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Abstract: Mexico is among the five countries with the largest number of reported deaths from
COVID-19 disease, and the mortality rates associated to infections are heterogeneous in the country
due to structural factors concerning population. This study aims at the analysis of clusters related
to mortality rate from COVID-19 at the municipal level in Mexico from the perspective of Data
Science. In this sense, a new application is presented that uses a machine learning hybrid algorithm
for generating clusters of municipalities with similar values of sociodemographic indicators and
mortality rates. To provide a systematic framework, we applied an extension of the International
Business Machines Corporation (IBM) methodology called Batch Foundation Methodology for Data
Science (FMDS). For the study, 1,086,743 death certificates corresponding to the year 2020 were
used, among other official data. As a result of the analysis, two key indicators related to mortality
from COVID-19 at the municipal level were identified: one is population density and the other
is percentage of population in poverty. Based on these indicators, 16 municipality clusters were
determined. Among the main results of this research, it was found that clusters with high values of
mortality rate had high values of population density and low poverty levels. In contrast, clusters
with low density values and high poverty levels had low mortality rates. Finally, we think that
the patterns found, expressed as municipality clusters with similar characteristics, can be useful for
decision making by health authorities regarding disease prevention and control for reinforcing public
health measures and optimizing resource distribution for reducing hospitalizations and mortality.

Keywords: clustering; COVID-19; Data Science; Data Science methodology; epidemiology; machine
learning; pandemic; unsupervised learning

MSC: 62H30; 62R07; 68T09; 91C20

1. Introduction

The public health impact of the ongoing COVID-19 pandemic has been estimated
globally by the number of reported COVID-19 deaths and estimates of excess mortality in
different populations and locations [1].

Given the availability of public epidemiological data on COVID-19 in many countries,
several studies have focused on the analysis of patterns of similarity in incidence and mor-
tality rates of COVID-19 and clustering by geographical areas [2,3]. Some of the approaches
of these studies have been the analysis of temporal trends of mortality rates [4–7] as well
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as the identification of geospatial patterns and critical points of mortality rates and their
relationship with socioeconomic, political and environmental variables [8–11]. A recent
study evaluated the spatial pattern of the COVID-19 mortality rate as well as hotspots
and health and socioeconomic predictor variables in contiguous United States counties,
finding that hotspots for COVID-19 mortality 19, as well as socioeconomic variables, are
primarily delineated in the south, Midwest, and northeast of the contiguous United States.
COVID-19 mortality exhibited a positive and significant association with poverty, black
race, and minority ethnicity [12].

Additionally, in most studies, the exploration of clustering algorithms has been per-
formed to predict the risk of spreading COVID-19 [13–20]. Some studies have used clus-
tering algorithms to analyze COVID-19 mortality data for various countries and territo-
ries [21–25]. Of these studies, only one has been carried out in the Latin American region, in
which groups were formed within ten South American countries according to the number
of infected cases and deaths from COVID-19 through principal component analysis [25].

Mexico is the country ranked fifth with the highest number of COVID-19 deaths in
the world, after the United States, Brazil, India and Russia, with 324,334 deaths recorded
as of early May 2022 [26]. The most recent estimate of sex- and age-specific case fatality
rate for COVID-19 in Mexico was reported at 0.47% considering deaths based on death
certificates up to November 2020 and 0.30% using sentinel surveillance-based deaths,
which is comparable with Infection case Fatality Rates (IFR) observed in countries such as
Brazil [27]. Likewise, a great heterogeneity of IFRs has been reported within the country [28],
so structural factors of the population such as population density and socioeconomic
level [29] and the response of the system could be influencing this heterogeneity [30,31].

In the context of Mexico, to the best of our knowledge, few studies have explored
the characterization of the geographic patterns of mortality for COVID-19 as well as the
socioeconomic determinants that could be related to the mortality clusters found. The
exploration has been at the state level with excess data of mortality and risk of death among
individuals diagnosed with COVID-19 until April 2020. In 2021, Dahal et al. evaluated
the geospatial variability of all-cause excess mortality at the state level and its relationship
to sociodemographic and climatic factors using Serfling regression models and multiple
linear regression analyses [32]. Additionally, in 2021, Ramírez et al. analyzed the risk of
mortality from COVID-19 and its association with spatial predictors at the state level. This
was carried out using statistical methods and spatial clustering through local indicators of
spatial autocorrelation [9].

Therefore, the objective of this research was to perform cluster analysis of COVID-
19 mortality related to sociodemographic factors at the municipal level in Mexico. We
used the hybrid variant OK-means++ clustering algorithm to determine not only one
but a set of factors that altogether could be considered as the main determinants related
to the mortality clusters. To this end, we selected 1,086,743 available death certificates
from the year 2020, census data for 2020, geographic and socioeconomic information of
2469 municipalities, among other official data sets. From our experiments, we identified
two relevant factors that correspond to two indicators: population (density) and poverty
percentage for municipalities. Based on the two indicators, a set of clustering experiments
was designed and implemented using different parameter configurations. For each solution,
the mean mortality rate for cluster was determined. The solution whose clusters had the
best separation of values of the mortality average were selected. As a result of analyzing
the best clustering solutions, on the one hand, it was found that the clustering with high
population density and low poverty level had a high COVID-19 mortality rate. On the other
hand, clustering with low population density and high poverty level had a low mortality rate.
We think that our analysis approach is simple and applicable to other countries, in particular
those of Latin America because they have conditions that are similar to those of Mexico.

The results of this study, using a methodology that combines the most relevant aspects
of epidemiology within a Data Science framework, provide valuable information about re-
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lations between mortality due to COVID-19 and sociodemographic factors at the municipal
level in Mexico.

The structure of this article is organized as follows. Section 2 elaborates the detailed
methodologies. Section 3 reports the results obtained from cluster analysis, discusses the
main results of the study, and described the strengths and limitations. Conclusions and
ideas for future research are given in Section 4.

2. Methodology

Data Science is an emerging discipline with few development methodologies. Accord-
ing to [33], there are two methodologies proposed by the industry: the Team Data Science
Process [34] proposed by Microsoft (Redmond, WA, USA) and the Foundation Methodol-
ogy for Data Science proposed by IBM (Armonk, NY, USA). Microsoft’s methodology has a
high link with its commercial products, while IBM’s methodology does not show a direct
link with its products, which makes it more general.

For carrying out this research, we relied on the Batch FMDS [35] methodology, which
is a variant of the methodology proposed by IBM [36]. Specifically, in this article, basic
concepts of epidemiology were combined with particularities of data preparation and
modeling of Data Science. In this way, we followed a systematic process that allowed us
to have a better understanding of the mortality indicators for COVID-19 in Mexico at the
municipal level. Figure 1 shows the sequence of tasks from posing the research question
in the Business understanding task to Data visualization and Knowledge extraction. The
following subsections describe the tasks of Business understanding, Data collection, Data
preparation, and Modeling.
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2.1. Business Understanding

According to the Data Science methodology, it is necessary at the project outset to
formulate the research question and objectives.

The question of this research was the following: what sociodemographic factors have
in common those municipalities clusters in Mexico for COVID-19 in the year 2020?

The objective of the research consisted in applying a methodological approach of
Data Science for generating clusters of Mexican municipalities with similar determinant
sociodemographic indicators and mortality rates for COVID-19 in 2020.

2.2. Data Collection

For our study, data from six official sources were obtained. Table 1 includes the name
of the source or responsible institution, the name of the dataset used, and the number of
records of each dataset.
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Table 1. Data source and its official source.

Source Dataset Number of Records

DGIS (Dirección General de
Información Sanitaria) Death records 2020 [37] 1,086,743

INEGI (Instituto Nacional de
Estadística y Geografía)

Population and housing
census 2020 [38] 195,662

AGEE (Áreas Geoestadísticas
Estatales)

Latitude, longitude and
altitude records [39] 14,483

CEMECE (Centro Mexicano para
la Clasificación de Enfermedades)

International catalogue of
diseases [40] 300,689

CONEVAL (Consejo Nacional de
Evaluación de la Política de
Desarrollo Social)

Poverty indicators 2020 [41] 2469

SNIM (Sistema Nacional de
Información Municipal)

Municipal information
records [42] 2469

2.3. Data Preparation

This subsection describes the criteria for data inclusion and exclusion as well as its
preprocessing for creating a data warehouse.

Those municipalities with populations smaller than 100,000 inhabitants were excluded
as well as those that did not have recorded deaths from COVID-19. The number of
municipalities selected for this study was 233.

Regarding death records, the deaths included were those whose death code was U071
(COVID-19, virus identified) or U072 (COVID-19, virus not identified) and whose normal
residence was one of the municipalities selected. Records whose age attribute was smaller
than 15 years were excluded.

Table 2 shows for each dataset which attributes were selected for the study.

Table 2. Attributes selected for each dataset.

Dataset Attributes

Population and housing census 2020 State code, state name, municipality code,
municipality name, total population, and age.

Death records 2020 State code, municipality code, death cause, and
deceased age.

Spatial geostatistical areas State code, municipality code, decimal latitude,
decimal longitude, and altitude.

International catalogue of diseases Disease code.

Poverty indicators 2020 State code, municipality code, percentage of
population in poverty.

Municipal information State name, municipality name, and municipality
area in km2.

For each municipality, the mortality rate for COVID-19 was calculated for each
100,000 inhabitants for the year 2020 by using Formula (1):

rate =
death

population
∗ 100, 000 (1)

The calculation of population density was calculated by using information of the total
population and the area of the municipality and using Formula (2):

population density =
land area

population
(2)
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The values of latitude, longitude, average age, percentage of inhabitants in poverty,
and mortality rate were normalized according to Formula (3):

X′ =
x− xmin

xmax − xmin
(3)

x = to be normalized
xmax = maximal value
xmin = minimal value

As a result of the preparation of data, the data warehouse was built as shown in Table 3.

Table 3. Attributes of the data warehouse.

Attribute_Id Attribute

1 State code
2 State name
3 Municipality code
4 Latitude
5 Longitude
6 Altitude
7 Area
8 Total population
9 Total deaths from COVID-19
10 Average age
11 Mortality rate
12 Percentage of inhabitants in poverty
13 Population density

2.4. Modeling

In this step, tests were conducted using different algorithms for making sure that the
variables used were really necessary. The success of data collection, preparation and modeling
depends on the understanding of the problem and the adequate analytic approach selected.

It is known that several techniques for the analysis of clusters have been used suc-
cessfully for increasing the knowledge on the COVID-19 disease from large datasets that
have been collected. Some of these techniques are hierarchical and partitional algorithms.
Examples of partitional algorithm are Fuzzy C-means, K-medoids and K-means. The
K-means algorithm has been preferred above other clustering algorithms because of the
ease that it provides for interpreting its results and its theoretical foundation [3]. In
particular, it has been used in several research studies on contagion and mortality from
COVID-19 [7,22,23,43–46]. In most of the research projects, computational implementations
of the standard K-means have been used, which are included in software packages such as
SPSS and Statistica or are implemented in languages such as R and Python [7,22,44–46].

In contrast, in this article, we are proposing a new hybrid variant of the K-means clus-
tering algorithm [47–49], which based on experimental results, outperforms the standard
algorithm concerning solution quality and number of iterations (or computational time).
This variant, which we will call OK-means++, integrates an algorithm for the optimized
selection of the initial centroids, called k++ [50], and an algorithm for accelerating the
convergence of the K-means algorithm called OK-means [51].

The K-means clustering algorithm is one of the most important, widely studied and
utilized algorithms [49,52]. Its popularity is mainly due to the ease that it provides for the
interpretation of results. This algorithm is an iterative method that consists in partitioning a
set of n objects into k ≥ 2 clusters, so that the objects in one cluster are similar to each other
and different from those of other clusters [51]. The formulation of the K-means algorithm
is described next:

Let X = {x1, . . . , xn} be the set of n objects to be partitioned according to a similarity
criterion, where xi ∈ <d for i = 1, . . . , n and d ≥ 1 is the number of dimensions. Additionally,
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let k ≥ 2 be an integer number and K = {1, . . . , k}. For a k-partition P= {G(1), . . . , G(k)} of X, vj
denotes the center of cluster G(j), for j ∈ K, and let V = {v1, . . . , vk} and W = {w11, . . . , wij}.

Expression (4) shows the clustering problem as an optimization problem [53]:

P : minimize z(W, V) =
n

∑
i=1

k

∑
j=1

wijD
(
xi, vj

)
(4)

subject to
k

∑
j=1

wij = 1, for i = 1, . . . , n,

wij = 0 or 1, for i = 1, . . . , n and j = 1, . . . , k,

where wij = 1⇔ object xi is a member of cluster G(j) and D(xi, vj) denotes the Euclidian
distance between xi and vj for i = 1, . . . , n and j = 1, . . . , k.

The k++ algorithm, proposed in [50], initializes the cluster centroids of the K-means
algorithm by selecting objects from the set of data that are the farthest from each other in a
probabilistic way. This method accelerates convergence, thus theoretically guaranteeing it
to be O(log k).

The OK-means algorithm [51] accelerates the convergence process by stopping the
algorithm when the number of objects that change cluster membership in an iteration
is smaller than a threshold. The value of the threshold expresses a relation between the
computational effort and the solution quality.

The pseudocode of the hybrid variant OK-means++ is shown in Algorithm 1. Given
a set of data X and the value of k, it generates the optimized set of centroids (lines 1–9)
according to algorithm k++. From lines 10 through 23, the pseudocode of the OK-means
algorithm is shown. At line 10, the threshold value is assigned for the OK-means algorithm,
which in our case was set to 0.72. At line 15, γ represents the percentage of objects that
change cluster membership at iteration t, and it was calculated as follows: γt = 100(ot/n),
where ot is the number of objects that change cluster membership.

Algorithm 1: OK-means++.

1 Initialization:
2 X:= {x1, . . . , xn};
3 Assign the value for k;
4 V:= Ø;
5 V:= V U {v1};//Select randomly the first centroid v1 from set X.
6 for i = 2 to k do
7 Select the i-th centroid vi from X with probability D(xi, vj)/∑xεX D(xi, vj);
8 V:= V U {vi};
9 V:= {v1, . . . , vk};
10 εok:= value of the threshold for determining the convergence;
11 Classification:
12 for xi ε X and vk ε V do
13 Calculate the Euclidian distance from each xi to the k centroids;
14 Assign object xi to the closest centroid vk;
15 Calculate γ;
16 Centroid calculation:
17 Calculate the new centroids of set V;
18 Convergence:
19 if (γ ≤ εok) then
20 Stop the algorithm;
21 else
22 Go to Classification
23 End of algorithm
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The experimental analyses with the OK-means++ algorithm performed here were
carried out using a computer with the following characteristics: (i) OS: Windows 10 Home;
(ii) RAM: 8 Gigabytes; and (iii) Processor: Intel® CoreTM i7-7700. The OK-means++
algorithm was implemented by the authors in C language using the GCC 7.4.0 compiler.

For the visualization, a computer with the following characteristics was used: (i) OS:
Windows 10 for 64 bits; (ii) RAM: 16 Gigabytes; (iii) Processor: 11th Gen intel(R) Core (TM)
i7-1165G7. To display the municipalities on a map of the Mexican Republic, the software
package “Mapa Digital de México para escritorio versión 6.3” [54] was used.

3. Applications

This section is divided into two subsections, the Results and the Discussion. The first
shows the results of the Cluster analysis, Data visualization and Knowledge extraction
tasks. In the second subsection, we contrast our results with other related research.

3.1. Results

In this subsection, the main results obtained from cluster analysis are described. Sev-
eral clustering experiments were conducted using different configurations and attributes.
For example, experiments were performed which included the latitude, longitude and
altitude of municipalities; however, it was not found that they were determinant, so they
were excluded. In particular, it was observed that population density and percentage of
population in poverty were determinant for generating clusters whose elements had similar
values of mortality rate for COVID-19.

For visualizing the distribution of municipalities according to population density and
poverty percentage, the graph of Figure 2 was generated, which shows municipalities
represented by dots. The values of the attributes are normalized in the range from 0 to 1.
Notice that most of the dots have low values of population density. Additionally, the dots
show that the values of poverty are more dispersed.
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Table 4 shows the clustering results for 233 municipalities in a partition of 16 clusters.
The first three rows correspond to the clusters with the highest mortality rates, and the last
three rows correspond to the lowest mortality. These clusters are called extreme clusters.
The first column contains the cluster identifier, the second and third columns include the
cluster centroids, which have population density and percentage of poverty as attributes.
The fourth column shows the number of municipalities in each cluster, and the last column
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includes the average mortality rate of the municipalities in the cluster. The values of the
last two columns were determined after the clustering.

Table 4. Results of the clustering.

Cluster Population
Density

% of Population
in Poverty

Number of
Municipalities

Average Mortality
Rate of Cluster

0 0.9138 0.0264 3 0.7970
12 0.7223 0.2059 6 0.5524
7 0.1995 0.1509 7 0.2471
9 0.1947 0.3491 21 0.2463
8 0.4734 0.6696 2 0.2420
3 0.4250 0.4042 8 0.2365
11 0.9717 0.4515 2 0.2103
14 0.0345 0.1630 25 0.2037
13 0.1393 0.3910 18 0.1911
1 0.0399 0.2401 30 0.1889
15 0.0032 0.3271 30 0.1571
5 0.0059 0.4185 25 0.1437
6 0.0270 0.6145 33 0.1316
2 0.9108 0.6982 1 0.0714
10 0.0089 0.7676 19 0.0579
4 0.0009 0.9582 3 0.0080

Figure 3 allows visualizing the distribution of the cluster centroids and the municipalities
close to the centroids. Some of the centroids are overlapped in the areas of high dots density.
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Table 5 includes only the extreme clusters (distinguished with colors) from Table 4 for
facilitating their identification.

In order to visualize the distribution of municipalities in extreme clusters, the graph
in Figure 4 was generated, which shows municipalities represented by dots and cluster
centroids denoted by crosses. The color of each dot corresponds to the color of the cluster of
which the municipality is a member. It is worth mentioning that the cluster with the highest
mortality rate lies in the lower right corner, while the cluster with the lowest mortality rate
is in the upper left corner.
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Table 5. Extreme clusters.

Cluster Population
Density

% of Population
in Poverty

Number of
Municipalities

Average Mortality
Rate of Cluster

0 0.9138 0.0264 3 0.7970
12 0.7223 0.2059 6 0.5524
7 0.1995 0.1509 7 0.2471
2 0.9108 0.6982 1 0.0714

10 0.0089 0.7676 19 0.0579
4 0.0009 0.9582 3 0.0080
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Figure 4. Distribution of municipalities in extreme clusters.

Table 6 shows the municipalities that are members of each of the following clusters: 0,
12, 7, 2, 10 and 4.

Figure 5 shows a map of Mexico where each municipality is highlighted according to
the cluster where it is a member. Square (a) includes several municipalities of the state of
Nuevo León; notice that these municipalities have high mortality values. Square (b) contains
the municipality of Guadalajara, which also has a high mortality level. Square (c) comprises
the three municipalities of the cluster with the highest mortality rates, the highest population
densities and the lowest percentages of population in poverty. Notice the contrast to the
municipalities in square (d), where those painted in orange are the ones in the cluster with the
lowest mortality rate, the lowest population density and the highest percentage of population
in poverty. Magnified reproductions of these squares are shown in Figure 6.
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Table 6. Municipalities in each of the extreme clusters.

Municipality Density % of Population
in Poverty

Average Mortality
Rate of Municipality

Benito Juárez 16,079.74 7.90 935.845
Iztacalco 17,595.43 25.20 696.327
Cuauhtémoc 16,541.94 20.90 634.933
Azcapotzalco 12,711.91 24.20 915.769
Miguel Hidalgo 9010.22 13.50 858.687
Coyoacán 11,378.65 27.10 471.318
Gustavo A. Madero 13,333.53 33.80 410.278
Guadalajara 9176.35 24.80 392.962
Venustiano Carranza 13,050.12 30.00 95.334
San Nicolás de los Garza 6869.98 10.80 575.935
Ciudad Madero 4290.27 23.40 393.332
Monterrey 3516.90 19.20 379.530
Guadalupe 5450.36 15.80 151.444
Apodaca 2746.71 14.20 113.030
General Escobedo 3186.84 25.00 20.157
San Pedro Tlaquepaque 6135.06 27.40 11.206
Chimalhuacán 16,027.11 68.90 68.634
Huejutla de Reyes 321.78 65.40 131.723
Comitán de Domínguez 169.92 68.80 125.769
Taxco de Alarcón 162.19 75.00 113.651
Ixtlahuaca 476.60 76.40 105.533
San Felipe del Progreso 392.75 75.40 84.872
Macuspana 65.29 69.30 76.923
San Martín Texmelucan 1730.42 65.30 62.926
Chilapa de Álvarez 164.96 75.20 54.154
San Andrés Tuxtla 169.73 79.30 48.637
Huauchinango 414.13 68.40 47.140
San Cristobal del las Casas 547.90 66.10 45.397
Palenque 45.80 69.90 38.559
Centla 40.00 76.80 38.058
Villaflores 57.62 69.50 21.911
Almoloya de Juárez 1269.55 26.60 19.475
San José del Rincón 205.09 77.00 18.984
Papantla 109.83 69.70 11.882
Hidalgo 109.98 66.30 8.750
Villa Victoria 255.18 71.90 6.470
Ocosingo 24.73 92.50 14.063
Las Margaritas 46.78 94.10 10.636
Chamula 295.56 96.30 0.981
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3.2. Discussion

The results of this study, through a methodology that combines the most relevant
aspects of epidemiology within a Data Science framework, provide valuable information
on clustering of the COVID-19 mortality according to sociodemographic factors at the
municipal level in Mexico. This allows us to characterize the shapes of COVID-19 mortality
rate curves in different clusters that describe the geospatial variability in mortality rates.

Among the previous studies that have used clustering algorithms to analyze mortality
data from COVID-19, as in our study, but for several countries, there is that of Cerqueti et al.
2022, in which the analysis of conglomerates of 35 countries was carried out selected based
on new deaths per million COVID-19 data and using a K-means approach to clustering. In
this study, the main determinants for the grouping between countries were the days with
peak deaths, the stability of the number of victims and the waves of COVID-19 endured,
which showed similarities and divergences between the countries described by the results
of the procedure grouping [21]. Gohari et al. propose a three-step approach to pool specific
COVID-19 mortality trends for 203 countries and territories, and they consider a K-means
pooling algorithm as well. As a relevant finding, they report that countries such as Germany,
Greece, Canada, the Russian Federation, Ukraine, and Mexico apparently had more success
in controlling the spread of the disease than in patient survival [3].

Likewise, Garg et al. grouped 208 countries with similar values of risk factors for
COVID-19 using an unsupervised machine learning model (K-means) and determined as
shared risk factors in the countries grouped with the highest mortality rate by COVID-
19, a high median age, as well as a high proportion of people over 65 years of age, a
high gross domestic product (GDP) per capita, low population, greater population of
women smokers, considerable number of hospital beds per 1000, and human development
index [22]. Cornelius et al. evaluated the prediction of COVID-19 patient mortality using
demographics data in the United States through a machine learning approach. Clustering
K-means allowed them to observe clear trends of minority older people in the northeast and
south who are at elevated risk of COVID-19 mortality and to rank the severity of outcome
for COVID-19 patients [23].

Another study conducted by Vahabi et al. evaluated the growth trajectories of the
COVID-19 mortality/incidence ratio and found contiguous United States county-level
clusters with similarities over time. In this study, cardiac complications and cancer were
statistically significant pre-existing comorbidities related to the mortality/incidence ratio of
COVID-19 in the United States. Tuberculosis, drug use disorder, Human Immunodeficiency
Virus (HIV)/Acquired Immunodeficiency Syndrome (AIDS), diabetes and hepatitis were
explicitly associated with a higher probability of being in the most vulnerable group [24].

In the Latin American context, Martin-Barreiro et al. 2021 used disjoint and functional
principal components analysis to classify ten South American countries (Argentina, Bolivia,
Brazil, Chile, Colombia, Ecuador, Peru, Paraguay, Uruguay and Venezuela) with respect
to the number of infected and deaths due to COVID-19. In addition, they designed an
algorithm that allows summarizing the multivariate methods used to detect changes in
the data using a sensor and thus have an updated analysis. Finally, they carried out an
analysis of alternating clusters of k-means for the formation of groups within the countries,
highlighting more reliable results with the analysis of principal components [25].

The research question that was formulated in this study was the following: what
sociodemographic factors do the Mexican municipalities with similar mortality rates have
in common? One of the remarkable results of the study was uncovering that the indicators
of population density and percentage of population in poverty are related to the mortality
rates for COVID-19 at the municipal level. Because such indicators are constituted by
other factors, they allowed us to indirectly measure other variables. For example, high
population density is associated with factors such as mobility in mass transport systems
such as subways and commuter trains, among others. It was observed that there exists
a high direct correlation between mortality rate and percentage of population density.
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However, an inverse correlation was found between mortality rate and percentage of
population in poverty.

This relationship between COVID-19 mortality rates and low percentage of poor was
recently reported by Yao et al., where they found higher COVID-19 mortality rates in high-
income or developed countries associated with multiple factors, including transportation,
population density and population aging [55]. Similarly, the direct correlation between
mortality rate and population density found in the present study is supported by Chang
et al., who show that population density has a significantly positive effect on confirmed
deaths, confirming that this demographic factor plays a facilitating role in the speed of
spread of the virus [56].

Our findings are backed by previous national and international studies that have found
geographic clusters of infections, hospitalizations and deaths from COVID-19 [57–60].

Individual risk factors or a combination, such as a high population density and a
high proportion of vulnerable population, may influence the spatial clustering of people
infected with COVID-19, which increases the risk in close neighboring municipalities [10,61].
Similarly, the mobility of residents in very densely populated areas may facilitate the
introduction, propagation and persistence of COVID-19. Thus, it has been reported that
population density might be an indicator of a high rate of contact due to mobility rather
than physical proximity [62].

In the context of Mexico, similar findings have been reported in previous studies
in relation to the association between higher mortality rates for COVID-19 and higher
population density and overcrowding conditions. Ríos et al. found that patients lived in
municipalities with the highest overcrowding had a higher risk of dying from COVID-19
as compared to those who lived in a municipality with low overcrowding [63]. Likewise,
Contreras et al. and Villa et al. reported population density as a factor associated to higher
mortality rates and adverse results for COVID-19, respectively [64,65].

Initially in Mexico, the propagation of COVID-19 started among people of a high
socioeconomic level that live in the most developed municipalities of the country. Consid-
ering that the hospital and diagnosis infrastructure is concentrated in large cities, therefore,
records of positive diagnosis and access to hospital treatment and death from COVID-19 at
hospitals were more prevalent in municipalities with a high-income level. In agreement,
a study where the level of social deprivation was evaluated which estimates social dis-
advantage and structural inequality at the municipal level based on census data found a
rural–urban dissociation of factors that affecting mortality from COVID-19 in Mexico.

In contrast to what was found in the previous study, as the pandemic evolved, some stud-
ies have documented that living in municipalities with overcrowding conditions is associated
with a higher risk of mortality from COVID-19 in the Mexican adult population. Similarly, Arce
et al. in 2022 mentioned that those with lower income levels had four times more probability
of being hospitalized and undergo a more serious disease than wealthier people.

Other studies that have aimed at evaluating the spatial distribution by clusters of
mortality from COVID-19 and associated factors in Mexico have used excess mortality data,
which include deaths from all the causes directly or indirectly related to the pandemic.
Additionally, the estimation was performed with data reported up to April 2020, thus
finding that population density was a factor associated with higher mortality from COVID-
19. Specifically, the latter study reports findings similar to the present study regarding the
unexpected association of lower mortality rates and municipalities with high poverty rates
in the state of Chiapas.

Our study has strengths and limitations. Its main strength is the use of a new hybrid
clustering algorithm as a useful tool in the analysis of groups of municipalities with similar
mortality rates and sociodemographic factors. A key contribution of this work is that it
is the first study in Mexico where the analysis of mortality is conducted at the municipal
level and algorithms are used to group by similarity in sociodemographic factors, which is
relevant given that in our study, we show that even municipalities in the same state can
have very different values of mortality rates from COVID-19. In addition to the fact that
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due to the lag in the availability of official mortality data in Mexico, there are few studies
based on COVID-19 death records, most of the studies with data from the year 2020 come
from COVID-19 tests.

The main limitation of this study is the use of data collected from COVID-19 death
records, since the database was reviewed and validated only by the Mexican Ministry of
Health. Finally, this study was conducted for the Mexican population, so caution should be
applied in generalizing its results to other populations with a different demographic profile.

4. Conclusions

The clusters of municipalities with similar mortality rates in Mexico had an analogous
population density and poverty percentage. We found that there is a high direct correlation
between mortality rate and population density and an inverse correlation between the
mortality rate and the percentage of poor people. This finding should be of great importance
to public health decision-makers, since it indicates where public health measures should be
strengthened to improve control of the COVID-19 disease and optimize the allocation of
resources to reduce hospitalizations and mortality. For further research, this study can be
replicated considering other variables such as environmental variables, response of health
systems variables, and population behavioral variables among others that could explain
the clustering pattern of municipalities by mortality rates in Mexico and in other regions of
Latin America with similar characteristics.
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