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Abstract: Survival and reliability analyses deal with incomplete failure time data, such as censored
and truncated data. Recently, the classical left-truncation scheme was generalized to analyze “field
data”, defined as samples collected within a fixed period. However, existing competing risks models
dealing with left-truncated field data are not flexible enough. We propose copula-based competing
risks models for latent failure times, permitting a flexible parametric form. We formulate maximum
likelihood estimation methods under the Weibull, lognormal, and gamma distributions for the latent
failure times. We conduct simulations to check the performance of the proposed methods. We
finally give a real data example. We provide the R code to reproduce the simulations and data
analysis results.

Keywords: censoring; competing risk; left-truncation; lognormal distribution; multivariate survival
analysis; Weibull distribution; reliability

MSC: 62H12; 62N01; 62N05; 62P30

1. Introduction

Survival analysis deals with incomplete failure time data, such as censored and
truncated data [1–5]. Left-truncation arises if early failures occur before the data collection
period and their failures are simply ignored. Right-censoring arises if late failures occur after
the data collection period, where their exact times of failures are unascertainable. Competing
risks arise if the failure event of interest becomes unavailable by the occurrence of other
failure events.

Naïve statistical analyses of truncated, censored, and competing risks data lead to
biased inference for the population of interest. Left-truncation, right-censoring, and com-
peting risks are a classical topic in survival analysis that is widely recognized in both
biostatistics [3] and reliability engineering [1–5].

Hong et al. [1] generalized the classical truncation scheme to a more complex scheme
found in the “field data”, defined as samples collected within a fixed period (see Section 2).
The well-known example is the failure time dataset for electric power transformers.
Hong et al. [1] separated the samples into two parts: a truncated part (e.g., transform-
ers installed before 1980) and an untruncated part (e.g., transformers installed after 1980),
and then combined them into a single likelihood function. This type of truncated field data
arises in many other practical applications, where there is a birth process (the installing
process) of individuals and a certain data collection period of failure [6–9].

For left-truncated field reliability data, a variety of distributions have been considered
for statistical inference. The inference methods for the lognormal and Weibull distributions
were developed by [1,10–12]. The gamma and the generalized gamma distribution were
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considered in [13,14]. Comparison of the numerical methods for maximum likelihood
estimator were considered by [12,15]. Bayesian approaches for the lognormal, Weibull, and
gamma distributions were considered by [2,16]. The Lehmann family of distributions was
considered by [17] and the log-location-scale family of distributions was considered by [18].
The spline model was proposed by [7]. In this research topic, the most up-to-date review
paper is [2].

Competing risks could occur together with left-truncation. Competing risks means that
there are latent failure times to events, and only one of the failure times is observable. As
competing risks are dependent, copula-based dependent risks models have been extensively
utilized [19–25], which formulate the joint distribution of latent failure times. However, in
analysis of left-truncated field data, copula-based dependent risks models have not been
proposed yet.

Existing competing risks analyses for left-truncated field data are limited to the follow-
ing models: the independent Weibull model with the common shape parameter [26], the
Marshall–Olkin bivariate Rayleigh model [27], and the Marshall–Olkin bivariate Weibull
model [4]. While these three models provide an important starting point, their models are
somewhat specific for modeling latent failure times of competing risks. Therefore, there is
much room for proposing more flexible models.

In this paper, we will develop copula-based models for dependent competing risks
under left-truncation, permitting more flexible models for dependence structure and failure
time distributions than the existing three models of [4,26,27]. Due to our main interest in ap-
plications to reliability analyses, we adopt the standard parametric distributions, including
the Weibull, lognormal, and gamma distributions. These failure time distributions are com-
monly used in reliability studies, and also found in recent engineering applications [28–30].
While the proposed copula models permit a variety of copulas, we nonetheless focus on the
Clayton copula for modeling dependence among failure times to facilitate computation.

The remainder of the paper is structured as follows. Section 2 provides the back-
grounds and key concepts, such as field failure data and competing risks. Section 3
introduces copula models and develops likelihood functions for the Weibull, lognormal,
gamma marginal models. Section 4 reports simulation studies to check the performance
of the proposed methods. In Section 5, we analyze a dataset for illustration. Section 6
concludes the paper with future directions.

2. Left-Truncation and Competing Risks

We review the structure of left-truncation and competing risks for data collected from
field studies.

Suppose that there are two mutually exclusive events for failure, named Event 1 and
Event 2. Let (T1, T2) be a pair of failure times for Event 1 and Event 2, respectively. Under
competing risks, the failure time is defined by T12 ≡ min(T1, T2), where only one of (T1, T2)
is observable. For instance, if T1 < T2, the observable failure time is T12 = T1, and the exact
value of T2 is unknown. The pair (T1, T2) is called “latent failure times” since only one of
T1 and T2 is observable.

Figure 1 explains left-truncation in the data collection scheme, where the individuals
were born randomly over time. However, we cannot obtain samples of all the individuals
since the data collection starts only after time s (the starting time). If individuals are born
and then fail before time s, they are discarded and not observable; see “Not observed” in
Figure 1. This leads to biased sampling.

To define left-truncation mathematically, we let τ be the time from birth to time s
(Figure 1). For individuals to be included in our samples, their failure time T12 must be
greater than τ (Figure 1). Those who were born before s are defined as “truncated samples”,
which are all conditional on T12 ≥ τ. The individuals born after s are always included in
our samples. Therefore, our samples are divided into truncated ones (born before s) and
untruncated ones (born after s). For untruncated samples, the sample is observed without
any condition, and τ is undefined.
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Figure 1. Left-truncated and competing risks data from a field study. Event 1 and Event 2 are subject
to competing risks. Solid curves show observable times, and dashed curves show unobservable times.
One can observe Event 1, Event 2, or Censoring, whichever occurs first, between the starting time (s)
and the ending time (e). One cannot observe anything if Event 1 or Event 2 occurs before time s.

To signify the difference between truncated and untruncated samples, we define the
truncation indicator,

ν =

{
0, if the sample is truncated (T12 ≥ τ ≥ 0),
1, if the sample is untruncated (τ = undefined).

There could be a random censoring time C that may censor the value of T1 and T2,
e.g., the duration of the data collection (Figure 1). If both Event 1 and Event 2 do not occur
within the data collection period, one cannot exactly know T1 and T2. One only knows that
T1 and T2 are greater than the observed censoring time C that is defined as time from birth
to e (the ending time).

In this sense, what we actually observe is T = min(T1, T2, C). The sample is censored
if both T1 > C and T2 > C hold; otherwise, the sample is uncensored. We assume that two
failures do not occur simultaneously, i.e., T1 = T2 never occurs.

Under competing risks, there are three possible cases: The first case is where Event
1 is observable by T = T1 and {T1 < T2, T1 < C}. The second case is where Event 2 is
observable by T = T2 and {T2 < T1, T2 < C}. The last case is where neither Event 1 nor
Event 2 is observable by T = C and {C < T1, C < T2}. The first and last cases are shown in
Figure 1.

In a dataset, there are n samples denoted as {(ti, τi, νi); i = 1, 2, . . . , n}. In addition, as
we know the event status of each individual, the samples are divided into three sets:

l1 = {i : T1i < T2i, T1i < Ci},
l2 = {i : T2i < T1i, T2i < Ci},
l0 = {i : Ci < T1i, Ci < T2i}.
Since each sample belongs to one of the three sets, it holds that l1∪ l2∪ l0 = {1, 2, . . . , n}.

3. Proposed Methods

In this section, we propose a copula-based model and a likelihood-based
inference method.

3.1. Copula Model for Competing Risks

We use a copula model for bivariate competing risks as originally proposed by [19]. Let
(T1, T2) be a pair of failure times whose marginal survival functions are Si(t) = P(Ti > t),
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i ∈ {1, 2}. We assume that the failure times are continuous and hence have the density
functions fi(t) = −dSi(t)/dt, i ∈ {1, 2}. To model the dependence of T1 and T2, we assume
a survival copula model [21]

P(T1 > t1, T2 > t2) = Cθ(S1(t1), S2(t2)),

where Cθ is a parametric copula [31] with parameter θ.
Copulas are popular in statistical analyses for bivariate models involving compet-

ing risks [20–25,32–34]. There exist a number of copulas [31], and new copulas keep
emerging [35,36]. Copulas are applied to a variety of fields, including reliability [37],
ecology [38], meta-analysis [39,40], and econometrics [41]. However, to reduce the com-
plexity of estimation, the copula has to be as simple as possible.

For computational simplicity, we particularly adopt the Clayton copula [31]

Cθ(u, v) =
(

u−θ + v−θ − 1
)−1/θ

, θ > 0,

where θ specifies dependence between T1 and T2, and is transformed to Kendall’s tau:
θ/(θ + 2). Hence, T1 and T2 are positively dependent whose strength increases as θ gets
large. If θ → 0 , the Clayton copula reduces to C(u, v) = uv, the independent risks model
of [26]. The Clayton copula is one of the most frequently used copulas in competing risks
models [22,24] and other models [33,40–42] due to its remarkable mathematical tractability.

Other copulas might be considered. However, we do not suggest fitting many copulas
since the true one may not be identifiable from the data. We use the Clayton copula, and
then focus on the selection of θ.

3.2. Likelihood Function

We extend the likelihood function for the independent risks models [26] to the copula-
based models. Let {(ti, τi, νi); i = 1, 2, . . . , n} be observed data as previously defined. Let
(T1i, T2i) be a pair of latent failure times for Event 1 and Event 2, respectively. In addition,
let Ci be independent and uninformative censoring times. Let Ti = min(T1i, T2i, Ci), and ti
be its observed value. For a sample without truncation (νi = 1), the likelihood is divided
into three cases:

(i) Li = P(T1i = ti, ti < T2i, ti < Ci) if i ∈ l1 = {i : T1i < T2i, T1i < Ci} and νi = 1,
(ii) Li = P(T2i = ti, ti < T1i, ti < Ci) if i ∈ l2 = {i : T2i < T1i, T2i < Ci} and νi = 1,
(iii) Li = P(Ci = ti, ti < T1i, ti < T2i) if i ∈ l0 = {i : Ci < T1i, Ci < T2i} and νi = 1,

For a sample with truncation (νi = 0), the likelihood is divided into other three cases:

(iv) Li = P(T1i = ti, ti < T2i, ti < Ci|T1i ≥ τi, T2i ≥ τi, Ci ≥ τi) if i ∈ l1 and νi = 0,
(v) Li = P(T2i = ti, ti < T1i, ti < Ci|T1i ≥ τi, T2i ≥ τi, Ci ≥ τi) if i ∈ l2 and νi = 0,
(vi) Li = P(Ci = ti, ti < T1i, ti < T2i|T1i ≥ τi, T2i ≥ τi, Ci ≥ τi) if i ∈ l0 and νi = 0.

In the last three cases, the “Ci ≥ τi” can be dropped. Combining all the six cases and
ignoring the constant factors for censoring, the likelihood function is

L ≡ ∏
i

Li = ∏
i∈l1

P(T1i = ti, ti < T2i)
νi P(T1i = ti, ti < T2i|T1i ≥ τi, T2i ≥ τi)

1−νi

× ∏
i∈l2

P(T2i = ti, ti < T1i)
νi P(T2i = ti, ti < T1i|T1i ≥ τi, T2i ≥ τi)

1−νi

× ∏
i∈l0

P(ti < T1i, ti < T2i)
νi P (ti < T1i, ti < T2i|T1i ≥ τi, T2i ≥ τi)

1−νi .

After some simplification, the likelihood function becomes

L = ∏
i∈l1

P(T1i = ti, ti < T2i)× ∏
i∈l2

P(T2i = ti, ti < T1i)

× ∏
i∈l0

P(ti < T1i, ti < T2i) ∏
νi=0

P(T1i ≥ τi, T2i ≥ τi)
−1.
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To estimate parameters in the model, the maximum likelihood estimator (MLE) is
adopted under parametric models for S1(.) and S2(.). We will consider commonly used
parametric models for failure time distributions in reliability, including the Weibull, lognor-
mal, and gamma distributions. Recent engineering applications of these distributions are
found in [28–30]. The Weibull distribution will be detailed in Section 3.3 and the lognormal
and gamma distributions in Appendices A and B.

3.3. Weibull Model

We set S1(t) = exp(−λ1tα1) and S2(t) = exp(−λ2tα2). Under the independent risks
model C(v, w) = vw, the likelihood function is

LWeib(α1, α2, λ1, λ2) = ∏
i∈l1

{
α1λ1tα1−1

i exp
(
−λ1tα1

i
)

exp
(
−λ2tα2

i
)}

× ∏
i∈l2

{
α2λ2tα2−1

i exp
(
−λ2tα2

i
)

exp
(
−λ1tα1

i
)}

× ∏
i∈l0

{
exp

(
−λ1tα1

i
)

exp
(
−λ2tα2

i
)}
× ∏

νi=0

{
exp

(
−λ1τα1

i
)

exp
(
−λ2τα2

i
)}−1

If we set the common shape parameter α = α1 = α2, the above likelihood is equivalent
to the one derived in Kundu et al. [26]. We do not impose this assumption, and let α1 6= α2
for generality.

Under the Clayton copula with parameter θ, the likelihood function is

LWeib(α1, α2, λ1, λ2, θ)

= ∏
i∈l1

{
α1λ1tα1−1

i u−θ
i

(
u−θ

i + v−θ
i − 1

)−(1+1/θ)
}

× ∏
i∈l2

{
α2λ2tα2−1

i v−θ
i

(
u−θ

i + v−θ
i − 1

)−(1+1/θ)
}

× ∏
i∈l0

(
u−θ

i + v−θ
i − 1

)−1/θ
× ∏

νi=0

(
x−θ

i + y−θ
i − 1

)1/θ
,

where ui = exp
(
−λ1tα1

i
)
, vi = exp

(
−λ2tα2

i
)
, xi = exp

(
−λ1τα1

i
)
, and yi = exp

(
−λ2τα2

i
)
.

While the likelihood is undefined for θ = 0, by letting θ → +0 , the likelihood function
reduces to the one under the independent risks model.

There are a few different ways to estimate (α1, α2, λ1, λ2, θ) based on LWeib(α1, α2, λ1, λ2, θ).
The first one is the MLE under an “assumed” value of θ, which is defined as(

α̂1, α̂2, λ̂1, λ̂2
∣∣θ) = argmax(α1,α2,λ1,λ2)

{log LWeib(α1, α2, λ1, λ2, θ)}.

The MLE
(
α̂1, α̂2, λ̂1, λ̂2

)
under the independence copula is regarded as

(
α̂1, α̂2, λ̂1, λ̂2

∣∣0).
The next one is the full MLE with the unknown θ, which is defined as(

α̂1, α̂2, λ̂1, λ̂2, θ̂
)
= argmax(α1,α2,λ1,λ2,θ){log LWeib(α1, α2, λ1, λ2, θ)}.

In either case, one can maximize log L by applying an iteration algorithm. In R
(https://www.r-project.org/), there are a variety of optimization functions. We suggest the
“optim(.)” function (https://stat.ethz.ch/R-manual/R-patched/library/stats/html/optim.
html, accessed on 19 June 2022). This function has the option “hessian=TRUE” to yield the
Hessian matrix of − log L. The standard error (SE) of the estimates can be computed by the
diagonal components of the inverse of the Hessian matrix. Details can be seen from the R
code given in Supplementary Materials.

We generally recommend using the full MLE if one wishes to estimate θ. However,
the full MLE

(
α̂1, α̂2, λ̂1, λ̂2, θ̂

)
gives large variance since data have little information for θ.

In addition, the Hessian matrix could not be invertible, making the SE unavailable. We
conjecture that the regularity conditions for the MLE hold with the unknown θ (as shown
in [25]), but fail to hold for the full MLE.

https://www.r-project.org/
https://stat.ethz.ch/R-manual/R-patched/library/stats/html/optim.html
https://stat.ethz.ch/R-manual/R-patched/library/stats/html/optim.html
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An alternative approach to this problem is the pseudo-MLE (PMLE). We first obtain
preliminary estimates

(
α̂∗1 , α̂∗2 , λ̂∗1 , λ̂∗2

∣∣θ∗) under an assumed value of θ∗, and obtain θ̂∗ that
maximizes `∗(θ) = log LWeib

(
α̂∗1 , α̂∗2 , λ̂∗1 , λ̂∗2 , θ

)
. The final estimates

(
α̂1, α̂2, λ̂1, λ̂2

∣∣θ̂∗) are
then obtained. In our simulation studies, we set θ∗ = 2/9 giving Kendall’s tau = 0.1. In
practice, however, one may choose a few different values of θ∗, and then, choose the one
that maximizes `∗

(
θ̂∗
)
.

Our numerical studies (Sections 4 and 5) will consider both known and unknown
settings of θ.

4. Simulation Studies

We conducted simulation studies to check the performance of the proposed methods
of Section 3. To this end, we compared the performance of fitting (i) the independence
copula, (ii) the Clayton copula with the known parameter, (iii) the Clayton copula with the
parameter estimated by the MLE, and (iv) the Clayton copula with the parameter estimated
by the PMLE.

4.1. Simulation Settings

We generated latent failure times from the Weibull model: T1i ∼ S1(t1) = exp
(
−λ1tα1

1
)

and T2i ∼ S2(t2) = exp
(
−λ2tα2

2
)
. Dependence structure for the two failure times is modeled

by either the independence copula or the Clayton copula with θ = 2 (Kendall’s tau = 0.5).
Mimicking the sampling scheme of Figure 1, we generated τi = s− Bi, and Ci = e− Bi,

where Bi ∼ Unif(0, s) is the birth time, s is the starting time, and e is the ending time. For
truncated samples, we kept samples satisfying τi ≤ ti = min(T1i, T2i). This led to samples
{(ti, τi, νi); i = 1, 2, . . . , n} with νi = 0 for n/2 truncated samples and with νi = 1 for n/2
untruncated samples.

Based on the samples, the MLE
(
α̂1, α̂2, λ̂1, λ̂2

)
was computed by fitting the indepen-

dent model or the Clayton copula with θ being known. In addition, the MLE and PMLE(
α̂1, α̂2, λ̂1, λ̂2, θ̂

)
were computed by fitting the Clayton copula with θ being unknown (the

PMLE wasso computed under an assumed value of θ∗ = 2/9 corresponding to Kendall’s
tau = 0.1).

Based on 1000 repetitions, we calculated the mean, standard deviation (SD), and
the mean squared error (MSE) of parameter estimates, and the average of the SEs. For
instance, the MSE for α1 is E[(α̂1 − α1)

2], where the expectation is taken by the average of
1000 repetitions.

The following parameter settings were considered to model different shapes of the
hazard function (Figure 2):

(a) Decreasing hazard: (αi, λi) = (0.4, 0.1), i ∈ {1, 2}; s = 10; e = 13,
(b) Constant hazard: (αi, λi) = (1.0, 0.4), i ∈ {1, 2}; s = 10; e = 13,
(c) Increasing hazard: (αi, λi) = (1.5, 1.0), i ∈ {1, 2}; s = 3; e = 4.

4.2. Simulation Results

Table 1 shows the means of parameter estimates. We see that the means of parameter
estimates are nearly close to their true parameters when the copula is correctly specified.
For instance, when the true copula is the Clayton copula with θ = 2, accurate estimates are
obtained by fitting the same copula. If the true copula is wrongly specified, the estimates are
biased (e.g., by fitting the Clayton copula with θ = 2 under the independence copula). This im-
plies the importance of selecting the correct value of θ to estimate the parameter. If θ is treated
as unknown and estimated by data, the biases of estimates can often be large. These biases
exist for both MLE and PMLE methods for dealing with the unknown θ. This unavoidable
bias comes from the well-known difficulty of estimating θ under competing risks.
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Figure 2. The shape parameter αi and the scale parameter λi used in the simulation study for the
Weibull model: T1 ∼ S1(t1) = exp

(
−λ1tα1

1
)

and T2 ∼ S2(t2) = exp
(
−λ2tα2

2
)
.

Table 1. The means (biases) of parameter estimates based on 1000 simulation runs.

True Model Fitted Model Event 1 Event 2

α1 = 0.4 λ1 = 0.1 α2 = 0.4 λ2 = 0.1

Indep. (θ = 0) Indep. (θ = 0) 0.406 (0.006) 0.099 (−0.001) 0.403 (0.003) 0.100 (−0.000)
Clayton (θ = 2) 0.441 (0.041) 0.113 (0.011) 0.437 (0.037) 0.112 (0.012)

Clayton (θ = MLE) 0.457 (0.057) 0.149 (0.049) 0.455 (0.055) 0.149 (0.049)
Clayton (θ = PMLE) 0.412 (0.012) 0.101 (0.001) 0.408 (0.008) 0.101 (0.001)

Clayton (θ = 2) Indep. (θ = 0) 0.375 (−0.025) 0.090 (−0.010) 0.379 (−0.021) 0.089 (−0.011)
Clayton (θ = 2) 0.404 (0.004) 0.100 (−0.000) 0.408 (0.008) 0.100 (−0.000)

Clayton (θ = MLE) 0.426 (0.026) 0.132 (0.032) 0.428 (0.028) 0.132 (0.032)
Clayton (θ = PMLE) 0.382 (−0.018) 0.092 (−0.008) 0.385 (−0.015) 0.091 (−0.009)

α1 = 1.0 λ1 = 0.4 α2 = 1.0 λ2 = 0.4

Indep. (θ = 0) Indep. (θ = 0) 1.003 (0.003) 0.398 (−0.002) 1.001 (0.001) 0.401 (0.001)
Clayton (θ = 2) 1.133 (0.133) 0.557 (0.157) 1.131 (0.131) 0.559 (0.159)

Clayton (θ = MLE) 1.082 (0.082) 0.630 (0.230) 1.081 (0.081) 0.631 (0.231)
Clayton (θ = PMLE) 1.109 (0.109) 0.425 (0.025) 1.107 (0.107) 0.428 (0.028)

Clayton (θ = 2) Indep. (θ = 0) 0.869 (−0.131) 0.298 (−0.102) 0.869 (−0.131) 0.300 (−0.101)
Clayton (θ = 2) 1.002 (0.002) 0.399 (−0.001) 1.001 (0.001) 0.400 (0.000)

Clayton (θ = MLE) 0.952 (−0.048) 0.470 (0.070) 0.951 (−0.049) 0.471 (0.071)
Clayton (θ = PMLE) 0.934 (−0.066) 0.313 (−0.087) 0.934 (−0.066) 0.314 (−0.086)

α1 = 1.5 λ1 = 1.0 α2 = 1.5 λ2 = 1.0

Indep. (θ = 0) Indep. (θ = 0) 1.500 (−0.000) 1.002 (0.002) 1.501 (0.001) 1.001 (0.001)
Clayton (θ = 2) 1.684 (0.184) 1.575 (0.575) 1.685 (0.185) 1.574 (0.574)

Clayton (θ = MLE) 1.642 (0.142) 1.225 (0.225) 1.643 (0.143) 1.223 (0.223)
Clayton (θ = PMLE) 1.671 (0.171) 1.193 (0.193) 1.672 (0.172) 1.191 (0.191)

Clayton (θ = 2) Indep. (θ = 0) 1.315 (−0.185) 0.666 (−0.334) 1.316 (−0.184) 0.665 (−0.335)
Clayton (θ = 2) 1.502 (0.001) 1.002 (0.002) 1.503 (0.003) 1.002 (0.002)

Clayton (θ = MLE) 1.496 (−0.004) 0.991 (−0.009) 1.496 (−0.004) 0.990 (−0.010)
Clayton (θ = PMLE) 1.426 (−0.073) 0.747 (−0.025) 1.426 (−0.073) 0.746 (−0.253)

NOTE: The simulation is based on simulated samples of {(ti , τi , νi); i = 1, 2, . . . , 1000}, consisting of 500 truncated
samples and another 500 untruncated samples. The Clayton copula with θ = 2 yields Kendall’s tau = 0.5 for two
failure times.

Table 2 shows the MSEs for the estimates. The smallest MSEs are attained when
the true copula equals the fitted one. This agrees with the pattern of biases (Table 1),
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again implying the importance of selecting the correct value of θ. The MSEs remain large
when estimating θ by the MLE or PMLE. Again, this problem comes from the difficulty of
estimating θ under competing risks.

Table 2. The MSEs of parameter estimates based on 1000 simulation runs.

True Model Fitted Model Event 1 Event 2

α1 = 0.4 λ1 = 0.1 α2 = 0.4 λ2 = 0.1

Independent (θ = 0) Indep. (θ = 0) 0.00186 0.00017 0.00170 0.00017
Clayton (θ = 2) 0.00374 0.00035 0.00335 0.00036

Clayton (θ = MLE) 0.00517 0.00320 0.00498 0.00321
Clayton (θ = PMLE) 0.00204 0.00018 0.00184 0.00017

Clayton (θ = 2) Indep. (θ = 0) 0.00229 0.00025 0.00221 0.00028
Clayton (θ = 2) 0.00195 0.00018 0.00207 0.00020

Clayton (θ = MLE) 0.00261 0.00178 0.00274 0.00178
Clayton (θ = PMLE) 0.00210 0.00022 0.00204 0.00025

α1 = 1.0 λ1 = 0.4 α2 = 1.0 λ2 = 0.4

Independent (θ = 0) Indep. (θ = 0) 0.00111 0.00093 0.00111 0.00087
Clayton (θ = 2) 0.01847 0.02621 0.01799 0.02673

Clayton (θ = MLE) 0.00115 0.07285 0.01124 0.07301
Clayton (θ = PMLE) 0.01323 0.00175 0.01266 0.00184

Clayton (θ = 2) Indep. (θ = 0) 0.01831 0.01095 0.01814 0.01066
Clayton (θ = 2) 0.00102 0.00090 0.00088 0.00081

Clayton (θ = MLE) 0.00629 0.01394 0.00622 0.01385
Clayton (θ = PMLE) 0.00575 0.00828 0.00560 0.00803

α1 = 1.5 λ1 = 1.0 α2 = 1.5 λ2 = 1.0

Independent (θ = 0) Indep. (θ = 0) 0.00229 0.00346 0.00244 0.00314
Clayton (θ = 2) 0.03547 0.33575 0.03570 0.33428

Clayton (θ = MLE) 0.02966 0.08040 0.02991 0.08363
Clayton (θ = PMLE) 0.03181 0.04223 0.03254 0.04108

Clayton (θ = 2) Indep. (θ = 0) 0.03659 0.11357 0.03642 0.11415
Clayton (θ = 2) 0.00193 0.00300 0.00179 0.00297

Clayton (θ = MLE) 0.00294 0.00875 0.00282 0.00867
Clayton (θ = PMLE) 0.00830 0.00664 0.00808 0.06680

NOTE: The simulation is based on simulated samples of {(ti , τi , νi); i = 1, 2, . . . , 1000}, consisting of 500 truncated
samples and another 500 untruncated samples. The Clayton copula with θ = 2 yields Kendall’s tau = 0.5 for two
failure times.

Table 3 shows how the MSEs reduce as the sample size increases (only the results for
estimating α1 are shown as the results for other parameters exhibiting similar patterns).
When the true copula’s parameter is correctly specified, the MSEs vanish toward zero
with increased samples. This implies the consistency of the parameter estimates. When
the copula parameter is wrongly chosen, the MSEs reduce very slowly or do not vanish
toward zero. When the copula parameter is estimated, the MSEs do not always reduce with
increased samples. This indicates the inconsistency of the parameter estimates when the
copula parameter is wrongly specified or estimated.

Table 4 compares the SDs of the parameter estimates with the average of the SEs. The
SDs and SEs are very close to each other, indicating that the SEs capture the true variations
of the estimates. Hence, the SEs calculated by the proposed method (by the Hessian matrix
from the “optim(.)” R function) are highly reliable. However, if θ is treated as unknown
and estimated by data, there are some simulation runs where the SEs cannot be computed
due to the calculation problem of the Hessian caused by some errors in the “optim(.)”
function. Hence, we could not present the results in this case. We suspect that the regularity
conditions for the Hessian matrix (to be negative definite) may not hold in this case.
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Table 3. The MSEs of the estimates of α1 under various sample sizes n based on 1000 runs.

True Par. True Model Fitted Model n = 500 n = 1000 n = 1500 n = 2000

α1 = 0.40 Indep. (θ = 0) Indep. (θ = 0) 0.00369 0.00186 0.00114 0.00096
Clayton (θ = 2) 0.00614 0.00374 0.00261 0.00240

Clayton (θ = MLE) 0.00706 0.00517 0.00404 0.00417
Clayton (θ = PMLE) 0.00412 0.00204 0.00122 0.00104

Clayton (θ = 2) Indep. (θ = 0) 0.00394 0.00229 0.00174 0.00145
Clayton (θ = 2) 0.00404 0.00195 0.00134 0.00094

Clayton (θ = MLE) 0.00408 0.00261 0.00215 0.00180
Clayton (θ = PMLE) 0.00382 0.00209 0.00153 0.00122

α1 = 0.10 Indep. (θ = 0) Indep. (θ = 0) 0.00239 0.00111 0.00073 0.00053
Clayton (θ = 2) 0.01950 0.01847 0.01738 0.01743

Clayton (θ = MLE) 0.01295 0.00115 0.00955 0.00927
Clayton (θ = PMLE) 0.00147 0.01323 0.01204 0.01179

Clayton (θ = 2) Indep. (θ = 0) 0.01967 0.01831 0.01818 0.01800
Clayton (θ = 2) 0.00195 0.00102 0.00065 0.00047

Clayton (θ = MLE) 0.00678 0.00629 0.00728 0.00720
Clayton (θ = PMLE) 0.00717 0.00575 0.00543 0.00523

α1 = 0.15 Indep. (θ = 0) Indep. (θ = 0) 0.00457 0.00229 0.00161 0.00110
Clayton (θ = 2) 0.03838 0.03547 0.03474 0.03482

Clayton (θ = MLE) 0.03402 0.02966 0.02840 0.02907
Clayton (θ = PMLE) 0.03612 0.03181 0.03141 0.03109

Clayton (θ = 2) Indep. (θ = 0) 0.03807 0.03659 0.03572 0.03527
Clayton (θ = 2) 0.00394 0.00193 0.00127 0.00091

Clayton (θ = MLE) 0.00605 0.00294 0.00179 0.00129
Clayton (θ = PMLE) 0.01083 0.008300. 0.00729 0.00676

NOTE: The simulation is based on 1000 runs. The Clayton copula uses θ = 2 (Kendall’s tau = 0.5).

Table 4. The standard derivation (SD) and the average of SEs based on 1000 simulation runs.

True Model Fitted Model α1 = 0.4 λ1 = 0.1 α2 = 0.4 λ2 = 0.1

SD SE SD SE SD SE SD SE

Independent (θ = 0) Independent (θ = 0) 0.043 0.042 0.013 0.013 0.041 0.042 0.013 0.013
Clayton (θ = 2) 0.046 0.044 0.015 0.014 0.044 0.044 0.014 0.014

Clayton (θ = PMLE) 0.044 0.043 0.013 0.013 0.042 0.042 0.013 0.013

Clayton (θ = 2) Independent (θ = 0) 0.041 0.043 0.012 0.012 0.042 0.043 0.013 0.012
Clayton (θ = 2) 0.044 0.044 0.013 0.014 0.045 0.044 0.014 0.014

Clayton (θ = PMLE) 0.042 0.043 0.012 0.013 0.043 0.043 0.013 0.013

α1 = 1.0 λ1 = 0.4 α2 = 1.0 λ2 = 0.4

SD SE SD SE SD SE SD SE

Independent (θ = 0) Independent (θ = 0) 0.033 0.033 0.030 0.029 0.033 0.033 0.029 0.029
Clayton (θ = 2) 0.029 0.028 0.038 0.035 0.028 0.028 0.036 0.035

Clayton (θ = PMLE) 0.036 0.034 0.034 0.031 0.036 0.034 0.033 0.031

Clayton (θ = 2) Independent (θ = 0) 0.035 0.035 0.024 0.024 0.033 0.035 0.024 0.024
Clayton (θ = 2) 0.032 0.031 0.030 0.029 0.030 0.031 0.029 0.029

Clayton (θ = PMLE) 0.037 0.036 0.026 0.025 0.035 0.036 0.025 0.025

α1 = 1.5 λ1 = 1.0 α2 = 1.5 λ2 = 1.0

SD SE SD SE SD SE SD SE

Independent (θ = 0) Independent (θ = 0) 0.048 0.049 0.059 0.058 0.049 0.049 0.056 0.058
Clayton (θ = 2) 0.040 0.040 0.075 0.076 0.040 0.040 0.073 0.076

Clayton (θ = PMLE) 0.051 0.050 0.071 0.067 0.053 0.050 0.068 0.067

Clayton (θ = 2) Independent (θ = 0) 0.049 0.050 0.043 0.043 0.049 0.050 0.042 0.043
Clayton (θ = 2) 0.044 0.043 0.055 0.055 0.042 0.043 0.055 0.055

Clayton (θ = PMLE) 0.054 0.051 0.050 0.048 0.052 0.051 0.049 0.048

NOTE: The simulation is based on simulated samples of {(ti , τi , νi); i = 1, 2, . . . , 1000}, consisting of 500 truncated
samples and another 500 untruncated samples. The Clayton copula with θ = 2 yields Kendall’s tau = 0.5 for two
failure times.
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5. Data Analysis

This section illustrates the proposed method by a data example.
Table 5 shows the artificial dataset created by Kundu et al. [26], who mimicked the

setting of electric power transformers that were randomly installed from 1960 to 2008 [1].
The dataset consists of n = 100 samples (electric power transformers) that are observed
from the starting year (s = 1980) to the ending year (e = 2008). However, some transformers
installed before 1980 are subject to left-truncation. The 30 transformers are truncated (νi = 0;
installed before 1980) and the other 70 transformers are untruncated (νi = 1; installed after
1980). Observed events are three types of “Event” (=1 for Event 1; =2 for Event 2; =0 for
censoring) in the 5th column of Table 5. The number of events is 14 for Event 1, 33 for Event
2, and 53 for censoring. The data seem to be a simulated dataset from the independent
Weibull with the common shape parameter as considered in [26], though the details were
not explained. We therefore will fit the Weibull failure time models.

Table 5. Artificial data from Kundu et al. [26], which consist of n = 100 power transformers observed
from the starting year (s = 1980) to the ending year (e = 2008). Bi is the installation year. Ei is
either failure year or censoring year (2008). The 30 transformers are truncated (νi = 0) and other
70 transformers are untruncated (νi = 1). Observed events are shown in Event (=0 for censoring; =1
for Event 1; =2 for Event 2).

i
(Index)

Bi
(Install)

Ei
(End)

νi
(Truncation) Event τi = 1980−Bi

(Truncation Time)
ti = Ei−Bi

(Failure Time)

1 1961 1996 0 2 19 35
2 1964 1985 0 1 16 21
3 1962 2007 0 2 18 45
4 1962 1986 0 2 18 24
5 1961 1992 0 2 19 31
: : : : : : :

30 1963 1994 0 1 17 31
31 1987 2008 1 0 Undefined 21
32 1980 2008 1 0 Undefined 28
33 1988 2008 1 0 Undefined 20
34 1985 2008 1 0 Undefined 23
: : : : : : :

100 1989 2008 1 0 Undefined 19

For the i-th transformer, let (T1i, T2i) be a pair of latent failure times for Event 1 and
Event 2, respectively, for i = 1, 2, . . . , 100. Following [26], we scaled the failure times (in
days) by dividing them by 100 to avoid many decimal places in parameter estimates.

We postulate the model

P(T1i > t1, T2i > t2) = Cθ(S1(t1), S2(t2)),

where Cθ(v, w) =
(
v−θ + w−θ − 1

)−1/θ , S1(t1) = exp
(
−λ1tα1

1
)

and S2(t2) = exp
(
−λ2tα2

2
)
.

We estimated the parameters α1, λ1, α2, and λ2 under the assumed value of θ = 0, 0.5, 2,
or 8. We also estimated the parameters without giving the value of θ (all parameters were
estimated together) by the MLE or the PMLE.

Table 6 compares the estimates for (α1, λ1, α2, λ2) based on different values for θ.
Under the assumed value of θ = 0, the estimates are very close to the estimates obtained
by Kundu et al. [26]. This is reasonable since the proposed model with θ = 0 and that
of Kundu et al. [26] are both the independent Weibull models. Note that the model of
Kundu et al. [26] imposed the common shape parameter α1 = α2 while our proposed
model did not. Estimates α1 = 2.82 and α2 = 2.79 show that the common shape parameter
seems to be valid for these data. For the assumed values of θ ∈ {0.5, 2, 8}, the estimates
deviate from the results of Kundu et al. [26]. The results under θ ∈ {0.5, 2, 8} should not
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be taken since their log-likelihood values are lower than the one under θ = 0. The PMLE
under the assumed values of θ∗ ∈ {0.5, 2, 8} improves the log-likelihood value, yet none
of them reaches the log-likelihood value under θ = 0. Indeed, the log-likelihood value
under θ = 0 almost reaches the largest log-likelihood value under θ̂ = 0.004 that comes
from the MLE. In conclusion, our sensitivity analysis by the fixed values and estimated
value of θ extremely confirms adequacy of the independent risks model for this dataset.

Table 6. The estimates (SEs in parenthesis) for the Clayton copula model with the Weibull failure
times based on the dataset from Kundu et al. [26]. The Clayton copula with fixed θ or estimated θ

are fitted.

θ
^
θ α̂1; Shape λ̂1; Scale α̂2; Shape λ̂2; Scale logL

θ = 0 * - 2.82 (0.61) 6.93 (5.24) 2.79 (0.39) 15.77 (7.73) −8.984
θ = 0.5 - 3.18 (0.65) 12.86 (10.56) 2.88 (0.40) 18.74 (9.29) −9.024
θ = 2 - 3.68 (0.57) 33.12 (22.90) 2.93 (0.38) 21.93 (10.19) −9.389
θ = 8 - 3.39 (0.40) 35.97 (16.21) 2.92 (0.35) 24.65 (10.64) −9.239
MLE 0.004 (0.11) 2.82 (0.60) 6.96 (5.16) 2.79 (0.39) 15.79 (7.70) −8.983

PMLE (θ∗ = 0.5) 0.402 3.12 (0.65) 11.57 (9.42) 2.87 (0.40) 18.31 (9.10) −9.008
PMLE (θ∗ = 2) 1.853 3.66 (0.59) 31.57 (22.44) 2.93 (0.38) 21.73 (10.15) −9.384
PMLE (θ∗ = 8) 8.179 3.38 (0.40) 35.77 (16.07) 2.92 (0.35) 24.67 (10.63) −9.238
Results of [26] - 2.80 (-) 6.76 (-) 2.80 (-) 15.93 (-) -

* θ = 0 means the independence model.

6. Conclusions and Future Work

In this paper, we propose a copula-based model for dependent competing risks in
the presence of left-truncation. The copula-based competing risks model permits more
flexible failure time distributions and dependence structure than the existing competing
risks model [4,26,27]. Parametric likelihood-based inference methods are then formulated,
motivated by the practically important applications in field reliability analyses.

Below, we list several problems to be considered or resolved in the future.
First, different failure time models can be examined besides the Weibull, lognormal,

and gamma models considered in this paper. The candidate distributions could be the
extreme-value distributions [43], the generalized Pareto distribution [44], and the gen-
eralized Bilal distribution [45]. The Fréchet (type II) and Gumbel (type I) distributions
are of particular interest in the extreme-value distributions [43]. In addition, the model
may include a covariate (e.g., an acceleration factor) associated with failure time as in the
Weibull regression [1]. In addition to this usual failure time regression model, a conditional
copula regression model is of another interest [46]. Cure fractions and latent variables may
also be considered to be incorporated into the failure time model [47].

Second, the prediction analysis and the test design may be explored in addition to
the estimation method considered in this paper. The prediction of remaining lifetime
was considered under left-truncated and right-censored field data without competing
risks [1,17]. This risk prediction at a censored time point may be informative for engineers
to make decisions on future maintenance plans. However, it is not trivial to extend this
prediction method under competing risks. This risk prediction scheme is equivalent to
dynamic prediction [48–53]. Moreover, the accelerated life test plans may be considered
including the case of one-shot devices with competing risks [54,55].

Third, a goodness-of-fit test and/or graphical model-diagnostic method for the pro-
posed model may be developed. A possible strategy is to apply a distance measure between
the empirical sub-distribution function and the model-based one. This strategy was adopted
for right-censored competing risks data analyses [23] without left-truncation. In order to
handle left-truncation, further methodological and numerical works are necessary.

Fourth, Bayesian methods can be considered as a competitor to the MLE methods of
this paper. The choice of the marginal prior distributions could follow [2,16], while the
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bounded uniform prior could be recommended for the copula prior [56]. It is of interest to
see if the difficulty of estimating the copula parameter is resolved by Bayesian methods.

Finally, the limited availability of open datasets could be resolved by encouraging
engineers to collect field failure data. Due to the difficulty of obtaining real datasets in the
literature, we applied our methods to the artificial dataset created by Kundu et al. [26], who
considered the setting of electric power transformers. Dataset can also be searched from
other applications of survival analysis, such as those for medical research.

Supplementary Materials: The following supporting information can be downloaded at: https:
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Appendix A. Likelihood for the Gamma Model

We set the marginal survival functions

S1(t) = 1−
∫ t/η1

0 uβ1−1e−udu
Γ(β1)

, S2(t) = 1−
∫ t/η2

0 uβ2−1e−udu
Γ(β2)

,

Under the independent risks model C(v, w) = vw, the likelihood function is

LGamma(β1, β2, η1, η2)

= ∏
i∈l1

 1
η

β1
1 Γ(β1)

tβ1−1
i exp

(
− ti

η1

)1−
∫ ti

η2
0 uβ2−1e−udu

Γ(β2)




× ∏
i∈l2

 1
η

β2
2 Γ(β2)

tβ2−1
i exp

(
− ti

η2

)1−
∫ ti

η1
0 uβ1−1e−udu

Γ(β1)




× ∏
i∈l0

[{
1−

∫ ti/η1
0 uβ1−1e−udu

Γ(β1)

}{
1−

∫ ti/η2
0 uβ2−1e−udu

Γ(β2)

}]
× ∏

νi=0

[{
1−

∫ τi/η1
0 uβ1−1e−udu

Γ(β1)

}{
1−

∫ τi/η2
0 uβ2−1e−udu

Γ(β2)

}]−1

.

Under the Clayton copula, the likelihood function is

LGamma(β1, β2, η1, η2, θ) = ∏
i∈l1

{
1

η
β1
1 Γ(β1)

tβ1−1
i exp

(
− ti

η1

)
u−(θ+1)

i

(
u−θ

i + v−θ
i − 1

)−(1+ 1
θ )
}

× ∏
i∈l2

{
1

η
β2
2 Γ(β2)

tβ2−1
i exp

(
− ti

η2

)
v−(θ+1)

i

(
u−θ

i + v−θ
i − 1

)−(1+ 1
θ )
}

× ∏
i∈l0

(
u−θ

i + v−θ
i − 1

)− 1
θ × ∏

νi=0

(
x−θ

i + y−θ
i − 1

) 1
θ .

https://www.mdpi.com/article/10.3390/math10132163/s1
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where

ui = S1(ti) = 1−
∫ ti

η1
0 uβ1−1e−udu

Γ(β1)
, vi = S2(ti) = 1−

∫ ti
η2

0 uβ2−1e−udu
Γ(β2)

,

xi = S1(τi) = 1−
∫ τi

η1
0 uβ1−1e−udu

Γ(β1)
, yi = S2(τi) = 1−

∫ τi/η2
0 uβ2−1e−udu

Γ(β2)
.

Appendix B. Likelihood for the Lognormal Model

We set the marginal survival functions

S1(t) = 1−Φ
(

log t− µ1

σ1

)
, S2(t) = 1−Φ

(
log t− µ2

σ2

)
,

where Φ is the cdf of the standard normal distribution. Under the independent risks model
C(v, w) = vw, the likelihood function is

Llognorm(µ1, µ2, σ1, σ2)

= ∏
i∈l1

[
1

σ1ti
√

2π
exp

{
− 1

2

(
log ti−µ1

σ1

)2
}{

1−Φ
(

log ti−µ2
σ2

)}]
× ∏

i∈l2

[
1

σ2ti
√

2π
exp

{
− 1

2

(
log ti−µ2

σ2

)2
}{

1−Φ
(

log ti−µ1
σ1

)}]
× ∏

i∈l0

[{
1−Φ

(
log ti−µ1

σ1

)}{
1−Φ

(
log ti−µ2

σ2

)}]
× ∏

νi=0

[{
1−Φ

(
log τi−µ1

σ1

)}{
1−Φ

(
log τi−µ2

σ2

)}]−1
,

Under the Clayton copula, the likelihood function is

Llognorm(µ1, µ2, σ1, σ2, θ)

= ∏
i∈l1

{
u−(θ+1)

i (u−θ
i +v−θ

i −1)
−(1+ 1

θ
)

σ1ti
√

2π
exp

{
− 1

2

(
log ti−µ1

σ1

)2
}}

× ∏
i∈l2

{
v−(θ+1)

i (u−θ
i +v−θ

i −1)
−(1+ 1

θ
)

σ2ti
√

2π
exp

{
− 1

2

(
log ti−µ2

σ2

)2
}}

× ∏
i∈l0

(
u−θ

i + v−θ
i − 1

)− 1
θ × ∏

νi=0

(
x−θ

i + y−θ
i − 1

) 1
θ .

where
ui = 1−Φ

(
log ti−µ1

σ1

)
, vi = 1−Φ

(
log ti−µ2

σ2

)
,

xi = 1−Φ
(

log τi−µ1
σ1

)
, yi = 1−Φ

(
log τi−µ2

σ2

)
.
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