]. Thus, we will call non
cooperative to TFs all those proteins whose enhancer’s affinities are not modified
because of any previously bound TFs, that is, they verify K(2)

l = K(1)
l for all l = 1, ..., M.

If that is the case, it is plausible to assume the same relation for later bindings, that
is, K(m)

l = K(1)
l for m ≥ 2, and, as a consequence of this sequential independence, we

will denote the dissociation constant by Kl skipping the superscript. Then, if all the
TFs under consideration are non-cooperative, we easily deduce that the concentration
at equilibrium of a generic configuration with ji proteins of the Ti species is

[BT j1
1 ...T jM

M ] = [B]
M

∏
i=1

(
[Ti]

Ki

)ji
(S2)

independently of the sequential order of binding and of the specific positions occupied
for the TFs. Let us recall that, since n denotes the total number of free binding sites for

TFs, then
M
∑

i=1
ji ≤ n has to be verified. j0 = n−

M
∑

i=1
ji(≥ 0), subsequently, will denote

the number of free spaces in the configuration.
Cooperativity, or anti-cooperativity, occurs when the existence of another previously
bound protein, Ti, affects the affinity of the new binding protein Tj (cooperativity is
represented graphically by dotted arrows in Figure 1 in the main text. If the binding
process of a protein Tj is facilitated by another already bound Ti protein, TF-TF
cooperativity, this can be modelled by considering:

K(2)
j = K(1)

j /c being c > 1 .

Anti-cooperativity can also occur when the bound protein impedes the binding of the
protein Tj, which can also be modelled by the previous expression where c is now a
positive constant smaller than 1. Since the only difference between cooperativity and
anti-cooperativity is a threshold value for c, in the subsequent considerations about
modelling, we will refer to the constant c and not distinguish between both cases.
If cooperativity occurs in the presence of multiple TFs, it would be necessary to know
which TFs are affected by other TFs, since the equilibrium concentration will depend
on these relations. Regarding this question in the literature, several options have been
considered. Partial cooperativity [5] would occur when the existence of a specific TF,
Ti, modifies equally the affinity of any posterior transcription factor binding of the
same family, which is K(m)

i = K(1)
i /ci for m ≥ 2. Total cooperativity [7] would occur

when the presence of any bound TF, Ti, modifies the affinity of any posterior binding
in the same manner, i.e., K(m)

j = K(1)
j /c for m ≥ 2 and j = 1, ..., M. These relations

have been represented in Figure 1 in the main text with red dotted arrows. Then, by
direct adaptation of the previous considerations, we have that

[BT j1
1 ...T jM

M ] = [B]c

(
M
∑

i=1
ji−1

)
+

M

∏
i=1

(
[Ti]

Ki

)ji
(S3)

in the presence of total cooperativity while

[BT j1
1 ...T jM

M ] = [B]
M

∏
i=1

c(ji−1)+
i

(
[Ti]

Ki

)ji
(S4)

if partial cooperativity for TFs occurs. Here, (·)+ denotes the positive part function
needed because cooperativity is not present unless two or more cooperative TFs are
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present in the configuration. Subsequently, we will denote by {{T1, ..., TM}c} and
{{T1}c1 , ..., {TM}cM} the total and partial cooperativity, respectively. Let us observe
that this notation covers the case of non cooperativity since it would correspond to the
case {{T1, ..., TM}1} or equivalently {{T1}1, ..., {TM}1}. Since cooperativity has been
described to cause deep changes in transcriptional logic [9], in this work, we present
our results generalising both partial and total cases. The straightforward extension of
total-partial cooperativity concepts is to consider that total cooperativity can occur only
between some of the TFs, that is, between the elements of certain subsets of transcrip-
tion factors. We will refer to this as mixed cooperativity, {{T1}c1 , ..., {TN}cN}, where
Ti denotes each of the N disjoint subgroups of TFs cooperating with cooperativity
constant ci. By analogue arguments, we obtain that, for mixed cooperativity,

[BT j1
1 ...T jM

M ] = [B]

 N

∏
i=1

c

(
∑

h∈Ii

jh−1

)
+

i


[

M

∏
i=1

(
[Ti]

Ki

)ji
]

, (S5)

where Ii = {h; Th ∈ Ti} is the set of subindexes of the TFs belonging to Ti. Let us note
that this approach of mixed cooperativity is new and, as far as the authors know, it
has not been proposed in previous literature. As we will see in the next paragraphs,
this generalization will become very handy since we can deduce the expressions of
different cooperative cases from this description.

H3) The action of a bound TF is independent of the specific enhancer it is occupying, so the
transcriptional contribution of configurations with the same number of TFs bound at different
specific positions is the same. Since the TFs compete for free enhancers, and there is
not a predetermined binding order [10], multiple spatial configurations of occupied
operators are allowed. Thus, in general, there is not a unique spatial distribution for a
given configuration with a distribution of (j1, ..., jM) bound transcription factors and
j0 free sites. For instance, if we consider n = 3, M = 3 and j1 = j2 = j3 = 1, there
are six possible spatial distributions with the same elements (T1T2T3, T2T1T3, T1T3T2,
T2T3T1, T3T2T1, T3T2T1). In our description, spatial localisation of bound particles
is not relevant, so, for a concrete configuration (j1, ..., jM) and j0 free sites, we will
identify the n!

j0!
M
∏

i=1
ji !

spatial different plausible configurations.

Assumption H2) and H3) describe the possible configurations of TFs bound to the
binding sites. Let us observe that these assumptions not only imply the spatial but also
the sequential independence of the equilibrium concentrations. As mentioned in the
introductory section, our deduction separates now into two modelling versions: the re-
cruitment and the stimulated approaches [11,12]. Our next hypotheses describe the RNA
polymerases/promoter binding process in both versions.

HR4)Recruitment assumption: TFs work by bringing the transcriptional machinery by TFs/RNAP
(anti-)cooperativity [12,13]. In [6], the synergy between a TF and RNAP is interpreted in
terms of a “glue-like” interaction that would give rise to a modification of the RNA
polymerase binding affinity modelled analogously to a TFs/RNAP cooperativity:
each bound activator tries to pull the RNA polymerase in the promoter, modifying

its affinity constant with a factor
Ma
∏
i=1

aji
i , where we denote ai > 1 to the i-th activator

transcription intensity for i = 1, ..., Ma. On the other hand, in a symmetric manner, we
can model the effect of M−Ma repressors in terms of a “repulsive-like” interaction

by modifying the RNAP binding affinity with a factor
M
∏

i=Ma+1
rji

i , where ri < 1 is the

i-th repressor transcription intensity for i = Ma − 1, ..., M in this case. Then, in general,
the RNAP binding affinity will take the form
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KRP
M
∏
i=1

tji
i

,

with ti = ai > 1 ∀ i = 1, ..., Ma and ti = ri < 1 ∀ i = Ma + 1, ..., M. These TFs/RNAP
cooperative type interactions are indicated by a blue dotted arrow in Figure 1 in
the main text. Please note that this description is in concordance with the affinity
definition: If the denominator is larger than one, then the RNA polymerase will be
more affine. Since the denominator depends on the number of transcription factors
and their activation/repression intensities, we are promoting or impeding the RNA
polymerase cleavage, hence promoting or impeding the transcription itself.

HS4)Stimulated assumption: Unaltered affinity of the RNA polymerase at the promoter, that is,
the binding affinity of the RNA polymerase to the promoter, KRP, is invariant with
respect to the bound TFs.

It is important to remark that only very few of the regulatory motifs shown in [6]
match with the generality presented in this work. More concretely, the cases of simple
repressor and activator coincide with the case of a single binding site, n = 1, and glue-like
interaction for activators and total repression, r = 0, for repressors. This comes from the
specific character of the binding sites considered in [6], i.e., one binding site can be only
occupied by a unique kind of molecule, which does not allow the competition we are
describing in this work.

Let us consider the multi-index~j = (j1, ..., jM) ∈ NM
0 with ji the number of bound TFs

of the i-th species in the set of enhancers, j0 the number of free sites and jP = 1 if there is a
bound RNA polymerase and jP = 0, otherwise. In summary, we have that all the possible
ways of obtaining an equilibrium concentration with (~j, jP) TFs-RNAP bound is given by
the microstates

Z(n)(~j, jP = 1; C) = C(C) n!
M
∏
i=0

ji!
[B]
(
[RNAP]

KRP

) M

∏
i=1

(
ti[Ti]

Ki

)ji
, (S6)

Z(n)(~j, jP = 0; C) = C(C) n!
M
∏
i=0

ji!
[B]

M

∏
i=1

(
[Ti]

Ki

)ji
,

if the recruitment approach, HR4), is assumed and

Z(n)(~j, jP; C) = C(C) n!
M
∏
i=0

ji!
[B]
(
[RNAP]

KRP

)jP M

∏
i=1

(
[Ti]

Ki

)ji
(S7)

when stimulated assumption HS4) is considered. In both cases, the variable C describes the
relation of cooperativity, if it exists, between the TFs. More concretely, by using (S3), (S4)
and (S5), and the cooperativity function C takes the value

C(C = {T1, ..., TM}c) = c

(
M
∑

i=1
ji−1

)
+ , (S8)

when total cooperativity holds,

C(C = {{T1}c1 , ..., {TM}cM}) =
M

∏
i=1

c(ji−1)+
i , (S9)
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if partial cooperativity is verified, and finally

C(C = {{T1}c1 , ..., {TN}cN}) =
N

∏
i=1

c

(
∑

h∈Ii

jh−1

)
+

i (S10)

when mixed cooperativity occurs. Let us observe that definitions (S6)-(S7) are absolutely
consistent with the usual convention 0j = 0 when j > 0 because, in the absence of certain
binding particles, it is impossible to obtain any configuration with those kinds of particles,
and 0! = b0 = 1 with b ≥ 0 since configurations with no bound particles of a certain type
are independent of that substance concentration.

S1.2. Configuration Probability

Now, the thermodynamic methodology proposes to describe from previous calcula-
tions a probability for any possible configuration [14,15]. Let us notice that the sample
space is determined by the multi-indices set

Ω =
{
(~j, jP) ;~j ∈ NM

0 , |~j| ≤ n , jP = 0, 1
}

,

where the constraint on |~j| =
M
∑

i=1
ji ≤ n is due to the limit of capacity of the n enhancers

for accepting bound TFs. Now, using the description of all the possible configurations
in terms of the concentrations of TFs and RNA polymerase, we define the probability of
finding the module in a particular configuration of jP RNA polymerase and j1, ..., jM TFs
with cooperativity function C as

P(n)(~j, jP; C) = Z(n)(~j, jP; C)
∑

{~j′ ,j′P}∈Ω
Z(n)(~j′, j′P; C)

, (S11)

for all (~j, jP) ∈ Ω.
In the next subsections, these probabilities, corresponding to each microstate, will

be averaged (BEWARE operator) according to the recruitment/stimulated transcription
approaches.

S1.3. Recruitment BEWARE Operator

In the work of Shea et al [15], the BEWARE operator for the synthesis of a certain
protein depends on the total probability of finding RNA polymerase in the promoter (i.e.,
proportional to the marginal distribution in the number of TFs evaluated at jP = 1). This
constitutes a new assumption, denoted by HR5, that has been widely used assuming
recruitment assumption HR4 (see, for instance, [5,6]). We will denote by the recruitment
BEWARE operator the function

BEWAREr(~T, [RNAP]; C) = CB ∑
|~j|≤n

P(n)(~j, jP = 1; C)

where, in definition (S11), expression (S6) is assumed, and CB is a proportionality constant.
Let us note that CB could depend on the control exerted in other enhancer modules or
later stages of the whole genetic regulation process. Here, ~T denotes a vector collecting
the concentrations of all the TFs, that is, ~T = ([T1], ..., [TM]), and C can be any of the
cooperativity relations established in assumption (H2) whose contribution is determined
by (S8)-(S10). Splitting the denominator in two sums, depending on the existence of RNA
polymerase bound to the configuration, this expression can be easily rewritten in terms of
the regulation factor function Freg:

https://doi.org/10.3390/math10132169


Mathematics 2022, 10, 2169. https://doi.org/10.3390/math10132169 S7 of S38

BEWAREr(~T, [RNAP]; C) = CB

1 +
∑|~j|≤n Z(n)(~j,0;C)

∑|~j|≤n Z(n)(~j,1;C)

=
CB

1 + KRP
[RNAP]Freg(~T;C)

(S12)

where

Freg(~T; C) =

∑
|~j|≤n

C(C) n!
M
∏

i=0
ji !

M
∏
i=1

(
ti [Ti ]

Ki

)ji

∑
|~j|≤n

C(C) n!
M
∏

i=0
ji !

M
∏
i=1

(
[Ti ]
Ki

)ji
. (S13)

Let us mention that activators and repressors play symmetric roles, mathematically speak-
ing, since their activating/repressing nature is only reflected in the value of the parameter
ti, being bigger than 1 for activators and smaller than 1 for repressors.

S1.4. Stimulated BEWARE Operator

On the other hand, the stimulated transcription approach associates to any config-
uration with a bound RNA polymerase a transcription density [3,7,16]. We will call this
new assumption HS5. In this point, we are going to follow the proposal of [7], adapted
in later works [17,18], where activators and repressors have to be distinguished. Let us
consider that ~TA = ([T1], ..., [TMa ]) ∈ RMa , ~TR = ([TMa+1], ..., [TM]) ∈ RMr the activators
and repressors vectors, and ~jA = (j1, ..., jMa) ∈ ZMa

+ , ~jR = (jMa+1 , ..., jM) ∈ ZMr
+ the number

of bound activators/repressors of the i-th specie, such that M = Ma + Mr. Considering the
standard concatenation operator, we have that ~T = (~TA,~TR) ∈ RM and~j = (~jA,~jR) ∈ ZM

+ .
Furthermore, it is necessary to fix the basal and maximal/minimal transcription levels

definition:

i) rbas is a basal transcription rate one would expect from a completely empty configura-
tion with no stimulated transcription at all. If basal transcription is not assumed, then
rbas = 0.

ii) (ν
(n)
max + rbas): is the level of maximal transcriptional rate of the system, given by a

configuration filled with n of the most powerful activator. The dependence of ν
(n)
max

with respect to the total number of enhancers can be justified from the experiments
developed in [5] (see Figure 4), where it was observed that a diminishing in the number
of enhancers produces a reduction in the maximal expression levels.

iii) rbas r̃n
M, with r̃M < 1, the level of minimal transcriptional rate, that would correspond

to the configuration completely bound to the most powerful repressors, assumed to
be TM.

From these basic levels and the probabilities P(n), given by (S11) and (S7), the activa-
tion or repression levels of all the possible configurations are determined by the following
expressions:

(i) for states with RNAP but no bound activators, that is ji = 0 for any i = 1, . . . , Ma,

rbas

(
M

∏
i=Ma+1

r̃ji
i

)
P(n)(~j, jP = 1; C) ,

where r̃M ≤ r̃i < 1 is a constant that stands for the repression strength of the i-th
repressor.
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(ii) and, in the opposite case, that is states with some bound activators (|~jA| > 0 that is
ji > 0 for some i = 1, . . . , Ma )(

Ma

∏
i=1

ãji
i

)(
M

∏
i=Ma+1

r̃ji
i

)(
rbas + ν

(n)
max ẽj0+∑M

i=Ma+1 ji
)

P(n)(~j, jP = 1; C),

where ẽ < min{ãi; i = 1, . . . , Ma} is a constant of transcriptional efficiency propor-
tional to free or repressor occupied enhancers, and ãi ≤ 1 is a constant that stands
for the activation strength of the i-th activator, ãi = 1 being in the case of the most
powerful activator.

(iii) If we assume that the level of transcription of configurations with the same number of
activators and repressors should coincide independently of the total number of sites
in the configuration (n), this allows us to conclude a plausible expression for

ν
(n)
max =

ν
(1)
max

ẽn−1 (S14)

where ν
(1)
max is defined in terms of the maximal transcription when only one enhancer

is available.

The synthesis of the protein under consideration depends, therefore, on the addition of all
these transcriptional efficiencies of states with a bound RNAP, which, written in terms of
the common factors rbas and ν

(n)
max, can be expressed as

BEWAREs(~T, [RNAP]; C)

=
rbas

1 + KRP
[RNAP]

Basal(~T; C) + ν
(n)
max

1 + KRP
[RNAP]

Promoter(~T; C) (S15)

in terms of the Basal and Promoter functions

Basal(~T; C) =

∑
|~j|≤n

C(C) n!
M
∏

i=0
ji !

[
Ma
∏
i=1

(
ãi [Ti ]

Ki

)ji
][

M
∏

i=Ma+1

(
r̃i [Ti ]

Ki

)ji
]

∑
|~j|≤n

C(C) n!
M
∏

i=0
ji !

M
∏
i=1

(
[Ti ]
Ki

)ji
, (S16)

Promoter(~T; C) =

∑
|~j|≤n
|~jA |>0

C(C) n!
M
∏

i=0
ji !

ẽj0

[
Ma
∏
i=1

(
ãi [Ti ]

Ki

)ji
][

M
∏

i=Ma+1

(
r̃i ẽ[Ti ]

Ki

)ji
]

∑
|~j|≤n

C(C) n!
M
∏

i=0
ji !

M
∏
i=1

(
[Ti ]
Ki

)ji
. (S17)

Let us note that, in [7], the particular expression of these functionals for modelling the
transcriptional rates of two Shh target genes was deduced, by acting on an enhancer module
with n = 3 sites, where M = 3 TFs can bind, Ma = 2 of them being activators and Mr = 1
repressor. In that work, the theoretical expressions assume the same affinity for activators
and the repressor, and the activators have the same activation strength ã1 = ã2 = 1. Those
expressions also consider total cooperativity between TFs and the effects of RNAP, and its
affinity is involved in the constants rbas and ν

(n)
max.

Remark S1. A remarkable fact that can be pointed out from expressions(S12), (S13), (S15), (S16)
and (S17) is that all the BEWARE operators, independently of the biochemical mechanisms involved,
depend on the TF concentrations and their binding sites’ affinities, [Ti] and Ki, respectively, but
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always through the quotients [Ti]/Ki. Despite being a trivial observation, this will be the key
ingredient for the appearance of the elasticity when the variability of the activation/repression
thresholds is analysed in terms of affinity variations.

These two approaches focus on the transcription process, which is the first mechanism
involved in the genetic activity control. However, the whole process can be affected during
the posterior RNA managing and interpretation. These processes in this work are assumed
to be linear, and their effects are undercover in the value of the constants CB, rbas and ν

(n)
max

appearing in (S12) and (S15).

S1.5. Simplification of BEWARE Operators’ Expressions

One of the key points of this work is the fact that the regulation factor (S13), basal
(S16) and promoter (S17) functions can be explicitly computed giving rise to simple rational
and polynomical expressions whose analysis may contribute to the understanding of the
general biological process. These calculations exploit a classical strategy employed for
obtaining the derivation of the General Binding Equation more than a century ago [8]. For
instance, in [9], the authors take advantage of particular cases of these simple expressions
to deduce several transcription logics determined by the type of cooperativity between the
TFs in the framework of Hh target genes. We start by remarking that the regulation factor,
basal and promoter are rational functions where numerators and denominators correspond
to polynomial expressions that can be expressed using the next definition.

Definition S1. Let ~x = (x1, . . . , xM) ∈ RM, C any of the cooperativity relations established
in Subsections S1.1 (H2) and C(C) determined by (S8)–(S10). Then, we define the polynomial
function

S(n)
e (~x; C) = ∑

|~j|≤n

C(C) n!
M
∏
i=0

ji!
ej0

M

∏
i=1

xji
i , (S18)

where the multi-index~j ∈ NM
0 , |~j| = ∑M

i=1 ji and j0 = n− |~j|.

Remark S2. Let us recall the vectorial notation for activators and repressors’ concentrations ~TA =
([T1], ..., [TMa ]) ∈ RMa , ~TR = ([TMa+1], ..., [TM]) ∈ RMr , the whole set of TF concentrations
being ~T = (~TA,~TR) ∈ RM. In concordance with previous vectors, let us also consider~a ,~̃a ∈ RMa

be the vector of the activation intensities, ai ≥ 1 and ãi ≤ 1 , ∀i = 1, ..., Ma,~r ,~̃r ∈ RMr be the
vector of the repression intensities, ri , r̃i ≤ 1 ∀i = 1, ..., Mr, ~KA ∈ RMa be vector of the activators
binding affinities, and ~KR ∈ RMr be the vector of the repressor binding affinities. Then, (S13),
(S16), (S17) can be equivalently written as

Freg(~T; C) =
S(n)

1

((
~a ◦ ~TA/~KA,~r ◦ ~TR/~KR

)
; C
)

S(n)
1

((
~TA/~KA,~TR/~KR

)
; C
) , (S19)

Basal(~T; C) =
S(n)

1

((
~̃a ◦ ~TA/~KA,~̃r ◦ ~TR/~KR

)
; C
)

S(n)
1

((
~TA/~KA,~TR/~KR

)
; C
) , (S20)

Promoter(~T; C) =
S(n)

ẽ

((
~̃a ◦~TA/~KA, ẽ~̃r ◦ ~TR/~KR

)
; C
)

S(n)
1

((
~TA/~KA,~TR/~KR

)
; C
)

−
S(n)

ẽ

((
~0, ẽ~̃r ◦~TR/~KR

)
; C
)

S(n)
1

((
~TA/~KA,~TR/~KR

)
; C
) (S21)
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where ~x ◦ ~y and ~x/~y denote the Hadamard (pointwise) product and division operators. Let us
recall that the concatenation operator, (~x,~y), is used to express the main argument of the previous
expressions.

Our aim is to compute equivalent simplified expressions for (S18). In the case of
non-cooperativity, C(C) = 1, expression (S18) can be very easily computed,

S(n)
e ((x1, . . . , xM); {T1, . . . , Td}1) =

(
e +

M

∑
i=1

xi

)n
, (S22)

by direct application of the multinomial theorem. According to this result, we will adopt the
mathematical definition of (S18) for empty vectors, that is, when M = 0, as S(n)

e (·, ·) = en.
On the other hand, in the presence of cooperativity, the multinomial theorem can

not be applied so straightforwardly, and, in this case, the expression of (S18) is strictly
determined by the cooperativity relations (S8)-(S9). However, as we state in the following
proposition, we can use our definition of the general mixed cooperation (S10) and resume
all the possible cooperative cases in one general expression of the function S(n)

e .

Proposition S1. Let us assume C = {{T1}c1 , ..., {TN}cN} a general mixed cooperativity config-
uration, where Ij denotes the indices of the vector x of the N subgroups of TFs cooperating with
cooperativity constant cj. Then,

S(n)
e

(
(x1, . . . , xM);

{
{T1}c1 , ..., {TN}cN

})
= ∑
|~h|∞≤1
~h∈NN

0

e +
N

∑
j=1

hjcj ∑
i∈Ij

xi

n N

∏
j=1

(
1− 1

cj

)1−hj

(cj)
hj

(S23)

where the addition on the multi-index~h = (h1, . . . , hN) ∈ NN
0 considers all the possible combina-

tions where the components, hj, can only be 0 or 1, that is, |~h|∞ = maxj{hj} ≤ 1.

In order to cover in this Proposition all the possible cooperative configurations, we first
describe an iterative rule which will allow us to concrete the desired result for any mixed
cooperativity configuration, covering as particular cases total and partial cooperativity.

Lemma S1. Let us assume a general mixed cooperativity configuration C = {{T1}c1 , ..., {TN}cN},
where Ii denotes the indices of the vector x of the N subgroups of TFs cooperating with cooperativity
constant ci. Let us consider ~xi a vector collecting all the values xh with h ∈ Ii. Then,

i) the reordering of the values xh does not affect expression (S18), in particular,

S(n)
e

(
(x1, . . . , xM);

{
{T1}c1 , ..., {TN}cN

})
=S(n)

e

(
(~x1, . . . ,~xN);

{
{T1}c1 , ..., {TN}cN

})
.(S24)

ii) The value of S(n)
e evaluated on N cooperating subfamilies of TFs admits a decomposition as the

addition of two S(n)
e functions evaluated on N − 1 cooperative families, according to the next

iterative rule:

S(n)
e

(
(~x1, . . . ,~xN−1,~xN);

{
{T1}c1 , ..., {TN−1}cN−1 , {TN}cN

})
=

1
cN

S(n)
e

(
(~x1, . . . ,~xN−1, cN~xN);

{
{T1}c1 , ..., {TN−1}cN−1 , {TN}1

})
+

(
1− 1

cN

)
S(n)

e

(
(~x1, . . . ,~xN−1,~0);

{
{T1}c1 , ..., {TN−1}cN−1 , {TN}1

})
.

Proof. Assertion i) is obviously true since the value of S(n)
e depends multiplicatively on xi.
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In order to prove ii), let us reorder the vector of indexes ~j = (~j1, . . . ,~jN), ~jN =
(jα+1, . . . , jM) being the M − α TFs cooperating with cooperativity cN . By splitting the
addition in terms those terms where~jN is null and those where it is not, we can rewrite

S(n)
e

(
(~x1, . . . ,~xN);

{
{T1}c1 , ..., {TN}cN

})
=

1
cN

∑
|~j|≤n
|~jN |≥1

(
N−1

∏
i=1

c
(|~ji |−1)+
i

)
n!

M
∏
i=0

ji!
ej0

(
α

∏
i=1

xji
i

)(
M

∏
i=α+1

(cN xi)
ji

)

+ ∑
|~j|≤n
|~jN |=0

(
N−1

∏
i=1

c
(|~ji |−1)+
i

)
n!

M
∏
i=0

ji!
ej0

(
α

∏
i=1

xji
i

)
. (S25)

Then, adding and subtracting the term

1
cN

∑
|~j|≤n
|~jN |=0

(
N−1

∏
i=1

c
(|~ji |−1)+
i

)
n!

M
∏
i=0

ji!
ej0

(
α

∏
i=1

xji
i

)(
M

∏
i=α+1

(cN xi)
ji

)
,

in the previous expression, we obtain (S25)

S(n)
e

(
(~x1, . . . ,~xN);

{
{T1}c1 , ..., {TN}cN

})
=

1
cN

∑
|~j|≤n

(
N−1

∏
i=1

c
(|~ji |−1)+
i

)
n!

M
∏
i=0

ji!
ej0

(
α

∏
i=1

xji
i

)(
M

∏
i=α+1

(cN xi)
ji

)

+

(
1− 1

cN

)
∑
|~j|≤n
|~jN |=0

(
N−1

∏
i=1

c
(|~ji |−1)+
i

)
n!

α

∏
i=0

ji!
ej0

(
α

∏
i=1

xji
i

)

=
1

cN
S(n)

e

(
(~x1, . . . ,~xN−1, cN~xN);

{
{T1}c1 , ..., {TN−1}cN−1 , {TN}1

})
+

(
1− 1

cN

)
S(n)

e

(
(~x1, . . . ,~xN−1,~0);

{
{T1}c1 , ..., {TN−1}cN−1 , {TN}1

})
.

The previous iterative property allows us to face up to the proof of Proposition S1.

Proof of Proposition S1. The proof of the formula stated can be done by induction over
the number of cooperating subfamilies. As mentioned in the main text, expression (S23)
reduces to (S27) in the case of a single cooperating family, that is, N = 1. (S27) can be easily
deduced by applying S1 and taking into consideration (S22). Let us assume as inductive
hypothesis that (S23) is valid when there exists N − 1 cooperative subfamilies. Then, by
using twice Lemma S1, we can write:
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S(n)
e

(
(~x1, . . . ,~xN−1,~xN);

{
{T1}c1 , ..., {TN−1}cN−1 , {TN}cN

})
=

1
cN

S(n)
e

(
(~x1, . . . ,~xN−1, cN~xN);

{
{T1}c1 , ..., {TN−1}cN−1 , {TN}1

})
+

(
1− 1

cN

)
S(n)

e

(
(~x1, . . . ,~xN−1,~0);

{
{T1}c1 , ..., {TN−1}cN−1 , {TN}1

})

=
S(n)

e

(
(~x1, . . . ,~xN−2, cN−1~xN−1, cN~xN);

{
{T1}c1 , ..., {TN−2}cN−2 , {TN−1 ∪ TN}1

}})
cNcN−1

+

(
1− 1

cN−1

)S(n)
e

(
(~x1, . . . ,~xN−2,~0, cN~xN);

{
{T1}c1 , ..., {TN−2}cN−2 , {TN−1 ∪ TN}1

})
cN

+

(
1− 1

cN

)
S(n)

e

(
(~x1, . . . ,~xN−1,~0);

{
{T1}c1 , ..., {TN−1}cN−1 , {TN}1

})
(S26)

Since all the S(n)
e operators are evaluated on data with only N − 1 cooperating subfamilies,

we can apply to them the inductive hypothesis and observe that:

• the first term on the right-hand side of (S26) would correspond to all the additive
terms on the right-hand side of (S23) with multi-indices of the form (h1, . . . , hN−2, 1, 1);

• the second term on the right-hand side of (S26) would correspond to all the additive
terms on the right-hand side (S23) with multi-indices of the form (h1, . . . , hN−2, 0, 1);

• the third term on the right-hand side of (S26) would correspond to all the additive
terms on the right-hand side (S23) with multi-indices of the form (h1, . . . , hN−2, hN−1, 0);

where all the hj can be 0 or 1. Consequently, the addition of the three terms in (S26) coincides
with the expression on the right-hand side of (S23), which concludes the proof.

Remark S3. From this general result, we can obtain, as particular cases, the value of (S18) in the
total and partial cooperativity cases. In the total cooperativity case, all the TFs cooperate between
them with the same cooperativity constant c, thus N = 1 and the possible values of ~h are only
~h = (0) or~h = (1), which leads to the expression

S(n)
e ((x1, . . . , xM); {T1, . . . , TM}c) =

(
1− 1

c

)
en +

1
c

(
e + c

M

∑
i=1

xi

)n
. (S27)

Let us observe that this expression coincides with (S22) when c = 1, that is, in the absence of
cooperativity.

On the other side, if TFs cooperate only between the proteins of the same species, we have that
N = M, Ii = {i}, and expression (S23) reads

S(n)
e ((x1, . . . , xM); {T1}c1 , . . . , {TM}cM ) = ∑

|~h|∞≤1
~h∈NM

0

(
e +

M

∑
j=1

hjcjxj

)n M

∏
j=1

(
1− 1

cj

)1−hj

(cj)
hj

(S28)

for any M. Especially useful for the next section will be the case of only two TFs, M = 2. In this
case,~h can be (0, 0), (1, 0), (0, 1) or (1, 1), giving rise to the expression:

S(n)
e ((x1, x2); {T1}c1 , {T2}c2) =

(
1− 1

c1

)(
1− 1

c2

)
en (S29)

+
(e + c1x1)

n

c1

(
1− 1

c2

)
+

(e + c2x2)
n

c2

(
1− 1

c1

)
+

(e + c1x1 + c2x2)
n

c1c2
.
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S2. Extreme Cooperativity Approach: Hill Modules

In this section, we are going to relate the developed thermodynamical modelling
with a very frequently employed modelling approach in genetic control, the Hill modules.
Using the analogy with Michaelis–Menten kinetic equations, some groups have proposed
Michaelis-like functions for modelling genetic control (see [19,20] and references therein).
This approach has been used in order to capture cooperativity effects via adding Hill
coefficients [21] to the Michaelis-like functions. It is frequently assumed in the literature,
see for instance[22–25], that the genetic transcription is controlled by combinations of Hill
type functions. For example, the transcription obtained by a single activator/repressor
corresponds to the expressions:

d[P]
dt

= α
[A]n

Kd + [A]n
+ η

d[P]
dt

=
β

Kd + [R]n
+ γ . (S30)

where α and β are proportional constants, and η, γ correspond respectively to optional
basal or minimal expression levels.

In [19], the authors show that the Hill functions can approximate the transcription
rates under conditions of high cooperativity. In this section, we will show that, indeed, the
Hill functions (S30) can be framed into the thermodynamic approach by assuming extreme
cooperativity.

The stimulated BEWARE operators corresponding to a single activator/repressor
transcription factor would be obtained from (S15) and using

Basal
(
[A]; {A}c

)
= 1 , Promoter

(
[A]; {A}c

)
=

1
c

(
ẽ + c [A]

KA

)n
− 1

c ẽn(
1− 1

c

)
+ 1

c

(
1 + c [A]

KA

)n , (S31)

in the single activator case

Basal
(
[R]; {R}c

)
=

(
1− 1

c

)
+ 1

c
(
1 + cr̃[R]/KR

)n(
1− 1

c

)
+ 1

c
(
1 + c[R]/KR

)n , Promoter
(
[R]; {R}c

)
= 0 (S32)

for a single repressor. Let us remark that these expressions have been obtained from (S20),
(S21) and Proposition S1.

The extreme cooperativity assumption implies that the cooperative binding constant
c is large [19]. However, we cannot compute directly a limit in c without assuming some
natural restrictions. By definition (see assumption H2 in Section S1.1), the cooperativity
interactions essentially modulate the binding affinity of the transcription factors in the
binding sites. More specifically, if K∗ is the affinity constant of a transcription factor,
the affinity constant of a consecutive cleavage will be K∗/c with c > 1 (recall the inverse
relation where, for lower affinity constants, the transcription factor will have higher binding
affinity). Moreover, if we fill the n enhancers with the same transcription factor, it is clear
to see that the “global” affinity constant of the whole process will be Kd = Kn

∗/cn−1. The
extreme cooperativity assumption claims that, since we are interested in only modifying the
cooperativity between the transcription factors, we will compute a limit of c→ ∞ without
modifying the global affinity constant in the process, keeping Kd = cte (and, consequently,
K∗ → 0 [19]). These limits can be computed easily, so we obtain

lim
c→∞

Kd=cte
Promoter

(
[A]; {A}c

)
=

[A]n

Kd + [A]n
,

lim
c→∞

Kd=cte
Basal

(
[R]; {R}c

)
=

Kd + r̃n[R]n

Kd + [R]n
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which allow us to justify previous Hill modules because the limits of the corresponding

BEWARE operators coincide with (S30) by taking α = rbas
1+KRP [RNAP]−1 , η = ν

(n)
max

1+KRP [RNAP]−1 ,

β = rbasKd(1−r̃n)
1+KRP [RNAP]−1 and γ = rbas r̃n

1+KRP [RNAP]−1 . Let us notice that the optimal values η and γ

vanish when rbas = 0 or r̃ = 0, respectively, which corresponds in the thermodynamical
model to null basal level and a repressor executing a total repression once it is bound.
Indeed, these are some extra hypotheses employed in [19] for justifying (S30) (with η = 0
and γ = 0) that are not required in our approach.

It is also interesting to mention that the same reasoning can be used to prove that,
under the extreme cooperativity assumption, the recruitment BEWARE operators also
converge toward a generalised Hill type functions. Since

lim
c→∞

Kd=cte
Freg
(
[A]; {A}c

)
=

Kd + an[A]n

Kd + [A]n
,

lim
c→∞

Kd=cte
Freg
(
[R]; {R}c

)
=

Kd + rn[R]n

Kd + [R]n
,

the associated recruitment BEWARE operators verify

lim
c→∞

Kd=cte
BEWAREr([A], [RNAP]; {A}c) = α

[A]n

δKd + [A]n
+ η ,

lim
c→∞

Kd=cte
BEWAREr([R], [RNAP]; {R}c) =

β

εKd + [R]n
+ γ ,

where now η = CB

1+ KRP
[RNAP]

and γ = CBrn

rn+
KRP

[RNAP]

are respectively a basal and minimal transcrip-

tional rates, and α = CB

1+ [RNAP]
KRP

an−1
an+1 , β = KRP

[RNAP]
CBKd(1−rn)(
rn+

KRP
[RNAP]

)2 , δ =
1+ KRP

[RNAP]

an+
KRP

[RNAP]

and ε =
1+ KRP

[RNAP]

rn+
KRP

[RNAP]

are constants. Let us observe that the limits in this case are generalisations of the Hill classi-
cal modules (S30) because of parameters δ < 1 and ε > 1.

When the modelling by Hill modules involves the effects of several transcription
factors (see, for instance, [23]), it is not so clear what the counterparts of (S30) are. If the
binding sites or any TF are independent and there are no cooperativity interactions, the
Hill candidates can be computed straightforwardly [6,22]. However, to the authors’ best
knowledge, the same question is not clear when the TFs compete for the same binding
sites or cooperate between them. Our modelling approach gives us a clear strategy to
propose Hill type modules in the presence of several TFs competing for the same enhancers.
They might be deduced from the extreme cooperativity limit of the stimulated/recruitment
BEWARE operators if the total cooperativity holds between the TFs:

lim
c→∞

Kd=cte
Freg
(
([T1], ..., [TM]); {{T1, ..., TM}c}

)
=

Kd +

(
M
∑

i=1
ai[Ti]

)n

Kd +

(
M
∑

i=1
[Ti]

)n , (S33)

lim
c→∞

Kd=cte
Basal

(
([T1], ..., [TM]); {{T1, ..., TM}c}

)
=

Kd +

(
M
∑

i=1
ãi[Ti]

)n

Kd +

(
M
∑

i=1
[Ti]

)n , (S34)
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lim
c→∞

Kd=cte
Promoter

(
([T1], ..., [TM]); {{T1, ..., TM}c}

)

=

(
Ma
∑

i=1
ãi [Ti ]+

M
∑

j=Ma+1
ẽr̃i [Tj ]

)n

−
(

M
∑

j=Ma+1
ẽr̃i [Tj ]

)n

Kd+

(
M
∑

i=1
[Ti ]

)n ,

or

lim
c→∞

Kd=cte
Freg
(
([T1], ..., [TM]); {{T1}c, ..., {TM}c}

)
=

Kd +
M
∑

i=1
(ai[Ti])

n

Kd +
M
∑

i=1
[Ti]n

, (S35)

lim
c→∞

Kd=cte
Basal

(
([T1], ..., [TM]); {{T1}c, ..., {TM}c}

)
=

Kd +
M
∑

i=1
(ãi[Ti])

n

Kd +
M
∑

i=1
[Ti]n

, (S36)

lim
c→∞

Kd=cte
Promoter

(
([T1], ..., [TM]); {{T1}c, ..., {TM}c}

)
=

Ma
∑

i=1
(ãi[Ti])

n

Kd +
M
∑

i=1
[Ti]n

,

when only partial cooperativity is present between TFs. In order to deduce expressions
(S34)-(S37), we need to recall first the general expressions of the Regulation Factor, Basal
and Promoter functions defined in Remark S2 in terms of the polynomial function (S18).
Since all these functions are written in terms of rational relations between Se, we can define
a general rational function

R(n) =
S(n)

e1 ((x1/K, ..., xM/K); {{X1}c, ..., {XN}c})
S(n)

e2 ((y1/K, ..., yM/K); {{Y1}c, ..., {YN}c})
(S37)

with S(n)
e defined in the mixed cooperative case (S23). Then, if we define the global affinity

constant Kd = Kn/cn−1, we can rewrite (S37)

R(n) =

∑
|~h|∞≤1
~h∈NN

0

(
e1 +

N
∑

j=1
hjc ∑

i∈Ij

xi
K

)n
N
∏
j=1

(1− 1
c )

1−hj

chj

∑
|~h|∞≤1
~h∈NN

0

(
e2 +

N
∑

j=1
hjc ∑

i∈Ij

yi
K

)n
N
∏
j=1

(1− 1
c )

1−hj

chj

=

∑
|~h|∞≤1
~h∈NN

0

(
e1 +

c
K

N
∑

j=1
hj ∑

i∈Ij

xi

)n
N
∏
j=1

(c− 1)1−hj

∑
|~h|∞≤1
~h∈NN

0

(
e2 +

c
K

N
∑

j=1
hj ∑

i∈Ij

yi

)n
N
∏
j=1

(c− 1)1−hj

=

∑
|~h|∞≤1
~h∈NN

0

(
e1 +

c1/n

K1/n
d

N
∑

j=1
hj ∑

i∈Ij

xi

)n
N
∏
j=1

(c− 1)1−hj

∑
|~h|∞≤1
~h∈NN

0

(
e2 +

c1/n

K1/n
d

N
∑

j=1
hj ∑

i∈Ij

yi

)n
N
∏
j=1

(c− 1)1−hj

.

https://doi.org/10.3390/math10132169


Mathematics 2022, 10, 2169. https://doi.org/10.3390/math10132169 S16 of S38

By splitting the sums in those terms that have |~h|∞ = 0 and |~h|∞ = 1, we finally obtain

R(n) =

(c− 1)N + c
Kd

∑
|~h|∞=1
~h∈NN

0

(
K1/n

d
c1/n e1 +

c1/n

K1/n
d

N
∑

j=1
hj ∑

i∈Ij

xi

)n
N
∏
j=1

(c− 1)1−hj

(c− 1)N + c
Kd

∑
|~h|∞=1
~h∈NN

0

(
K1/n

d
c1/n e2 +

c1/n

K1/n
d

N
∑

j=1
hj ∑

i∈Ij

yi

)n
N
∏
j=1

(c− 1)1−hj

.

Please note that both (c− 1)N and c
Kd

∑
|~h|∞=1
~h∈NN

0

(
K1/n

d
c1/n e1 +

c1/n

K1/n
d

N
∑

j=1
hj ∑

i∈Ij

xi

)n
N
∏
j=1

(c− 1)1−hj are

polynomials of degree N in the c variable, since |~h|∞ = 1 automatically implies that
N
∑

j=1
1− hj ≤ N − 1. We are interested in computing lim

c→∞
Kd=cte

R(n); hence, by l’Hôpital’s rule,

the only terms that will remain in the limit will be those coefficients that multiply to cN ,
that is, those terms such as |~h| = 1:

lim
c→∞

Kd=cte
R(n)

=

1 + 1
Kd

∑
|~h|=1
~h∈NN

0

(
N
∑

j=1
hj ∑

i∈Ij

xi

)n

1 + 1
Kd

∑
|~h|=1
~h∈NN

0

(
N
∑

j=1
hj ∑

i∈Ij

yi

)n =

Kd +
N
∑

j=1

(
∑

i∈Ij

xi

)n

Kd +
N
∑

j=1

(
∑

i∈Ij

yi

)n . (S38)

Please note that we can now directly apply the definitions of the Remark S2 and deduce
automatically the expressions (S34)-(S37) assuming that Ki = K and ci = c for all i =
1, ..., M.

S3. Global Activator/Repressor Variables Reduction

In [3], the problem of collecting the control executed by different TFs into two global
Activation/Repression variables in the particular case of the Shh system was addressed. In
these lines, we reconsider the same question and, according to the modelling developed in
the previous section, we describe when BEWARE operators are really controlled by global
Activator/Repressor variables and how to define those variables in terms of the multiple
TFs involved in the system. Actually, we can make the next remark.

Remark S4. The effect in the BEWARE operator of transcription factors

• with the same signal strength (same transcriptional intensity/rate) in the recruitment/stimulated
approaches;

• and cooperating in the same subset;

can be summarised in a unique single variable, even if they have different affinities.

For instance, let us take into consideration the previous Remark in the stimulated
BEWARE operator deduced in [7,18] for some Shh target genes. The transcription is
controlled by the concentration balance of M = 3 TFs: a pair of activators GliA, Gli3A and
a repressor Gli3R competing for n = 3 enhancers. Gli-DNA enhancers’ binding affinities
were described by dissociation constants K1 for Gli1 and K3 for both forms of Gli3. Since
the model suggested total cooperativity between all the TFs and the activators, GliA and
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Gli3A, it can be seen that the BEWARE operator deduced in [7,18] depends on the global
activator variable

[A] =
[GliA]

K̄1
+

[Gli3A]

K̄3

with dissociation constant KA = K1+K3
2 , where the weights for defining A are given by

K̄1 = K1
KA

, K̄3 = K3
KA

. Since only one repressor was taken into consideration, Gli3R, this
plays the role of repressor variable with dissociation constant K3. The fact that the BEWARE
operators only depend on these two global variables can be easily checked by replacing
the new variables in the expressions of Sẽ of (S19), (S20) and (S21), and noting that the new
functions obtained correspond to the expressions of the functions Sẽ in the case of M = 2
transcription factors.

Remark S5. Generalising the previous example, we always have that:

• all the activators (repressors) have the same signal strength;
• and all the activators (repressors) cooperate in the same family with the same cooperativity

constant;

then, their effect in the BEWARE functional can be summarised in global activator (repressor)
variables:

[A] =
Ma

∑
i=1

[Ti]

K̄i
; K̄i =

Ki
KA

being KA =

Ma
∑

i=1
Ki

Ma
,

[R] =
M

∑
i=Ma+1

[Ti]

K̄i
; K̄i =

Ki
KR

being KR =

M
∑

i=Ma+1
Ki

Mr
.

Anyway, the BEWARE functionals we are going to consider in the next paragraphs
are those defined by (S12) or (S15), in correspondence with the recruitment/stimulated
approaches, where only two functional opposite transcription factors are considered: an
activator, A, and a repressor R. Indeed, these are the BEWARE functionals we have intro-
duced in the main manuscript for the sake of clarity. In that case, only two admissible
cooperative relations are possible: {{A, R}c} or {{A}cA , {R}cR}, corresponding to the total
and partial cooperativity cases. Then, by Remark S2 and Proposition S1, we obtain that the
regulation factor, basal and promoter functions read

Freg
(
([A], [R]); {{A, R}c}

)
=

(
1− 1

c

)
+ 1

c
(
1 + ca[A]/KA + cr[R]/KR

)n(
1− 1

c

)
+ 1

c
(
1 + c[A]/KA + c[R]/KR

)n , (S39)

Basal
(
([A], [R]); {{A, R}c}

)
=

(
1− 1

c

)
+ 1

c
(
1 + c[A]/KA + cr̃[R]/KR

)n(
1− 1

c

)
+ 1

c
(
1 + c[A]/KA + c[R]/KR

)n , (S40)

Promoter
(
([A], [R]); {{A, R}c}

)
=

1
c

(
ẽ + c [A]

KA
+ cẽr̃ [R]KR

)n
− 1

c

(
ẽ + cẽr̃ [R]KR

)n

(
1− 1

c

)
+ 1

c

(
1 + c [A]

KA
+ c [R]KR

)n , (S41)

for the total cooperativity case and look like

Freg
(
([A], [R]); {{A}cA , {R}cR}

)
(S42)

=

(
1− 1

cA

)(
1− 1

cR

)
+

(
1− 1

cR

)
cA

(
1 + acA [A]

KA

)n
+

(
1− 1

cA

)
cR

(
1 + rcR [R]

KR

)n
+

(
1+ acA [A]

KA
+

rcR [R]
KR

)n

cAcR(
1− 1

cA

)(
1− 1

cR

)
+

(
1− 1

cR

)
cA

(
1 + cA [A]

KA

)n
+

(
1− 1

cA

)
cR

(
1 + cR [R]

KR

)n
+

(
1+ cA [A]

KA
+

cR [R]
KR

)n

cAcR

,
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Basal
(
([A], [R]); {{A}cA , {R}cR}

)
(S43)

=

(
1− 1

cA

)(
1− 1

cR

)
+

(
1− 1

cR

)
cA

(
1 + cA [A]

KA

)n
+

(
1− 1

cA

)
cR

(
1 + r̃cR [R]

KR

)n
+

(
1+ cA [A]

KA
+

r̃cR [R]
KR

)n

cAcR(
1− 1

cA

)(
1− 1

cR

)
+

(
1− 1

cR

)
cA

(
1 + cA [A]

KA

)n
+

(
1− 1

cA

)
cR

(
1 + cR [R]

KR

)n
+

(
1+ cA [A]

KA
+

cR [R]
KR

)n

cAcR

,

(S44)

Promoter
(
([A], [R]); {{A}cA , {R}cR}

)
(S45)

=

(
1− 1

cR

)
cA

(
ẽ + cA [A]

KA

)n
+

(
ẽ+ cA [A]

KA
+

ẽr̃cR [R]
KR

)n

cAcR
−
(

1− 1
cR

)
cA

ẽn −
(

ẽ+ ẽr̃cR [R]
KR

)n

cAcR(
1− 1

cA

)(
1− 1

cR

)
+

(
1− 1

cR

)
cA

(
1 + cA [A]

KA

)n
+

(
1− 1

cA

)
cR

(
1 + cR [R]

KR

)n
+

(
1+ cA [A]

KA
+

cR [R]
KR

)n

cAcR

,

in the case of partial cooperativity.
Let us observe that these expressions allow us to relate the parameters in these models

with measurable reference values as the minimal, basal and maximal expression levels,
following the ideas presented in [3]. These values, collected in Table S1, can be easily
computed by letting [A] → 0 , [R] → ∞ or [A] → 0 , [R] → 0 or [A] → ∞ , [R] → 0,
respectively. It is important to note that this result also works in the extreme cooperative
framework (i.e., Hill operators), since the levels in Table S1 do not depend on the TFs’
cooperativity.

Table S1. Theoretical values for minimal, basal and maximal transcriptional rates for BEWARE
operators in the presence of global activator/represor variables.

Minimal Basal Maximal
Recruitment CB

1+ KRP
[RNAP]rn

CB

1+ KRP
[RNAP]

CB

1+ KRP
[RNAP]an

Stimulated rbasr̃n

1+ KRP
[RNAP]

rbas

1+ KRP
[RNAP]

rbas+ν
(n)
max

1+ KRP
[RNAP]

S4. Existence/Non Existence of Inverse Logic in the Activator/Repressor Framework:
Pull Effect

In this Section, we are going to analyse the consistency of previous expressions with the
fundamental notion of activators established in [26], that is, when activator concentrations
are scaled up, then the transcriptional activity increases. Analogously, it can be declared the
fundamental notion of repressors saying that increases in repressor concentrations would
diminish transcriptional activity. This basic idea is translated mathematically into:

∂BEWARE
(
([A], [R]), [RNAP]; C

)
∂[A]

> 0 , (S46)

∂BEWARE
(
([A], [R]), [RNAP]; C

)
∂[R]

< 0 . (S47)

However, as we will show, this basic logic may not hold in some of the proposed
models, and effects of ‘inverse control logic’ (i.e., an inversion on the inequalities (S46)
and (S47)) can appear. In this case, both versions of modelling stimulated and recruitment
coincide, predicting that this inverse logic would happen in the presence of strong enough
cooperativity between activators and repressors. Furthermore, they coincide predicting
that, in the presence of cooperativity only between TFs of the same nature, that is partial
cooperativity, the basic activator/repressor logic (S46)–(S47) always holds.
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The results of the performed analysis are summarised in the next Lemma.

Lemma S2. BEWARE operators (S12)-(S15) depending only on two functional opposite TFs

i) can exhibit inverse control logic when total cooperativity is considered. This occurs for large

enough cooperativities for certain ranges of the parameters a, r, ν
(n)
max and rbas established in

Table S2;
ii) However, this basic control logic always holds when partial cooperativity (S9) is considered.

Table S2. Parameter requirements for the existence of inverse logic for bifunctional BEWARE opera-
tors in the presence of total cooperativity.

Act. Inv. Log. (S46) Rep Inv. Log. (S47)

Recruitment r < a
1

1−n & c > ca
th r > a1−n & c > cr

th

Stimulated ν
(n)
max

rbas
< 1−r̃n−1

(ẽr̃)n−1 & c > c̃a
th

rbas

ν
(n)
max

< ẽr̃
1−r̃ & c > c̃r

th

The analysis developed in this Section for proving Lemma S2 also allows for describing
the values of the concentrations that give rise to inverse logic. In the presence of relative
low concentrations of activators (that is, low activators’ concentrations compared to the
concentrations of repressors), the system could show an unnatural response to an increase
of the activators, presenting a decrement in the transcription rate (BEWARE function).
This ‘pull effect’ is a direct consequence of the total cooperativity. Since an increase of the
activator concentration implies more activator bindings, these additional bindings improve
the cleavage of any other transcription factor, including repressors. Taking into account
that there is a higher concentration of repressors in the system than activators, it is much
more likely to ‘pull’ repressors in the enhancers, finding as a consequence more states
with more repressors than activators (i.e., more repression and hence less transcription).
The delicate balances occurring in that case between activation, repression, affinities and
binding cooperativity are reflected in Table S2. Figure S1 illustrates these effects. Although
behavioural tendencies (S46)-(S47) could appear to be very naive, their relevance in our
logical scheme is undoubtable. This can be seen in the proof of Proposition S2 where
the existence of activation/repression thresholds is stated. In those cases where (S46)-
(S47) does not hold, this requires an extra effort in order to apply the Implicit Function
Theorem. These kinds of basic properties are also really relevant in specific applications, as
for instance in repressilator type models [27].
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Figure S1. Inverse logic for a Recruitment BEWARE operator with total cooperativity. (A) activators’
inverse logic; (B) repressors’ inverse logic

In these arguments, it will be helpful to use the positive symmetric functions defined
by:

Hn(X, Y) =
n−1

∑
i=0

XiYn−1−i for any X , Y ∈ (0,+∞) (S48)

when n > 1 and H1(X, Y) = 1 when n = 1.
It can be easily checked that, using this notation, we have

Xn−1 −Yn−1 = Hn−1(X, Y)(X−Y) =
Hn−1(X, Y)

Hn(X, Y)
(Xn −Yn) n ≥ 2. (S49)

We will employ subsequently several easy properties of these functions collected in the
next Lemma.

Lemma S3. Letting X , Y ∈ (0,+∞), then

1. Hn−1(X,Y)
Hn(X,Y) is strictly decreasing with respect to X and Y.

2. If X > Y, the following relations are fulfilled:

1
Y

n−1 + X
≤ Hn−1(X, Y)

Hn(X, Y)
≤ 1

X
n−1 + Y

.

3. If Z ≤ X, then Hn−1(X,Y)
Hn(X,Y) Z < 1.
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Proof. Properties i) and ii) can be trivially proven by using the identities:

Hn−1(X, Y)
Hn(X, Y)

=
1

X
∑n−2

i=0 (Y/X)i + Y
=

1
Y

∑n−2
i=0 (X/Y)i + X

.

Estimating iii) can be also checked by considering

Hn−1(X, Y)
Hn(X, Y)

Z =

n−2
∑

i=0
YiXn−2−iZ

n−1
∑

i=0
YiXn−1−i

≤

n−2
∑

i=0
YiXn−1−i

n−1
∑

i=0
YiXn−1−i

< 1 .

S4.1. Existence of Inverse Logic in the Presence of High Total Cooperativity

This subsection is devoted to prove statement i) in Lemma S2. That is, in the presence
of strong enough total cooperativity, recruitment and stimulated approaches predict that
the intuitive behavioural tendencies (S46) or (S47) can be violated. For the sake of simplicity,
we will note x̃ = c[A]

KA
and ỹ = c[R]

KR
.

• Activators inverse logic for the Recruitment BEWARE operator
Since the recruitment BEWARE operator is increasing with respect to the regulation
factor operator, we have

sign

{
∂BEWAREr

(
([A], [R]), [RNAP]; {A, R}c

)
∂[A]

}

= sign

{
∂Freg

(
(x̃, ỹ); {A, R}c

)
∂x̃

}
= sign

{
(c− 1)

(
aᾱn−1

r − αn−1
r
)
+ ᾱn−1

r αn−1
r (aαr − ᾱr)

}
(S50)

where ᾱr = ᾱr(x̃, ỹ) = 1 + ax̃ + rỹ, αr = αr(x̃, ỹ) = 1 + x̃ + ỹ. Since we are assuming
r < 1 < a, we have that aαr − ᾱr > 0. This proves that, in the absence of cooperativity
(c = 1), the sign of (S50) will always be positive. Nevertheless, if aᾱn−1

r − αn−1
r takes a

negative value and c is high enough, that is,

c > 1 +
ᾱn−1

r αn−1
r (aαr − ᾱr)

αn−1
r − aᾱn−1

r
(S51)

the sign of (S50) can become negative. It can be checked that
(
aᾱn−1

r − αn−1
r
)
< 0 if

and only if a
1

n−1 r < 1 and, in that case, it would occur for values in the cone

Hr,a =

{
(x̃, ỹ) ∈ (R+

0 )
2; ỹ >

(a
1

n−1 − 1) + (a
n

n−1 − 1)x̃

1− a
1

n−1 r

}
.

Thus, for any

c > ca
th = inf

(x̃,ỹ)∈Hr,a

{
1 +

ᾱn−1
r αn−1

r (aαr − ᾱr)

αn−1
r − aᾱn−1

r

}
,

we can assure that there exist some values (x̃, ỹ) ∈ H such that the sign computed in
(S50) will be negative.
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• Repressors inverse logic for the Recruitment BEWARE operator
By an analogous argument, we obtain

sign
{

∂BEWAREr([A], [R], [RNAP]; {A, R}c)

∂[R]

}
= sign

{
∂Freg(x̃, ỹ)

∂ỹ

}
= sign

{
(c− 1)

(
rᾱn−1

r − αn−1
r
)
+ ᾱn−1

r αn−1
r (rαr − ᾱr)

}
(S52)

Since we are assuming r < 1 < a, we now have that rαr − ᾱr < 0. Thus, the sign of
(S52) will be always negative in the absence of cooperativity c = 1 . On the other hand,
if
(
rᾱn−1

r − αn−1
r
)

takes a positive value and c is high enough, that is,

c > 1 +
ᾱn−1

r αn−1
r (ᾱr − rαr)

rᾱn−1
r − αn−1

r
(S53)

the sign of (S52) can become positive. It can be checked that
(
rᾱn−1

r − αn−1
r
)
> 0 if

and only if ar
1

n−1 > 1 and, in that case, it would happen for values in the cone

Hr,r =

{
(x̃, ỹ) ∈ (R+

0 )
2; x̃ >

(1− r
1

n−1 ) + (1− r
n

n−1 )ỹ

ar
1

n−1 − 1

}
.

Thus, for any

c > cr
th = inf

(x̃,ỹ)∈Hr,r

{
1 +

ᾱn−1
r αn−1

r (ᾱr − rαr)

rᾱn−1
r − αn−1

r

}
,

we can assure that there exist some values (x̃, ỹ) ∈ H such that the sign computed in
(S52) will be positive.

• Activators Inverse Logic for the Stimulated BEWARE Operator

sign
{

∂BEWAREs([A], [R], [RNAP]; {A, R}c)

∂[A]

}

= sign

 rbas

1 + KRP
[RNAP]

∂Basal(x̃, ỹ)
∂x̃

+
ν
(n)
max

1 + KRP
[RNAP]

∂Promoter(x̃, ỹ)
∂x̃


= sign

{
(c− 1)

(
(ᾱn−1

s − αn−1
s )rbas + βn−1

s ν
(n)
max

)
+ αn−1

s

(
ᾱn−1

s (αs − ᾱs)rbas + (βn−1
s (αs − βs) + β̄s)ν

(n)
max

)}
(S54)

where, adopting the previous notation, we have ᾱs = ᾱs(x̃, ỹ) = 1 + x̃ + r̃ỹ, αs =
αs(x̃, ỹ) = 1 + x̃ + ỹ, β̄s = β̄s(ỹ) = ẽ + ẽr̃ỹ, βs = βs(x̃, ỹ) = ẽ + x̃ + ẽr̃ỹ. Please note
also that, thanks to r̃ < 1 and X, Y ≥ 0, the next relations are verified

αs ≥ ᾱs ≥ βs ≥ β̄s > 0. (S55)

By using these estimates, we can easily check

αn−1
s

(
ᾱn−1

s (αs − ᾱs)rbas + (βn−1
s (αs − βs) + β̄s)ν

(n)
max

)
> ẽν

(n)
max > 0 . (S56)

Hence, if (
(ᾱn−1

s − αn−1
s )rbas + βn−1

s ν
(n)
max

)
< 0 for some x̃, ỹ (S57)
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holds, then the partial with respect to x̃ could change the sign for c large enough, more
concretely,

c > 1−
αn−1

s

(
ᾱn−1

s (αs − ᾱs) + (βn−1
s (αs − βs) + β̄s)

ν
(n)
max

rbas

)
(ᾱn−1

s − αn−1
s )rbas + βn−1

s
ν
(n)
max

rbas

. (S58)

Let us also observe that the inverse logic is not possible in the absence of total cooper-
ativity, that is, c > 1 is required. Obviously, (S57) will occur whenever

ν
(n)
max

rbas
< sup

x̃,ỹ

(αn−1
s − ᾱn−1

s )

βn−1
s

=
1− r̃n−1

(ẽr̃)n−1

where the supremum can be easily calculated thanks to

(αn−1
s − ᾱn−1

s )

βn−1
s

≤ (αn−1
s − (r̃αs)n−1)

(ẽr̃αs)n−1

=
1− r̃n−1

(ẽr̃)n−1 = lim
x̃→0,ỹ→∞

(αn−1
s − ᾱn−1

s )

βn−1
s

. (S59)

Thus, we conclude always that

ν
(n)
max

rbas
<

1− r̃n−1

(ẽr̃)n−1

the set

Hs,a =
{
(x̃, ỹ) ∈ (R+

0 )
2|

(
(ᾱn−1

s − αn−1
s )rbas + βn−1

s ν
(n)
max

)
|x̃,ỹ) < 0

}
is non empty and, for any

c > c̃a
th = inf

Hs,a

1−
αn−1

s

(
ᾱn−1

s (αs − ᾱs) + (βn−1
s (αs − βs) + β̄s)

ν
(n)
max

rbas

)
(ᾱn−1

s − αn−1
s )rbas + βn−1

s
ν
(n)
max

rbas


there exist points (x̃, ỹ) where the sign on the right-hand side of (S54) is negative.
Obviously, the value of c will determine the final set of values where it occurs by
condition (S58).

• Repressors inverse logic for the Stimulated BEWARE operator
The sign of the partial derivative of the BEWARE operator with respect to the repressor
variable is

sign
{

∂BEWAREs([A], [R], [RNAP]; {A, R}c)

∂[R]

}

= sign

 rbas

1 + KRP
[RNAP]

∂Basal(x̃, ỹ)
∂ỹ

+
ν
(n)
max

1 + KRP
[RNAP]

∂Promoter(x̃, ỹ)
∂ỹ


= sign

{
(c− 1)

(
(ᾱn−1

s r̃− αn−1
s )rbas + ẽr̃(βn−1

s − β̄n−1
s )ν

(n)
max

)
(S60)

+ αn−1
s

(
ᾱn−1

s (r̃αs − ᾱs)rbas + (ẽr̃(βn−1
s − β̄n−1

s )− (βn
s − β̄n

s ))ν
(n)
max

)}
.

Here,

αn−1
s

(
ᾱn−1

s (r̃αs − ᾱs)rbas + (ẽr̃(βn−1
s − β̄n−1

s )− (βn
s − β̄n

s ))ν
(n)
max

)
< 0 , (S61)
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since r̃αs − ᾱs < 0 by definition and

ẽr̃(βn−1
s − β̄n−1

s )− (βn
s − β̄n

s ) = (βn
s − β̄n

s )

(
Hn−1(ẽr̃βs, ẽr̃β̄s)

Hn(βs, β̄s)
− 1
)
< 0 (S62)

by (S49) and Lemma S3 ii). By this reason, if

(ᾱn−1
s r̃− αn−1

s )rbas + ẽr̃(βn−1
s − β̄n−1

s )ν
(n)
max > 0, (S63)

then, for large enough c, more concretely when

c > 1−
αn−1

s

(
ᾱn−1

s (r̃αs − ᾱs) + (ẽr̃(βn−1
s − β̄n−1

s )− (βn
s − β̄n

s ))
ν
(n)
max

rbas

)
(ᾱn−1

s r̃− αn−1
s ) + ẽr̃(βn−1

s − β̄n−1
s ) ν

(n)
max

rbas

(S64)

the sign computed in (S60) can be positive. Again, this can be no longer true in the
absence of cooperativity, that is, when c = 1. Now, (S63) can occur if and only if

rbas

ẽr̃ν
(n)
max

< sup
βn−1

s − β̄n−1
s

αn−1
s − r̃ᾱn−1

s
=

1
1− r̃

(S65)

where analogously, as was done before, the supremum can be easily calculated from

βn−1
s − β̄n−1

s

αn−1
s − r̃ᾱn−1

s
≤ ᾱn−1

s

ᾱn−1
s − r̃ᾱn−1

s
=

1
1− r̃

= lim
x̃→∞,ỹ→0

βn−1
s − β̄n−1

s

ᾱn−1
s r̃− αn−1

s
.

Then, arguing as before, we can conclude that (S60) can be positive in the points
determined by a set Hs,r defined in terms of the condition defining by (S63) and for
values c bigger than c̃r

th determined by the lower term of (S64).

S4.2. Direct Logic in the Presence of Partial Cooperativity

Now, we prove that, in the presence of partial cooperativity between activators and/or
repressors, the inverse logic can not occur as stated in Lemma (S2) ii). In the rest of this
proof, we will denote x̃ = cA [A]

KA
and ỹ = cR [R]

KR
.

• Activator direct logic for the partial cooperative recruitment BEWARE operator
Using the increasing character of the recruitment BEWARE operator with respect to
the regulation factor operator, we have

sign
{

∂BEWAREr([A], [R], [RNAP]; {A}cA , {R}cR)

∂[A]

}
= sign

{
∂Freg(x̃, ỹ)

∂x̃

}
= sign

{
(cA − 1)(cR − 1)2(aγn−1

r − γ̄n−1
r
)
+ (cR − 1)2γn−1

r γ̄n−1
r
(
aγ̄r − γr

)
+ᾱn−1

r αn−1
r (aαr − ᾱr) + (cA − 1)

(
a
ᾱr

ᾱn
r βn

r −
1
αr

αn
r β̄n

r

)
+(cR − 1)

(
ᾱn

r γ̄n
r

(
a
ᾱr
− 1

γ̄r

)
+ γn

r αn
r

(
a

γr
− 1

αr

))
+(cA − 1)(cR − 1)

(
aᾱn−1

r − αn−1
r + aγn−1

r βn
r − γ̄n−1

r β̄n
r
)}

(S66)

where ᾱr = ᾱr(x̃, ỹ) = 1 + ax̃ + rỹ, αr = αr(x̃, ỹ) = 1 + x̃ + ỹ, β̄r = β̄r(ỹ) = 1 + rỹ,
βr = βr(ỹ) = 1 + ỹ, γ̄r = γ̄r(x̃) = 1 + x̃, γr = γr(x̃) = 1 + ax̃. From these definitions,
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we can easily check that almost all the terms inside the sign function are positive by
using the estimates:

ᾱr ≥ γr ≥ γ̄r , aγ̄r ≥ γr ,
a
ᾱr
≥ 1

αr
,

a
γr
≥ 1

αr
,

ᾱrβr ≥ αr β̄r , αrγr ≥ ᾱrγ̄r ,
a

γr
≥ 1

γ̄r
, αr ≥ βr ≥ β̄r . (S67)

The positivity of the last term can be checked by observing that the expression(
aᾱn−1

r − αn−1
r + aγn−1

r βn
r − γ̄n−1

r β̄n
r
)

is increasing with respect to the variable a. Then,
this will be always positive if it is for a = 1. In this sense, we estimate

(1 + x̃ + rỹ)n−1 − (1 + x̃ + ỹ)n−1 + (1 + x̃)n−1(1 + ỹ)n − (1 + x̃)n−1(1 + rỹ)n

≥
(

1 + r
ỹ

1 + x̃

)n−1
−
(

1 +
ỹ

1 + x̃

)n−1
+ (1 + ỹ)n−1 − (1 + rỹ)n−1

where the lower term is positive since, using (S49), we obtain

(1 + ỹ)n−1 −
(

1 +
ỹ

1 + x̃

)n−1
≥(1 + rỹ)n−1 −

(
1 + r

ỹ
1 + x̃

)n−1

⇐⇒ Hn−1

(
1 + ỹ, 1 +

ỹ
1 + x̃

)
≥ rHn−1

(
1 + rỹ, 1 + r

ỹ
1 + x̃

)
(S68)

which holds because of the increasing character of the operator Hn−1.
• Repressor direct logic for the partial cooperative recruitment BEWARE operator

The fact that the partial derivative of BEWAREr with respect to the repressor variable
is negative when partial cooperativity between activator and repressor can be verified
in an analogous manner by the symmetric roles of activators and repressors in the
recruitment operators.

• Activator direct logic for the partial cooperative stimulated BEWARE operator
Since Basal(([A], [R]); {{A}cA , {R}cR}) has the same expression as the Regulation
Factor (S13) with a = 1, the sign of the derivatives can estimated following exactly the
deduction for the recruitment operator. Hence, we need to check the sign only for the
partial derivatives of the Promoter

(
([A], [R]); {{A}cA , {R}cR}

)
function

(cR − 1)(δn
s − δ̄n

s ) + βn
s − β̄n

s
(cA − 1)(cR − 1) + αn

s + (cR − 1)λn
s + (cA − 1)γn

s

in order to conclude the proof of Lemma S2. In the previous definition, we have
used αs = αs(x̃, ỹ) = 1 + x̃ + ỹ , ᾱs = ᾱs(x̃, ỹ) = 1 + x̃ + r̃ỹ , βs = βs(x̃, ỹ) = ẽ + x̃ +
ẽr̃ỹ , β̄s = β̄s(ỹ) = ẽ + ẽr̃ỹ , γs = γs(ỹ) = 1 + ỹ , γ̄s = γ̄s(ỹ) = 1 + r̃ỹ , δs = δs(x̃) =
ẽ + x̃ , δ̄s = δ̄s = ẽ , λs = λs(x̃) = 1 + x̃ where, again, we are assuming that each
function is evaluated on x̃ = cA [A]

KA
and ỹ = cR [R]

KR
. The sign of the partial derivative

with respect the activator variable will come from the sign of

sign

{
∂BEWAREs

(
([A], [R]), [RNAP]; {{A}cA , {R}cR}

)
∂[A]

}
= sign

{
−
(

αn−1 + (cR − 1)λn−1
s

)(
(cR − 1)(δn

s − δ̄n
s ) + βn

s − β̄n
s

)
+

(
(cR−1)δn−1

s + βn−1
s

)(
(cA−1)(cR−1) + αn

s + (cR−1)λn
s + (cA−1)γn

s

)}
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which, rearranging the terms, translates to check the sign of

sign
{
(cR−1)2

(
(cA−1)δn−1

s + λn−1
s (λsδn−1

s − δn
s + δ̄n

s )
)

+ αn−1
s (βn−1

s αs − βn
s − β̄n

s )

+ (cR−1)(cA−1)
(

δn−1
s γn

s + βn−1
s

)
+ (cA−1)γn

s βn−1
s

+ (cR−1)
(

δn−1
s αn

s + λn
s βn−1

s − αn−1
s (δn

s − δ̄n
s )− λn−1

s (βn
s − β̄n

s )
)}

.

The first terms are trivially positive since λs > δs and αs > βs. In addition, it is positive
that the last term can be rewritten, up to the multiplicative constant (cR−1), as

λn−1
s βn−1

s (λs − βs) + αn−1
s δn−1

s (αs − δs) + λn−1
s β̄n−1

s + αn−1
s δ̄n

s ≥ 0

thanks to |λs − βs| ≤ (αs − δs) and αsδs ≥ λsβs.
• Repressor direct logic for the partial cooperative stimulated BEWARE operator

On the other hand,

sign

{
∂BEWAREs

(
([A], [R]), [RNAP]; {{A}cA , {R}cR}

)
∂[R]

}
= sign

{(
ẽr̃(βn−1

s − β̄n−1
s )

)(
(cA−1)(cR−1) + αn

s + (cR−1)λn
s + (cA−1)γn

s

)
−

(
αn−1

s + (cA − 1)γn−1
s

)(
(cR − 1)(δn

s − δ̄n
s ) + βn

s − β̄n
s

)}
and, rearranging the terms, the same sign can be obtained from

sign
{
(cA − 1)(cR − 1)

(
ẽr̃(βn−1

s − β̄n−1
s )− γn−1

s (δn − δ̄n
s )
)

+ (cR − 1)

(
(ẽr̃λs)(λsβs)

n−1

(
1− β̄n−1

s

βn−1
s

)
+ δs(δsαs)

n−1
(

δ̄n
s

δn
s
− 1
))

+ (cA − 1)
(
(γsβs)

n−1(ẽr̃γs − βs) + (γs β̄s)
n−1(β̄s − ẽr̃γs)

)
+ (αsβs)

n−1(ẽr̃αs − βs) + (αs β̄s)
n−1(β̄s − ẽr̃αs)

}
. (S69)

The first term in (S69)

ẽr̃(βn−1
s − β̄n−1

s )− γn−1
s (δn

s − δ̄n
s )

= (δs − δ̄s)(ẽr̃Hn−1(βs, β̄s)− γn−1
s Hn(δs, δ̄s))

= (δs − δ̄s)(ẽr̃Hn−1(βs, β̄s)− Hn(γsδs, γs δ̄s))

= (δs − δ̄s)Hn(γsδs, γs δ̄s)

(
ẽr̃Hn−1(βs, β̄s)

Hn(γsδs, γs δ̄s)
− 1
)

≤ (δs − δ̄s)Hn(γsδs, γs δ̄s)

(
ẽr̃Hn−1(γsδs, γs δ̄s)

Hn(γsδs, γs δ̄s)
− 1
)
≤ 0

is negative because βs ≤ γsδs, β̄s ≤ γs δ̄s and Lemma S49 iii) is used being ẽr̃ ≤ γsδs.
The rest of the terms in (S69) can be proven to be negative following the next estimates

(ẽr̃λs)(λsβs)
n−1

(
1− β̄n−1

s

βn−1
s

)
+ δs(δsαs)

n−1
(

δ̄n
s

δn
s
− 1
)
≤ δs(δsαs)

n−1

(
δ̄n

s
δn

s
− β̄n−1

s

βn−1
s

)
(γsβs)

n−1(ẽr̃γs − βs) + (γs β̄s)
n−1(β̄s − ẽr̃γs) ≤ (γs β̄s)

n−1(β̄s − βs)

(αsβs)
n−1(ẽr̃αs − βs) + (αs β̄s)

n−1(β̄s − ẽr̃αs) ≤ (αs β̄s)
n−1(β̄s − βs)
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and thanks to

αs > γs ≥ γ̄s , λsβs ≤ αsδs , ẽr̃λs ≤ δs , 1 ≥ β̄s

βs
≥ δ̄s

δs
,

αs > δs ≥ δ̄s , β̄s ≤ βs , ẽr̃γs ≤ βs , ẽr̃αs ≤ βs . (S70)

�

S5. Existence of Threshold

This Section is devoted to proving the existence of activation/repression thresholds
implicitly deduced from the BEWARE operators.

Proposition S2. In the global activator/repressor framework of each BEWARE operator, a unique,
positive and increasing function [R] = fm,l([A]; n) is determined fulfilling Equation (5) in the main
manuscript. This function determines the threshold between two regions in the plane ([A], [R]).
Each region contains concentrations providing transcriptional levels either over the basal level, if
[R] < fm,l([A]; n), or under the basal level, when [R] > fm,l([A]; n).

These threshold functions depend on all the biochemical factors considered in the derivation
of the BEWARE operator: the Recruitment (m = r) (S12) or Stimulated (m = s) (S15) (with
rbas > 0) approaches, the binding cooperativity mechanisms between the TFs (cooperative, total
cooperative l = t or partial cooperative l = p) or the number of enhancers (n). The particular case
of the dependence with respect to the affinities’ coefficients KA-KR is given by

fm,l([A]; n) := KR f̃m,l

(
[A]

KA
; n
)

(S71)

where f̃m,l is independent of both KA and KR.

Remark S6. A very easy example can be shown in the case of the BEWARE operators with
null/total cooperativity (S8). Because of the increasing character of the recruitment operator (S12),
with respect to the regulation factor Freg, Equation (5) translates directly to

Freg
(
([A], fr,t([A]; n)); C

)
= Freg

(
(0, 0); C

)
= 1 . (S72)

When we substitute the definition of the regulation factor (S39) in this expression, we directly obtain
that the threshold corresponds to the linear expression

fr,t([A]; n) =
KR
KA

a− 1
1− r

[A].

Let us remark that, although in expression (S39) the cooperativity constant c and the number of
enhancers n are present, they are not in this threshold expression. This implies that the thresholds
for this model are the independent of the intensity of the total binding cooperativity between the
species or the number of enhancers.

Remark S7. A similar argument can be performed for the stimulated BEWARE operator when
n = 1. Obviously, this is independent of any kind of binding cooperativity because it can not occur
when only one binding site is available. In this case, direct computations give rise to

fs,t([A]; 1) =
KR
KA

ν
(1)
max

rbas

1
1− r̃

[A] .

As we will mention subsequently, the thresholds under the stimulated approach with total coopera-
tivity are not in general independent of the number of enhancers, which will represent a remarkable
difference between the stimulated and recruitment approach.
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Remark S8. Proposition S2 is no longer true for Stimulated operators when rbas is null as can
be trivially deduced from expressions (S41) and (S45). In this case, the threshold coincides with
the axis [A] = 0, and any pair of concentrations ([A], [R]) with [A] > 0 leads to activation levels.
Nevertheless, we have to remark that this threshold does not depend on cooperativity relations,
number of enhancers or affinities.

Sketch of the Proof of Proposition S2
Here, we have adopted the notation x = [A]

KA
, y = [R]

KR
for convenience. Let us mention

that the threshold for the recruitment BEWARE operator with n enhancers and null/total
cooperativity was already calculated in Remark S6 solving explicitly the equation

Gr,t(x, y; n) = (1 + acx + rcy)n − (1 + cx + cy)n = 0 (S73)

which is equivalent to (S72). In current notation, the solution to this equation is given by:

y = f̃r,t(x; n) =
a− 1
1− r

x , (S74)

where f̃r,t(x; n) is the function stated in (S71). Now, undoing our original change of variable
x = [A]

KA
, y = [R]

KR
, we recover the expression deduced in Remark S6 .

Although in this case the definition of these thresholds can be done explicitly, we
would like to remark that the general existence result provided by the implicit function
theorem provides very useful information for subsequent analysis. The argument we adopt
follows the same scheme for all the BEWARE functionals considered, so we now introduce
the outlines of the general proof and in sub-S5.1 we check the validity of each particular
model dependent requirements.

When we substitute the concrete expressions of the BEWARE operators (S12)-(S15)
with their corresponding expressions for regulation factors, basal and promoter functions
(see (S39)-(S45)) into Equation (5), this is equivalent to an equation Gm,l

(
[A]
KA

, f ([A])
KR

; n
)
= 0.

In the case of the recruitment BEWARE operators, we obtain

Gr,t(x, y; n) = ᾱr(cx, cy)n − αr(cx, cy)n , (S75)

Gr,p(x, y; n) = ᾱr(cAx, cRy)n − αr(cAx, cRy)n + (cA − 1)(β̄r(cRy)n − βr(cRy)n)

+ (cR − 1)(γr(cAx)n − γ̄r(cAx)n) ,

being ᾱr(X, Y) = (1 + aX + rY), αr(X, Y) = (1 + X + Y), β̄r(Y) = 1 + rY, βr(Y) = 1 + Y,
γ̄r(X) = 1 + X and γr(X) = 1 + aX. In the stimulated cases, we obtain in the same way

Gs,t(x, y; n) = rbas(ᾱ
n
s (cx, cy)− αn

s (cx, cy)) + ν
(n)
max
(

βn
s (cx, cy)− β̄n

s (cy)
)

, (S76)

Gs,p(x, y; n) = rbas
(
ᾱn

s (cAx, cRy)− αn
s (cAx, cRy) + (cA − 1)(γ̄n

s (cRy)− γn
s (cRy))

)
+ ν

(n)
max
(

βn
s (cAx, cRy)− β̄n

s (cRy) + (cR − 1)
(
δn

s (cAx)− δ̄n
s
))

where now ᾱs(X, Y) = 1 + X + r̃Y, αs(X, Y) = 1 + X + Y, β̄s(Y) = ẽ + ẽr̃Y, βs(X, Y) =
ẽ + X + ẽr̃Y. γ̄s(Y) = 1 + r̃Y, γs(Y) = 1 + Y, δ̄s = ẽ and δs(X) = ẽ + X. As it has been
done in (S73)–(S74), G functions and the corresponding thresholds f will be denoted with
subindices: s, r, t, p, corresponding to stimulated, recruitment, total/null cooperativity
and partial cooperativity, respectively. Some other dependences can be included whenever
necessary by using parameters, as, for instance, Gm,l(·, ·; n) determining that G is a bivariate
polynomial function of order n. Subsequently, subindexes as well as the parameter will
be skipped in all those cases where they are not relevant. Let us also notice that all the
functions G have been defined such that

G
(
[A]

KA
,
[R])
KR

)
> 0 ⇐⇒ BEWARE([A], [R]) > basal level. (S77)
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In order to prove the existence of an implicit function determined by the equation
G(x, y) = 0 for each of these problems, we propose to check the next items:

a) for any x > 0, the equation
G(x, ·) = 0 (S78)

function has at least one root because G(x, 0) > 0 and limy→∞ G(x, y) = −∞ ,
b) for any (x, y) root of the equation (S78), then ∂G

∂y (x, y) < 0,

c) and, for any (x, y), the root of the equation (S78), then ∂G
∂x (x, y) > 0.

For instance, items a), b) and c) can be easily checked for Gr,t defined in (S73) thanks to
r < 1 < a. These ingredients allow us to conclude the proof easily. Assertion b) implies
the uniqueness of the roots stated in a) because G(x, ·) is strictly decreasing at any of them.
Since the partial derivative with respect to y is non-zero, the implicit function theorem
assures that, given a point (x1, y1) such that G(x1, y1) = 0, then in some small enough
neighbourhood of (x1, y1), there exists a parametrisation (x, f̃ (x)) such that G(x, f̃ (x)) = 0.
This really justifies that the function f̃ (x) is globally defined and unique. Finally, this
function is also monotone increasing because of b) and c), since

f̃ ′(x) = −
∂G
∂x
∂G
∂y

> 0 (S79)

Let us mention that the functions f̃ are independent of the affinity constants KA and KR

because of the initial change of variables x = [A]
KA

, y = [R]
KR

and Remark S1. Let us see that
these functions define the thresholds. Coming back to our original notation, the function f
stated in Proposition S2 takes the value expression given by (S71). These thresholds will
depend as much as from the cooperative relations between TFs: not cooperative/total coop-
erative (t) or partial cooperative (p) as from the recruitment (r) or stimulated (s) approaches
reason why we will add subindexes t/p, r/s to f function denoting any threshold, as it was
done in definition (S74). It is also true that the thresholds will depend on the number of
enhancers n, which will be introduced as a parameter dependence fm,l([A]; n). �

S5.1. Existence of Thresholds for Bifunctional Beware Operators in the Activator/Repressor
Framework

The rest of the Section is devoted to declaring the functions G determining the acti-
vation/repression thresholds and checking the hypothesis a)−−c) they have to verify in
order to conclude Proposition S2 for all the considered BEWARE models.

Proof of Proposition S2

• Stimulated BEWARE operator with null/total cooperativity (rbas > 0)
From definitions (S15) and the corresponding basal level, see Table S1, we obtain that
Equation (5) in this case study translates into

rbas
(

Basal([A], [R]); C)− 1
)
+ ν

(n)
maxPromoter([A], [R]); C) = 0 . (S80)

Replacing definition Basal and Promoter functions according to expressions (S40) and
(S41), equation (S80) leads to

Gs,t(x, y; n) (S81)

= rbas(ᾱ
n
s (cx, cy)− αn

s (cx, cy)) + ν
(n)
max
(

βn
s (cx, cy)− β̄n

s (cy)
)
= 0 ,

where x = [A]
KA

, y = [R]
KR

, ᾱs(X, Y) = 1 + X + r̃Y, αs(X, Y) = 1 + X + Y, β̄s(Y) =

ẽ + ẽr̃Y, βs(X, Y) = ẽ + X + ẽr̃Y. Let us assume in the subsequent that n ≥ 2 since
Proposition S2 is obviously true for n = 1. For simplicity, we will note αs = αs(cx, cy),
ᾱs = ᾱs(cx, cy), βs = βs(cx, cy) and β̄s = β̄s(cy). Using estimates (S55), it is easy to
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prove a), that is, Gs,t(x, 0; n) > 0 and lim
y→+∞

Gs,t(x, y; n) = −∞, so Equation (S81) has

at least one real root.
A similar procedure can be used in order to prove b). In this case,

sign
{

∂Gs,t

∂y

}
= sign

{(
rbas

(
r̃ᾱn−1

s − αn−1
s

)
+ ν

(n)
max ẽr̃

(
βn−1

s − β̄n−1
s

))}
. (S82)

Obviously, b) holds when n = 1 because r̃ < 1. When n > 1, let us observe that we
know that under certain circumstances the right-hand side on (S82) can be positive
by (S65). Nevertheless, we can prove that this does not occur at the solutions of (S81).
From (S65), we obtain by simple algebra

y
(

rbas

(
r̃ᾱn−1

s − αn−1
s

)
+ ν

(n)
max ẽr̃

(
βn−1

s − β̄n−1
s

))
= −rbas(1 + x)

(
r̃ᾱn−1

s − αn−1
s

)
− ν

(n)
max ẽ

(
βn−1

s − β̄n−1
s

)
− ν

(n)
maxxβn−1

s

< −(1 + x)
(

rbas

(
r̃ᾱn−1

s − αn−1
s

)
+ ν

(n)
max ẽr̃

(
βn−1

s − β̄n−1
s

))
. (S83)

On the other hand, we also can directly overestimate r̃ᾱn−1
s by taking r̃ = 1 since r̃ < 1

and ᾱs > 0 (
rbas

(
r̃ᾱn−1

s − αn−1
s

)
+ ν

(n)
max ẽr̃

(
βn−1

s − β̄n−1
s

))
≤

(
rbas

(
ᾱn−1

s − αn−1
s

)
+ ν

(n)
max ẽr̃

(
βn−1

s − β̄n−1
s

))
. (S84)

Since the upper bound in (S83) coincides with the upper bound in (S84) multiplied by
a negative constant, we can deduce that the right-hand side on (S82) is negative for
y > 0. That is, b) is verified.
In order to check c), we have that

sign
{

∂Gs,t

∂x

}
= sign

{(
rbas

(
ᾱn−1

s − αn−1
s

)
+ ν

(n)
maxβn−1

s

)}
. (S85)

Now, by using (S49) and (S81) as before, we obtain

(
ν
(n)
maxβn−1

s + rbas

(
ᾱn−1

s − αn−1
s

))
= ν

(n)
max

(
βn−1

s − Hn−1(αs, ᾱs)

Hn(αs, ᾱs)

(
βn

s − β̄n
s
))

= ν
(n)
maxβn−1

s

(
1− Hn−1(αs, ᾱs)

Hn(αs, ᾱs)
βs

)
+ ν

(n)
max

Hn−1(αs, ᾱs)

Hn(αs, ᾱs)
β̄n

s ,

which is trivially positive, thanks to Lemma S3 iii) using βs < αs from (S55). Hence,
∂Gs,t

∂x

∣∣∣∣
Gs,t=0
> 0. Thus, we can assert the existence of a unique increasing function f̃s,t such

that
Gs,t
(
x, f̃s,t(x; n); n

)
= 0 x ∈ (0, ∞) (S86)
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for any c > 0.

• Stimulated BEWARE operators with partial cooperativity (rbas > 0)
Now, in the case of BEWARE operators in the presence of partial cooperativity, the
proofs are much easier because we can take advantage of the direct activator/repressor
logic verified by these models as was stated in Lemma S2.
The expression defining the threshold condition (5) leads to:

BEWAREs([A], [R], [RNAP]; {A}cA , {R}cR)−
rbas

1 + KRP
[RNAP]

= 0 .

Then, multiplying this equation by 1 + KRP
[RNAP] times, the denominator of the basal and

promoter expressions, Dens([A], [R]), and substituting the corresponding expressions
of the basal and promoter functionals,(S43) and (S45), we obtain

0=Dens([A],[R])×

×
((

1+
KRP

[RNAP]

)
BEWAREs([A],[R],[RNAP]; {A}cA ,{R}cR)− rbas

)
= rbas(ᾱ

n
s (cAx, cRy)− αn

s (cAx, cRy) + (cA − 1)(γ̄n
s (cRy)− γn

s (cRy)))

+ ν
(n)
max
(

βn
s (cAx, cRy)− β̄n

s (cRy) + (cR − 1)
(
δn

s (cAx)− δ̄n
s
))

= Gs,p(x, y; n) , (S87)

where, in addition to the functions αs, ᾱs, βs and β̄s appearing in (S81), we now also
have γ̄s(Y) = 1 + r̃Y, γs(Y) = 1 + Y, δ̄s = ẽ and δs(X) = ẽ + X. Equation (S87) has at
least one real root for any x > 0, since Gs,p(x, 0; n) > 0 and lim

y→+∞
Gs,p(x, y; n) = −∞,

that is, a) holds.
We can now check b) and c) very easily by observing that

sign

{
∂Gs,p

∂y

∣∣∣∣
Gs,p=0

}
= sign

{
∂BEWAREs

∂[R]
([A],[R],[RNAP]; {A}cA ,{R}cR)

}
< 0 ,

sign

{
∂Gs,p

∂x

∣∣∣∣
Gs,p=0

}
= sign

{
∂BEWAREs

∂[A]
([A],[R],[RNAP]; {A}cA ,{R}cR)

}
> 0 ,

thanks to identities (S87) and Lemma S2 ii) proved in S4.2.

• Recruitment BEWARE operators with partial cooperativity
As it was introduced in Remark S6, the threshold equation, (5),translates directly to
(S72) for Recruitment BEWARE operators.
Then, by multiplying this equation by the denominator of the regulation factor (S42),
Denr([A], [R]), we obtain the equivalent expression

0 = Denr([A], [R])
(

Freg
(
([A], [R]); {{A}cA , {R}cR}

)
− 1
)

= ᾱr(cAx, cRy)n − αr(cAx, cRy)n + (cA − 1)(β̄r(cRy)n − βr(cRy)n)

+ (cR − 1)(γr(cAx)n − γ̄r(cAx)n) = Gr,p(x, y; n) (S88)

with ᾱr(X, Y) = (1 + aX + rY), αr(X, Y) = (1 + X + Y), β̄r(Y) = 1 + rY, βr(Y) =
1 + Y, γ̄r(X) = 1 + X and γr(X) = 1 + aX. Note that Equation (S88) verifies a) since
Gr,p(x, 0; n) > 0 and lim

y→+∞
Gr,p(x, y; n) = −∞ for any x > 0 thanks to a > 1 and r < 1

are assumed.
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In this case, the testing b)− c) is again trivial by using identities (S88) and Lemma S2
ii) as indicated

sign

{
∂Gr,p

∂y

∣∣∣∣
Gr,p=0

}
= sign

{
∂Freg

∂[R]
(
([A], [R]); {{A}cA , {R}cR}

)}
< 0 ,

sign

{
∂Gr,p

∂x

∣∣∣∣
Gr,p=0

}
= sign

{
∂Freg

∂[A]

(
([A], [R]); {{A}cA , {R}cR}

)}
> 0 .

�

S6. Elasticity

In this Section, the results linking the elasticity functions with perturbations (6) and
(7) can be found as well as the elasticity estimates summarised in Table 1 in the main
manuscript.

Lemma S4. The sense of variation of the threshold function under the affinity perturbation (6) is
determined by the elasticity function (8), by the expression

δ fm,l

δη
([A]; n)

∣∣∣∣
η=1

= fm,l([A]; n)
(

1− εm,l([A]; n)
)

.

Proof. This result is a trivial consequence of Equation (S71) because that expression allows
us to directly compute the variability of the threshold under perturbation (6)

∂ fm,l

∂η
([A]; n) =

∂

∂η

(
ηKR f̃m,l

(
[A]

ηKA
; n
))

= KR f̃m,l

(
[A]

ηKA
; n
)
− ηKR

[A]

η2KA
f̃ ′m,l

(
[A]

ηKA
; n
)

and consequently

δ fm,l

δη
([A]; n)

∣∣∣∣
η=1

= fm,l([A]; n)− [A] f ′m,l([A]; n) = fm,l([A]; n)
(
1− εm,l([A]; n)

)
,

where we have used f ′m,l([A]; n) = KR
KA

f̃ ′m,l

(
[A]
KA

; n
)

.

Corollary S1. The thresholds determined by stimulated and recruitment BEWARE operators
(m = s/r), (S15) and (S12), respectively, considering (S39)-(S45) (l = t/p) and assumption (S14),
change in the same manner under affinity and enhancers’ number reductions, that is (6) and (7)
since:

sign
δ fm,l

δη
([A]; n) = sign

(
Gm,l(x, y; n− 1)

∣∣
x= [A]

KA
,y=

fm,l ([A];n)
KR

)
,

= sign
(

fm,l([A]; n− 1)− fm,l([A]; n)
)

.

Furthermore, in both cases, the limit behaviours they would tend to in the case of very low affinities
(η → ∞) and on the case of one only available enhancer coincides, that is,

lim
η→∞

fm,l([A]; n) =
∂ fm,l

∂[A]
([A] = 0; n)[A] = fm,l([A]; 1).
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Proof. Combining Lemma S4 with expression (S79), we have that, for any BEWARE opera-
tor, it is verified

δ fm,l

δη
([A]; n) =

1
η

(
ηKR f̃m,l

(
[A]

ηKA
; n
)
− [A]

KR
KA

f̃ ′m,l

(
[A]

ηKA
; n
))

=
1

η
∂Gm,l

∂y

(
y

∂Gm,l

∂y
(x, y; n) + x

∂Gm,l

∂x
(x, y; n)

)∣∣∣∣
x= [A]

ηKA
,y=ηKR f̃m,l

(
[A]

ηKA
;n
)

which gives

δ fm,l

δη
([A]; n)

∣∣∣∣
η=1

=
1

∂Gm,l
∂y

(
y

∂Gm,l

∂y
(x, y; n) + x

∂Gm,l

∂x
(x, y; n)

)∣∣∣∣
x= [A]

KA
,y=

fm,l ([A];n)
KR

(S89)

Now, simple algebraic computations allow for rewriting this expression since

y
∂Gm,l

∂y
(x, y; n) + x

∂Gm,l

∂x
(x, y; n) = nGm,l(x, y; n)− nGm,l(x, y; n− 1) .

Let us remark that this expression is only valid in the stimulated approach if hypothesis
(S14) is assumed.

The first identity of the statement of this Corollary can be trivially deduced from these
expressions because

Gm,l(x, y; n)
∣∣
x= [A]

KA
,y=

fm,l ([A];n)
KR

= 0

holds by definition and, as mentioned in the proof of Proposition S2, it is also verified that:

∂Gm,l

∂y
(x, y; n)

∣∣∣∣
x= [A]

KA
,y=

fm,l ([A];n)
KR

< 0 .

The second identity is also obvious since

Gm,l(x, y; n− 1)
∣∣
x= [A]

KA
,y=

fm,l ([A];n)
KR

> 0 ⇐⇒ fm,l([A]; n) < fm,l([A]; n− 1) .

Let us now justify the thresholds limit in the case of very low affinity, that is, η → ∞

lim
η→∞

fm,l([A]; n) = lim
η→∞

η f̃m,l

(
[A]

ηKA
; n
)

=
KR
KA

[A] lim
η→∞

f̃m,l

(
[A]

ηKA
; n
)
− f̃m,l(0; n)

[A]
ηKA

=
KR
KA

f̃ ′m,l(0; n)[A] . (S90)

From (S79), we directly obtain f̃ ′(0) = −
∂G
∂x
∂G
∂y
(0, 0). By a direct substitution of G function

expressions for any BEWARE operator, we obtain

f̃ ′r,∗(0; n) =
a− 1
1− r

f̃ ′s,∗(0; n) =
ν
(n)
max ẽn−1

rbas(1− r̃)
=

ν
(1)
max

r̃bas(1− r)

respectively for the recruitment and stimulated approaches. Substituting these expressions
in (S90), we conclude the proof thanks to Remarks S6 and S7 in S5.

These formulas stated in this Corollary confirms that the reaction to perturbation (6) is
strongly related with the variation of the same threshold under perturbation (7). Indeed, in
all these expressions,

Gm,l(x, y; n− 1)
∣∣
x= [A]

KA
,y=

fm,l ([A];n)
KR

(S91)
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gives the value of the function G when the BEWARE operator has only n− 1 enhancers
evaluated on the threshold obtained for the same BEWARE operator but with n enhancers.
The sign of this computation is directly related to the relative positions of the thresholds for
n or n− 1 enhacers because of (S77).

Our last Lemma is devoted to showing how different the predicted behaviours are
to perturbations in affinity or the number of enhancers, that is, (6) or (7),depending on
the stimulated or recruitment approach adopted to deduce the BEWARE operator. Our
results suggest that, under the recruitment approach, the behaviour of the thresholds is
determined basically by the kind of binding cooperativity relationships between the TFs, in
the sense that, if some TF species cooperate only between them, then this is a competitive
advantage that perturbations (6)–(7) interrupt. On the other side, the thresholds deduced
from stimulated BEWARE operators are not only dependent on the cooperativity relations
but also on the value of the parameter ẽ. This, an a priori harmless parameter, has been
proven to change the threshold elasticities provoking qualitative different responses, that
is, it is able to alter the competitive advantages that cooperativities between TFs provide in
an unclear way. The elasticity can be analytically estimated for thresholds deduced from
BEWARE models for both stimulated and recruitment approaches in some cooperativity
specific regimes: null/total cooperativity and in those cases when either only activators or
only repressors can cooperate. All these estimates are collected in Table 1 in the main text.

Now, we focus on checking the elasticity estimates in Table 1 in the main text by
considering separately the recruitment and stimulated approaches.

S6.1. Deduction of Elasticity Estimates in Table 1 (Main Manuscript): Recruitment Case

As we have shown in (S72), the threshold functions for the recruitment operator with
total cooperativity are straight lines, independent from the number of enhancers n. Both
facts allow us to deduce the unit elastic character of those thresholds.

Imposing cA = 1 and cR > 1 in definition (S75), we obtain that the implicit equation
for the threshold fr,p(x; n) in the repressor cooperative case is

Gr,p(x, y; n)
∣∣
x= [A]

KA
,y=

fr,p([A];n)
KR

= ᾱn
r − αn

r + (cR − 1)(γn
r − γ̄n

r ) = 0 (S92)

where ᾱr, αr, γr and γ̄r are evaluated at the points
(
[A]
KA

, cR
fr,p([A];n)

KR

)
. Please note that, since

γr ≥ γ̄r by definition, then αr ≥ ᾱr and we can order the functions such as

αr ≥ ᾱr ≥ γr ≥ γ̄r . (S93)

The idea of the proof is to relate Gr,p(·, ·; n) with Gr,p(·, ·; n− 1) by considering the function

g(z) = z
n

n−1 . (S94)

It is trivial to see that, by the mean value theorem,

αn
r − ᾱn

r = g(αn−1
r )− g(ᾱn−1

r ) = g′(c)(αn−1
r − ᾱn−1

r ) =
n

n− 1
c

1
n−1 (αn−1

r − ᾱn−1
r ) (S95)

for a c ∈ R such as αn−1
r > c > ᾱn−1

r . The same goes for γn
r − γ̄n

r , where

γn
r − γ̄n

r =
n

n− 1
c̃

1
n−1 (γn−1

r − γ̄n−1
r ) (S96)

for a c̃ ∈ R such as γn−1
r > c̃ > γ̄n−1

r . Obviously, inequalities (S93) imply c > c̃. Taking this
relation into account, if we replace (S95)-(S96) in (S92), we obtain the following inequality

n
n− 1

c
1

n−1

(
ᾱn−1

r − αn−1
r + (cR − 1)(γn−1

r − γ̄n−1
r )

)
> 0 ,
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which implies
Gr,p(x, y; n− 1)

∣∣
x= [A]

KA
,y=

fr,p([A];n)
KR

> 0

and hence the inelastic character (εr,p < 1) of the threshold fr,p([A]; n) in the repressor
cooperativity case by Lemma S4 and Corollary S1.

Analogously, we obtain in the opposite regime, cR = 1 and cA > 1, that

Gr,p(x, y; n)
∣∣
x= [A]

KA
,y=

fr,p([A];n)
KR

= ᾱn
r − αn

r + (cA − 1)(β̄n
r − βn

r ) = 0

where now β̄r < βr < αr < ᾱ holds. Then, by using the function g in the same way, we can
prove:

Gr,p(x, y; n− 1)
∣∣
x= [A]

KA
,y=

fr,p([A];n)
KR

= ᾱn−1
r − αn−1

r + (cR − 1)(γn−1
r − γ̄n−1

r ) < 0 ,

which, using Lemma S4 and Corollary S1, proves the elastic character (εr,p > 1) of the
threshold fr,p([A]; n) whenever cR = 1 and cA > 1.

S6.2. Deduction of Elasticity Estimates in Table 1 (Main Text), Stimulated Case (n = 2)

Recalling from (S7) that the threshold fs,p(x; 1) is a straight line of slope m = ν
(1)
max

rbas
1

1−r̃
KR
KA

,
and evaluating the implicit threshold function (S87) on it, it is easy to check that

Gs,p(x, mx) = K0 + K1x + K2x2 (S97)

with

Ki =
2!

i!(2− i)!

(
rbas

(
(1 + mr̃)i − (1 + m)i + (cA − 1)

(
(r̃m)i −mi

))
+ν

(2)
max ẽ2

((
1
ẽ
+ mr̃

)i
− (mr̃)i + (cR − 1)

(
1
ẽ

)i
))

. (S98)

In the null cooperativity case, cA = cR = 1, we obtain K0 = K1 = 0 and in consequence

• Gs,p(x, mx) = 0 and ε = 1 ∀ x ≥ 0 ⇐⇒ K2 = 0 ⇐⇒ 1
ẽ =

(
2 + ν

(1)
max

rbas

)
:= t−1

1 ,

• Gs,p(x, mx) < 0 and ε < 1 ∀ x ≥ 0 ⇐⇒ K2 < 0 ⇐⇒ 1
ẽ < t−1

1 ,
• Gs,p(x, mx) > 0 and ε > 1 ∀ x ≥ 0 ⇐⇒ K2 > 0 ⇐⇒ 1

ẽ > t−1
1 .

In the repressor cooperativity regime, cA = 1 and cR > 1, it can be estimated that K0 =
0 , K1 > 0 and consequently

• Gs,p(x, mx) > 0 and ε > 1 ∀ x ≥ 0 ⇐⇒ K2 > 0 ⇐⇒ cR
ẽ >= t−1

1 .
• When K2 ≤ 0, which happens if and only if cR

ẽ ≤ t−1
1 ,we obtain

– Gs,p(x, mx) ≥ 0 and ε ≥ 1 for 0 ≤ x ≤ 2 cR−1
1
˜t1
− cR

ẽ
:= h1

KA
,

– Gs,p(x, mx) < 0 and ε < 1 ∀x > h1
KA

,

t1 =

(
2 + ν

(1)
max

rbas

)−1
and t2 =

(
d2 + ν

(1)
max

rbas

cA(1+r̃)+2r̃
1−r̃

)−1
being described in Table 1 in the

main text.
Finally, in the case activators’ cooperativity regime, cA > 1 and cR = 1, we obtain

K0 = 0 , K1 < 0 and consequently

• Gs,p(x, mx) < 0 and ε < 1 ∀ x ≥ 0 ⇐⇒ K2 < 0 ⇐⇒ 1
ẽ < 2 + cA(r̃+1)+2r̃

1−r̃
ν
(1)
max

rbas
:= t−1

2 .

• When K2 ≥ 0 , which occurs if and only if 1
ẽ ≥ t−1

2 , then we have that

– Gs,p(x, mx) ≤ 0 and ε ≤ 1 for 0 ≤ x ≤ 2 cA−1
1
ẽ−

1
t2

:= h2
KA

,
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– Gs,p(x, mx) > 0 and ε > 1 ∀ x > h2
KA

.

Let us mention that the proof of the total cooperativity case is analogous to the proof of the
null cooperativity case.

In summary, the elasticities of the thresholds of the stimulated operator with two
enhancers depend not only on the cooperativity considered, but also on the rest of the

model parameters in terms of the quantities: t1 =

(
2 + ν

(1)
max

rbas

)−1
, h1 = 2KA

cR−1
1
t1
− cR

ẽ
, t2 =(

2 + ν
(1)
max

rbas

cA(1+r̃)+2r̃
1−r̃

)−1
, h2 = 2KA

cA−1
1
ẽ−

1
t2

.

S7. Threshold Sensitivity Analysis with Hill Type Operators

Please note that the previous sensitivity analysis can be also applied in the Hill
modelling framework. That is, making the reduction to the global Activation and Repressor
variables,

lim
c→∞

Kd=cte
Freg
(
([A], [R]); {{A, R}c}

)
=

1 +
(

a [A]
Kd

+ r [R]Kd

)n

1 +
(
[A]
Kd

+ [R]
Kd

)n , (S99)

lim
c→∞

Kd=cte
Basal

(
([A], [R]); {{A, R}c}

)
=

1 +
(
[A]
Kd

+ [R]
Kd

)n

1 +
(
[A]
Kd

+ [R]
Kd

)n , (S100)

lim
c→∞

Kd=cte
Promoter

(
([A], [R]); {{A, R}c}

)
=

(
[A]
Kd

+ ẽr̃ [R]Kd

)n
−
(

ẽr̃ [R]Kd

)n

1 +
(
[A]
Kd

+ [R]
Kd

)n ,

and

lim
c→∞

Kd=cte
Freg
(
([A], [R]); {{A}c, {R}c}

)
=

1 +
(

a [A]
Kd

)n
+
(

r [R]Kd

)n

1 +
(
[A]
Kd

)n
+
(
[R]
Kd

)n , (S101)

lim
c→∞

Kd=cte
Basal

(
([A], [R]); {{A}c, {R}c}

)
=

1 +
(
[A]
Kd

)n
+
(

r̃ [R]Kd

)n

1 +
(
[A]
Kd

)n
+
(
[R]
Kd

)n , (S102)

lim
c→∞

Kd=cte
Promoter

(
([A], [R]); {{A}c, {R}c}

)
=

(
ẽr̃ [R]Kd

)n

1 +
(
[A]
Kd

)n
+
(
[R]
Kd

)n , (S103)

where we can deduce the threshold implicit function

GH
∗,∗(x, y; n) |

x= [A]
Kd

,y=
f H∗,∗([A];n)

Kd

= 0 , (S104)

with f H
∗,∗([A]; n) the threshold function for the Hill modules. Moreover, Lemma S4 is also

fullfilled in this case, where it is easy to check that all thresholds’ functions are straight
lines in the [A]− [R] plane, and hence ε = 1. In order to prove that f H

∗,∗([A]) are linear for
all the Hill BEWARE operators (S99)-(S103), we need to first obtain the implicit equation
for each threshold. Following the same procedure done in the non-extreme cooperativity
case, we obtain

GH
r,t(x, y; n) = (ax + ry)n − (x + y)n , (S105)

GH
s,t(x, y; n) = rbas

(
(x + r̃y)n − (x + y)n)+ ν

(n)
max
(
(x + ẽr̃y)n − (ẽr̃y)n) , (S106)

GH
r,p(x, y; n) = (rn − 1)yn + (an − 1)xn (S107)
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and
GH

s,p(x, y; n) = rbas(r̃n − 1)yn + ν
(n)
maxxn . (S108)

Since all these functions are homogeneous, that is, GH(x, y; n) = xnGH(1, y/x; n), it is
straightforward to check that(

y
∂GH
∗,∗

∂y
(x, y; n) + x

∂GH
∗,∗

∂x
(x, y; n)

)
= nGH

∗,∗(x, y; n)

which means, from Equation (S89), that the threshold is a straight line in the [A] − [R]
plane, and hence ε = 1 from Lemma S4.

However, it is important to note that Collorary S1 is not fulfilled in general, and the
dependence of f H

∗,∗([A]; n) with the number of enhancers varies depending on different
parameter relations in the Hill versions of the Recruitment and Stimulated BEWARE
operators.

S8. Parameters

Table S3. Parameters used in Figure 2 in the main manuscriptfor the Recruitment BEWARE operator
with partial cooperativity.

Parameter Value

CB (nMmin−1) 1
KRP/[RNAP] (a.u) 1
cA (a.u) 25
cR (a.u) 100
a (a.u) 4.7

Parameter Value
r (a.u) 0.2
KA (nM) 0.8
KR (nM) 0.8
n (a.u) 3

Table S4. Parameters used in Figure 3 in the main text for the Stimulated BEWARE operator with
null cooperativity under perturbations (6) and (7) in the main text. These parameters have been
adopted from [16].

Parameter (present work) Parameter (in [16]) ε > 1 ε = 1 ε < 1
ẽ (a.u) 0.5εA 0.1 0.25 0.5
r̃ (a.u) ρ = 0.5εR 0.5 0.5 0.5
rbas (nMmin−1) SXB 50 50 50

ν
(1)
max (nMmin−1) SXA 100 100 100

KA (nM) KA1 = KA2 4 4 4
KR (nM) KR1 = KR2 1 1 1
c (a.u) cA = cR = cAR 1 1 1
KRP/[RNAP] (a.u) 1 1 1
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Table S5. Parameters used in Figure S1 for the Recruitment BEWARE operator with total cooperativ-
ity (inverse logic case).

Parameter (A) (B)

CB (nMmin−1) 1 1
KRP/[RNAP] (a.u) 1 1
c (a.u) 400 400
a (a.u) 1.1 2.5
r (a.u) 0.1 0.9
KA (nM) 20 100
KR (nM) 100 20
n (a.u) 3 3
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