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falling into local optimum, and improves the accuracy of the solution. The performance of the pro-
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engineering problems. The results show that the proposed algorithm outperforms other algorithms 

in terms of convergence speed, convergence accuracy, stability, and robustness. 
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1. Introduction 

In the practical application calculations of science and engineering, many mathemat-

ical problems will be involved, such as nonlinear equation systems (NESs), numerical in-

tegration, etc. There are tremendous methods for solving NESs, including traditional tech-

niques and intelligent optimization algorithms. Traditional techniques to solve NESs use 

gradient information [1], such as Newton’s method [2,3], quasi-Newton’s method [4], 

steepest descent method, etc. Due to relying on the selection of initial points and being 

prone to falling into optimal local one, these methods cannot obtain high-quality solutions 

for some specific problems. The metaheuristic algorithms, however, have the characteris-

tics of low requirements for the initial point, a wide range of solutions, high efficiency, 

and robustness. These break through the limitations of traditional methods in solving 

problems. In recent years, metaheuristic algorithms have made great contributions in solv-

ing NESs (Karr et al. [5]; Ouyang et al. [6]; Jaberipour et al. [7]; Pourjafari et al. [8]; Jia et al. [9]; 

Ren et al. [10]; Cai et al. [11]; Abdollahi et al. [12]; Hirsch et al. [13]; Sacco et al. [14]; Gong et al. 

[15]; Ariyaratne et al. [16]; Gong et al. [17]; Ibrahim et al. [18]; Liao et al. [19]; Ning et al. [20]; 

Rizk-Allah et al. [21]; Ji et al. [22]; Turgut et al. [23]). 

Numerical integration is a very basic computational problem. It is well-known that, 

when calculating the definite integral, the integrand is required to be easily given and 

then solved by the Newton-Leibniz formula. However, this method has many limitations, 

because in many practical problems, the original function of the integrand cannot be ex-

pressed, or the calculation is too complicated, so the definite integral of the integrand is 

replaced by a suitable finite sum approximation. The traditional numerical integration 

methods include the trapezoidal method, rectangle method, Romberg method, Gauss 

method, Simpson’s method, Newton’s method, etc. The above methods all divide the 
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integral interval into equal parts, and the calculation efficiency is not high. Therefore, it is 

of great significance to find a new technique with a fast convergence speed, high precision, 

and strong robustness for numerical integration. Zhou et al. [24], based on the evolution-

ary strategy method, worked to solve numerical integration. Wei et al. [25] researched the 

numerical integration method based on particle swarm optimization. Wei et al. [26], based 

on functional networks, worked to solve numerical integration. Deng et al. [27] solved the 

numerical integration problems based on the differential evolution algorithm. Xiao et al. [28] 

applied the improved bat algorithm in numerical integration. The quality of the solution ob-

tained by the above techniques was higher than the traditional methods. 

All along, engineering optimization problems have been a popular area of research. 

Metaheuristic algorithms have been widely applied to engineering optimization problems 

due to their great practical significance, such as applied to the automatic adjustment of 

controller coefficients (Szczepanski et al. [29]; Hu et al. [30]), applied to system identifica-

tion (Szczepanski et al. [31]; Liu et al. [32]), applied to global path planning (Szczepanski 

et al. [33]; Brand et al. [34]), and applied to robotic arm scheduling (Szczepanski et al. [35]; 

Kolakowska et al. [36]). 

The Arithmetic Optimization Algorithm (AOA) [37] is a novel metaheuristic algo-

rithm proposed by Abualigah et al. in 2021. AOA is a mathematical model technique that 

simulates the behaviors of Arithmetic operators (i.e., Multiplication, Division, Subtrac-

tion, and Addition) and their influence on the best local solution. Some improvements and 

practical applications of the algorithm have been made by scholars. Premkumar et al. [38] 

proposed a multi-objective arithmetic optimization algorithm (MOAOA) for solving real-

world multi-objective CEC-2021-constrained optimization problems. Bansal. et al. [39] 

used a binary arithmetic optimization algorithm for integrated features and feature selec-

tion. Agushaka et al. [40] introduced an advanced arithmetic optimization algorithm for 

solving mechanical engineering design problems. Abualigah et al. [41] presented a novel 

evolutionary arithmetic optimization algorithm for multilevel thresholding segmentation. 

Xu et al. [42] hybridized an extreme learning machine and a developed version of the 

arithmetic optimization algorithm for model identification of the proton exchange mem-

brane fuel cells. Izci et al. [43] introduced an improved arithmetic optimization algorithm 

for the optimal design of controlled PID. Khatir et al. [44] proposed an improved artificial 

neural network using the arithmetic optimization algorithm for damage assessments. 

The basic AOA still has some drawbacks. For instance, it is easy to fall into a local 

optimum due to the location update based on the optimal value, premature convergence, 

and low solution accuracy, which need to be solved. Furthermore, in order to seek a more 

efficient way to solve numerical problems, in this paper, an improved arithmetic optimi-

zation algorithm (IAOA) based on the population control strategy is proposed to solve 

numerical optimization problems. By classifying the population and adaptively control-

ling the number of individuals in the subpopulation, the information of each individual 

can be used effectively while increasing the population diversity. More individuals are 

needed in the early iterations to perform a large-scale search that avoids falling into the 

local optimum. The search around the optimal value later in the iterations by more indi-

viduals speeds up the algorithm to find the optimal value and improves the accuracy of 

the solution. The performance of the proposed IAOA algorithm is evaluated on six sys-

tems of nonlinear equations, ten integrations, and engineering problems. The results show 

that the proposed algorithm outperforms the other algorithms in terms of convergence 

speed, convergence accuracy, stability, and robustness. 

The main structure of this paper is as follows. Section 2 reviews the relevant 

knowledge for the nonlinear equation systems, integration, and basic arithmetic optimi-

zation algorithm (AOA). Section 3 introduces the proposed IAOA in detail. Section 4 pre-

sents experimental results, comparisons, and analyses. Section 5 concludes the work and 

proposes future research directions. 
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2. Preliminaries 

2.1. Nonlinear Equation Systems 

Generally, a nonlinear equation system can be formulated as follows. 






















0),...,,(

0),...,,(

0),...,,(

21

21

211

Dn

Di

D

xxxf

xxxf

xxxf

NES





 (1)

where x is a D-dimensional decision variable, and n is the number of equations. Some 

equations are linear; the others are nonlinear. If x* satisfies fi (x*) = 0, then x* is a root of the 

system of equations. 

Before using the optimization algorithm to solve the NES, first is to convert it into a 

single-objective optimization problem [17] as follows. 
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Finding the minimum of an optimization problem is equivalent to finding the root of 

the NES. 

2.2. Numerical Integration 

Definite integrals are very basic mathematical calculation problems as follows. 

 ( )
b

a
f x dx  (3)

where f(x) represents the integrand function, and a and b represent the upper and lower 

bounds, respectively. 

Usually, firstly, we find the original function F(x) of the integrand when finding a 

definite integral and then use the Newton-Leibniz formula as follows: 

 
b

a
xfxFaFbFdxxf ))()((),()()( '

 (4)

However, in many cases, it is difficult to obtain the original function F(x), so the New-

ton-Leibniz formula will not be able to be used. 

In addition, the rest of the numerical quadrature methods are based on the quadra-

ture formula of equidistant node division and summation or stipulate that the equidistant 

nodes remain unchanged during the whole process of calculating, as shown in Figure 1a. 

There need more nodes to obtain a high accuracy. However, the best segmentation is not 

the predetermined equidistant points, as shown in Figure 1b. Randomly generated subin-

tervals has unequal intervals according to the concave and convex changes of the function 

curve, so the obtained value has a higher accuracy than the traditional methods. Based on 

this idea, there is another integral method based on non-equidistant point division [24]. 

First, generate some points randomly on the integral interval, and then, the algorithm is 

used to optimize these split points. Finally, a higher accuracy value will be obtained. This 

not only calculates the definite integral of the function in the usual sense but also calcu-

lates the integral of the singular function and the integral of the oscillatory function for 

this method [27]. The flow of the numerical integration algorithm based on unequal point 

segmentation is as follows [24]. 

(1) Randomly initialize the population in the search space S. 

(2) Arrange each individual in the integral interval in ascending order. The integral in-

terval has n(n = D + 2) nodes and n − 1 segments. Calculate the distance hi between 

two adjacent nodes and the function f(xk) value of each node, then calculate the 
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function value corresponding to the D + 2 nodes and the function value of the middle 

node of each subsection. Find the minimum value wj and the maximum value Wj (j = 

1, 2, …, D + 1) among the function values of the left endpoint, middle node, and right 

endpoint of each subsection. 

(3) Calculate fitness value. F(i) =
�

�
∑ h��W�-w��
���
��� . 

(4) Update individuals through an optimization algorithm. 

(5) Repeat step 4 until reaching the stop condition. 

(6) Get the accuracy and integral values. 

 

(a) (b) 

Figure 1. Two methods of segmentation when solving numerical integrals: (a) equidistant division 

and (b) equidistant division. 

The numerical integration method based on Hermite interpolation only needs to pro-

vide the value of the integral node functions and has high precision. However, this 

method is based on equidistant segmentation. In this paper, the adaptability of unequal-

spaced partitioning and the numerical integration method based on Hermite interpolation 

are combined to solve the numerical integration problem, and the formula is as follows: 
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(5)

where n is the number of random split points, hi is the distance between two adjacent 

points, and f(x) is the integrand function. The advantage of this method is that it does not 

need to calculate the derivative value and only needs to provide the node function value. 

Before using the optimization algorithm to solve the integration, the first step is to convert 

it into a single-objective optimization problem as follows: 

 
b

a
EdxxfxF )()(min  (6)

where ∫ f(x)dx
�

�
 is obtained by Equation (5), and E means the exact value. 

Combine the optimization algorithm with Equation (5), and the whole solution pro-

cess is as follows. 

(1) Randomly initialize the population in the search space S. 
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(2) Arrange each individual in the integral interval in ascending order. The integral in-

terval has n(n = D + 2) nodes and n − 1 segments. Calculate the distance hi between 

two adjacent nodes and the function f(xk) value of each node and then bring them 

into Equation (5). 

(3) Calculate the fitness value by Equation (6). 

(4) Update individuals through an optimization algorithm. 

(5) Repeat step 4 until reaching the stop condition. 

(6) Get the accuracy and integral values. 

2.3. The Arithmetic Optimization Algorithm (AOA) 

The AOA algorithm is a population-based metaheuristic algorithm to solve optimi-

zation problems by utilizing mathematical operators (Multiplication (“×”), Division (“÷”), 

Subtraction (“−”), and Addition (“+”)). The specific description is as follows. 

2.3.1. Initialization Phase 

Generate a candidate solution matrix randomly. 
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After the initialization step, calculate the Math Optimizer Accelerated (MOA) func-

tion and use it to choose between exploration and exploitation. The function is as follows: 








 


T

MinMax
tMintMOA )(  (8)

where Max = 0.9 denotes the maximum and Min = 0.2 denotes the minimum of the function 

value, MOA (t) represents the function value of the current iteration, and T and t represent 

the maximum number of iterations and current iteration, respectively. 

2.3.2. Exploration Phase 

During the exploration phase, the operators (Multiplication (“×”) and Division (“÷”)) 

are used to explore the space randomly when the MOA > 0.5. The mathematical model is 

as follows: 
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where r2 is a random number, xi,j(t + 1) represents the jth position of ith solution in the (t + 

1)th iteration, best(xj) denotes the jth position in the global optimal solution, ε is a small 

integer number that avoids the case where the denominator is zero in division, UBj and 

LBj represents the upper and lower bounds of each dimension, respectively, and μ is equal 

to 0.5. The Math Optimizer probability (MOP) is as follows: 





1

1

1)(

T

t
tMOP   (10)

where MOP(t) represents the function value for the current iteration, and α is a sensitive 

parameter and equal to 5. 
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2.3.3. Exploitation Phase 

During the exploration phase, the operators (Subtraction (“−”) and Addition (“+”)) 

are used to execute the exploitation. When MOA < 0.5, the mathematical model as follows: 
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 (11)

where r3 is a random number. The pseudo-code of the AOA is as follows (Algorithm 1) [37]. 

Algorithm 1 AOA 

1. Set up the initial parameters α, μ. 

2. Initialize the population randomly. 

3. for t = 1: T 

4.  Calculate the fitness function and select the best solution. 

5.  Update the MOA (using Equation (8)) and MOP (using Equation (10)). 

6.  for i = 1: N 

7.   for j = 1: Dim 

8.    Generate the random values between [0, 1] (r1, r2, r3) 

9.    if r1 > MOA 

10.     if r2 > 0.5 

11.      Update the position of the individual by Equation (9). 

12.     else 

13.      Update the position of the individual by Equation (9). 

14.     end 

15.    else 

16.     if r3 > 0.5 

17.      Update the position of the individual by Equation (11). 

18.     else 

19.      Update the position of the individual by Equation (11). 

20.     end 

21.    end 

22.   end 

23. end 

24. t = t + 1 

25. end 

26. Return the best solution (x). 

3. Our Proposed IAOA 

3.1. Motivation for Improving the AOA 

In AOA, the population is updated based on the optimal global solution. Once it falls 

into the optimal local one, the entire population will stagnate. There is premature cover-

age, in some cases [33]. In addition, this algorithm does not fully utilize the information 

of the individuals in the population. Therefore, to make full use of the information of the 

individuals and address the weakness of AOA, the improved arithmetic optimization al-

gorithm (IAOA) is proposed in this paper. 

3.2. Population Control Mechanism 

In the basic arithmetic optimization algorithm (AOA), the operators (Multiplication 

(“×”), Division (“÷”), Subtraction (“−”), and Addition (“+”)) are used to wrap around an 

optimal solution to search randomly in space, and it will lead to a loss of population di-

versity. Therefore, it is necessary to classify for the population. 
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3.2.1. The First Subpopulation 

Sort the population according to the fitness value and select the first num_best indi-

viduals as the first subpopulation: 

))1(5.01.0(_ TtNNroundbestnum   (12)

where N is the number of individuals, and t and T represent the current iteration and 

maximum iterations, respectively. Then, these individuals update their position by get-

ting information about each other. The mathematical model is as follows: 

_ _

_ _

( ) ( )
( 1) ( ) ( )

2

best i best j

best i best i

x t x t
x t x t rand best x 

 
      

 
 (13)

_ _

_ _

( ) ( )
( 1) ( ) ( )

2

best i best j

best j best j

x t x t
x t x t rand best x 

 
      

 
 (14)

where xbest_i(t + 1) denotes the position of ith individual in the next iteration, the same as 

xbest_j(t + 1), best(x) represents the global optimum that has been found through individuals 

after t iterations, xbest_j is selected from the first class randomly, and ω means the infor-

mation acquisition rate and takes the value 1 or 2. 

3.2.2. The Second Subpopulation 

Select num_middle individuals from the population as the second subpopulation. 

_ (0.3 )num middle round N   (15)

These individuals fall between num_best and num_worst in the population. Then, 

these individuals update their position, and the updated model is as follows: 

_ _ _( 1) ( ) ( ( ) )mid i mid i mid jx t x t Levy best x x      (16)

where xmid_i(t + 1) denotes the position of ith individual in the next iteration, Levy is the 

Levy distribution function [45,46], and xmid_j is selected from the second class randomly. 

3.2.3. The Third Subpopulation 

Select num_worst individuals from the population as the final subpopulation. 

)__(_ middlenumbestnumNworstnum   (17)

In the final class, the individuals update their position by the following equation: 

_ _ _( 1) ( )worst i worst i worst j

t
x t x best x x

T

 
     

 
 (18)

where xworst_i(t + 1) denotes the position of ith individual in the next iteration, and best(x) 

represents the global optimum that has been found through individuals after t iterations. 

At the early iteration of IAOA, there are more individuals in the first subpopulation 

for speeding up the update of the global optimum. At the later iterations of the algorithm, 

the number of individuals in the first subpopulation decreases, which solves the operator 

crowding problem near the optimum. In addition, the number of individuals in the third 

subpopulation increases, which effectively prevents the population from falling into the 

local optimum. The second subpopulation utilizes the Levy flight for small-step updates 

to find more promising areas. The above strategy can effectively overcome the weaknesses 

of traditional AOA and improve its performance. The pseudo-code of the IAOA in algo-

rithm 2 is as follows (Algorithm 2). Figure 2 is the flowchart of the IAOA. 
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Algorithm 2 IAOA 

1. Set up the initial parameters α, μ. 

2. Initialize the population randomly. 

3. for t = 1: T 

4.  Calculate the fitness function and select the best solution. 

5. Calculate the number of the first subpopulation by Equation (12). 

6. Update the first subpopulation by Equations (13) and (14). 

7. Calculate the number of the second subpopulation by Equation (15). 

8. Update the second subpopulation by Equation (16). 

9. Calculate the number of the third subpopulation by Equation (17). 

10. Update the third subpopulation by Equation (18). 

11.  Update the MOA (using Equation (8)) and MOP (using Equation (10)). 

12.  for i =1: N 

13.   for j = 1: Dim 

14.    Generate the random values between [0, 1] (r1, r2, r3) 

15.    if r1 > MOA 

16.     if r2 > 0.5 

17.      Update the position of the individual by Equation (9). 

18.     else 

19.      Update the position of the individual by Equation (9). 

20.     end 

21.    else 

22.     if r3 > 0.5 

23.      Update the position of the individual by Equation (11). 

24.     else 

25.      Update the position of the individual by Equation (11). 

26.     end 

27.    end 

28.   end 

29. end 

30. t = t + 1 

31. end 

32. Return the best solution (x). 
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Figure 2. Flowchart of the IAOA. 

4. Numerical Experiments and Analysis 

4.1. Parameter Settings 

Here, six groups of NESs and ten groups of integration have been used to demon-

strate the efficiency of the IAOA. The IAOA compares several popular algorithms and 

two improved arithmetic optimization algorithms (The Arithmetic Optimization Algo-

rithm (AOA) [37], Sine Cosine Algorithm (SCA) [47], Whale Optimization Algorithm 

(WOA) [48], Grey Wolf Optimizer (GWO) [49], Harris hawks optimization (HHO) [50], 

Slime mould algorithm (SMA) [51], Differential evolution(DE) [52], Cuckoo search algo-

rithm (CSA) [53], Advanced arithmetic optimization algorithm (nAOA) [40], and a devel-

oped version of Arithmetic Optimization Algorithm (dAOA) [42]) for tackling NES. 

Among them, the parameters of these algorithms are all from the original version. These al-

gorithms are evaluated from four aspects: the average value, the optimal value, the worst 

value, and the standard deviation. All algorithms are executed on MATLAB 2021a, running 

on a computer with a Windows 10 operating system, Intel(R) Core (TM) i7-9700 CPU @ 3.00 

GHz, 16 GB of Random Access Memory (RAM), and run 30 times independently for all test 

problems. The flowchart for handling issues by the IAOA is shown in Figure 3. 



Mathematics 2022, 10, 2152 10 of 27 
 

 

 

Figure 3. Flowchart for handling issues. 

4.2. Application in Solving NESs 

Solving nonlinear problems often requires higher-precision solutions in many prac-

tical applications. In this section, six nonlinear systems of equations are chosen to evaluate 

the performance of the IAOA. The characteristics of these equations are different from 

each other, where problem01 [54] describes the interval arithmetic problem, problem02 

[55] describes the multiple steady-states problem, and problem06 [56] describes the mo-

lecular conformation. These problems come from real-world applications. For fairness, set 

the population to 50 and the maximum number of iterations to 200. Tables 1–6 show all 

the test results of the NES. Best represents the best value, Worst represents the worst 

value, Mean represents the mean value, Std represents the standard deviation, and p-

value stands for the Wilcoxon rank–sum test in Table 7. The Wilcoxon p-value test is used 

to verify whether there is an obvious difference between the two sets of data. 

Table 1. Comparison of the experimental results for problem01. 

Variable  
Algorithms 

AOA IAOA SCA WOA 

x1 0.006361583402960 0.257838650825518 0.186732591196869 0.260832096649832 

x2 0.005731653837062 0.381098185347242 0.399818814038728 0.381680691118263 

x3 0.010586282003880 0.278742562628776 0.008959145137085 0.258353295805450 

x4 0.002593989505334 0.200665586275865 0.227237103605413 0.215307146397956 

x5 0.033520558095432 0.445255928027431 0.003829239926320 0.448797960971748 

x6 0.076424218265631 0.149188813621332 0.185905381801968 0.147397359179682 

x7 0.038862694473151 0.432010769672038 0.368813050526818 0.442390776062597 

x8 −0.000004007877210 0.073406152818720 0.037739989370997 0.137586270569043 

x9 0.029054432130685 0.345966262513093 0.206476235144125 0.342058064566263 

x10 0.013690425703394 0.427324518269459 0.363350844915327 0.401475021739693 

f 8.45665838921712 × 10−1 4.73405913551646 × 10−10 1.22078391539763 × 10−1 9.59544885085295 × 10−4 

Variable 
Algorithms 

GWO HHO DE CSO 

x1 0.256851024248810 0.324317023967532 2.000000000000000 0.089951372914250 

x2 0.383565743620699 0.303967192642514 1.948157453190990 0.309487131659014 

x3 0.278312335483674 0.216191961411362 2.000000000000000 0.456410156556233 

x4 0.198737300040942 0.305260974230829 1.815308511546580 0.356392775439902 
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x5 0.446311619177502 0.325255783591842 2.000000000000000 0.476086684751138 

x6 0.145894138632280 0.223020351676054 2.000000000000000 0.078921332097133 

x7 0.145894138632280 0.323185143014029 2.000000000000000 0.499580490394335 

x8 −0.007832029555062 0.327973609353822 1.915762141824520 0.197756675883883 

x9 0.343654620394334 0.333430854648433 2.000000000000000 0.228228833675487 

x10 0.425902664080806 0.324142888370713 2.000000000000000 0.470195948900759 

f 1.25544451911646 × 10−3 7.79220329211044 × 10−2 7.96261500819178 × 10−2 6.61705221934444 × 10−2 

Variable 
Algorithms 

SMA nAOA dAOA 

x1 0.249900132290417 0.035430633051580 1.840704485033870 

x2 0.375428314977531 0.053983062784772 1.213421005935260 

x3 0.272448580296318 0.072735305166021 1.203555993641700 

x4 0.199698265955405 0.021399042985613 −0.393935624266822 

x5 0.425934189445810 0.064655913970964 −0.249476549706985 

x6 0.057699959645613 0.012570281350831 0.459915310960444 

x7 0.431865275874618 0.057639809639213 −0.675754718182326 

x8 0.015005640000641 0.005520004765830 −0.895856414267328 

x9 0.347986992756388 0.041229484511092 0.359139808282465 

x10 0.415304164782275 0.079595719921909 1.529188120361250 

f 4.47411205566240 × 10−3 6.74563715208325 × 10−1 1.91503507134915 

Table 2. Comparison of the experimental results for problem02. 

Variable 
Algorithms 

AOA IAOA SCA WOA 

x1 0.040781958181860 0.042124781715274 0.000000000000000 0.041561373108785 

x2 0.268625655728691 0.061754610138946 0.266593748985495 0.268697327813652 

f 2.01752031872803 × 10−7 9.24446373305873 × 10−34 8.82826387279195 × 10−5 6.92247231102962 × 10−9 

Variable 
Algorithms 

GWO HHO DE CSO 

x1 0.265622854930434 0.267855297066815 0.266589101862370 0.266620164671422 

x2 0.178718146817611 0.458749279058429 0.327275026016101 0.178514261126008 

f 1.13985864694418 × 10−7 6.55986405733090 × 10−8 1.31654979128584 × 10−18 1.49504500886345 × 10−9 

Variable 
Algorithms 

SMA nAOA dAOA 

x1 0.021419624272050 0.000000000000000 0.236558250181286 

x2 0.048075232460874 0.719124811309122 0.508933311549167 

f 2.89316821274146 × 10−5 3.07109081317222 × 10−5 3.22387407689191 × 10−4 

Table 3. Comparison of the experimental results for problem03. 

Variable 
Algorithms 

AOA IAOA SCA WOA 

x1 1.990744078311880 −0.947268146986263 −0.225974226141413 −1.424482905343090 

x2 0.220001522814532 −0.785020015568289 1.245763361231140 −0.543544840817441 

f 5.61739095968327 × 10−3 4.02151576372412 × 10−32 7.95691890654021 × 10−4 1.06331568826728 × 10−3 

Variable 
Algorithms 

GWO HHO DE CSO 

x1 −1.794053112053940 −1.495480498807310 −1.791308474954350 −0.212779003619775 

x2 −0.303905803005920 −0.420394691864127 0.301889327351144 −1.257141525856050 

f 2.77808608355359 × 10−5 6.12298193031725 × 10−5 1.84881969881973 × 10−9 6.26348225916795 × 10−7 

Variable Algorithms 
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SMA nAOA dAOA 

x1 −1.791387180972800 −1.475077261850100 −1.580085715978880 

x2 −0.302157020359872 −0.454673564762598 0.4651484d76848022 

f 5.47910691165820 × 10−8 2.17709293383390 × 10−4 5.12705019470938 × 10−2 

Table 4. Comparison of the experimental results for problem04. 

Variable 
Algorithms 

AOA IAOA SCA WOA 

x1 −0.000266868453558 −0.000000091835793 −0.120898772911816 −0.310246574315981 

x2 −0.000267036157051 0.000013971597535 0.491167568359585 0.467564824328878 

x3 −0.000267036274281 0.000030454051416 10.000000000000000 1.071469773086650 

x4 0.000000025430197 0.000010000404353 −0.178108600809833 −0.404219784214681 

x5 −0.000267039311495 0.000011275918099 5.423242568753400 3.552125620609660 

x6 −0.000267036127224 0.000000019800029 −0.049710980654501 −1.834136698070800 

x7 0.000000000091855 −0.000000000138437 0.445662462511328 0.286050311387620 

x8 0.000267036101457 −0.000000454282127 −10.000000000000000 −2.931846497771810 

x9 0.000267033832224 0.000000000736505 −0.144419405019169 −4.812450845354100 

x10 0.000267043884482 −0.000002006069864 −0.518105971932846 3.756426716000660 

f 1.08498006397337 × 10−9 7.03339003909689 × 10−16 4.13237426374674 × 10−1 6.47066501369328 × 10−1 

Variable 
Algorithms 

GWO HHO DE CSO 

x1 0.044653752694561 −0.000047703379713 0.160723693838569 −0.009650846541198 

x2 −0.259567674882923 0.000075691075249 0.431923139718368 0.147278561202585 

x3 −1.777013199398760 −0.000029713372367 0.072922517980119 −3.148557575646470 

x4 0.042606334458592 −0.000050184914825 0.447403957744849 −0.512428980703464 

x5 −4.935286036663600 0.000033675529531 −0.197972459731190 −4.175819684412100 

x6 −8.146156623785810 0.000067989452634 1.490110445009050 −7.123183974281880 

x7 −0.108125274969201 0.000031288762826 0.472265426079125 1.268663892956760 

x8 1.747052457418910 0.000048491290536 0.509493705510866 3.198230908839320 

x9 −0.311997778279745 0.000063892452193 1.142101578993260 −4.763105818868310 

x10 8.430357427064680 −0.000123055431652 −2.110335475212350 9.463108408596410 

f 7.56734706927375 × 10−3 6.11971561041781 × 10−10 9.87501536049260 × 10−1 2.18295386757873 

Variable 
Algorithms 

SMA nAOA dAOA 

x1 −0.000000000028677 0.000020144848903 −0.934997016811202 

x2 0.000014644312649 −0.000060200695401 −1.295640443505010 

x3 0.000038790339140 −0.000020118018817 −5.634966911723890 

x4 −0.000000000221797 −0.000060200956330 −4.825343892476190 

x5 0.000000055701981 −0.000020122803817 0.269511140973028 

x6 −0.000000030051237 −0.000020134693956 −7.253398121182340 

x7 0.000000595936232 0.000020123341500 7.557747336452660 

x8 −0.000000000025333 0.000020925519435 −5.520361069927860 

x9 0.000000799504725 0.000043615727680 −4.709534880735350 

x10 0.000000000012983 0.000020120622373 8.954470788407880 

f 1.30095438660555 × 10−10 1.50696700666871 × 10−9 2.07190542503982 × 102 
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Table 5. Comparison of the experimental results for problem05. 

Variable 
Algorithms 

AOA IAOA SCA WOA 

x1 0.371964486871792 0.500000000000000 0.471178994397267 0.503978268408352 

x2 2.990337880814430 3.141592653589790 3.118271172186020 3.142976305563530 

f 1.89048835343036 × 10−4 1.85873810048745 × 10−28 3.41504906318340 × 10−5 2.00099014478417 × 10−7 

Variable 
Algorithms 

GWO HHO DE CSO 

x1 0.495722089382004 0.503332577729795 0.299448692445072 0.500482294032500 

x2 3.143566564341090 3.142753305279310 2.836927770362990 3.142098043614560 

f 1.12835512797232 × 10−6 1.16071617155615 × 10−7 6.25300383824133 × 10−23 2.13609775136897 × 10−8 

Variable 
Algorithms 

SMA nAOA dAOA 

x1 0.298949061647857 0.354640044143990 2.956994389007600 

x2 2.835691250750600 2.956994389007600 1.890717921128260 

f 1.05189651760469 × 10−8 1.59376404093113 × 10−4 3.65946616757579 × 10−3 

Table 6. Comparison of the experimental results for problem06. 

Variable 
Algorithms 

AOA IAOA SCA WOA 

x1 0.953663829653960 −0.779548045079158 11.147659127176500 1.516510183032980 

x2 0.663112382731748 −0.779548045079158 0.900762400732728 0.694394649388567 

x3 0.729782844271910 −0.779548045079158 0.919816117314499 10.556407054559600 

f 3.35330112498813 × 10−1 1.00553388370096 × 10−20 2.75666643131973 8.65817545834561 

Variable 
Algorithms 

GWO HHO DE CSO 

x1 0.781303537791760 −0.782460718139219 −0.779277448448367 −0.765447632695953 

x2 0.777872878718449 −0.789339702437282 −0.779700789186745 −0.784775197498564 

x3 0.779780469890485 −0.766810453292313 −0.780020611467694 −0.735052686517780 

f 5.49159538279891 × 10−4 1.00882211687459 × 10−2 6.71295836563811 × 10−6 2.92512803990831 × 10−1 

Variable 
Algorithms 

SMA nAOA dAOA 

x1 −0.779731780102931 −0.437772635064718 −1.056395480177350 

x2 −0.779371556451744 −7.659741643877890 6.893981344148980 

x3 −0.779303513685515 −2.620897335617900 −1.876924860155790 

f 1.03517116885362 × 10−5 1.49720612584788 2.61017698945353 × 104 

Table 7. Statistical results for the NES. 

Algorithms  
Systems of Nonlinear Equations 

problem01 problem02 problem03 problem04 problem05 problem06 

AOA best 7.02711 × 10−1 1.20198 × 10−8 8.30574 × 10−12 2.99534 × 10−10 5.32587 × 10−6 1.60969 × 10−8 

 worst 9.05980 × 10−1 7.47231 × 10−7 9.55457 × 10−3 3.58264 × 10−9 5.96026 × 10−4 1.00599 × 10 

 mean 8.45666 × 10−1 2.01752 × 10−7 3.18486 × 10−4 1.08498 × 10−9 1.89049 × 10−4 3.35330 × 10−1 

 std 4.40686 × 10−2 1.78065 × 10−7 1.74442 × 10−3 8.49280 × 10−10 1.40374 × 10−4 1.83668 

 p-value 3.01986 × 10−11 1.01490 × 10−11 1.07516 × 10−11 3.01986 × 10−11 1.49399 × 10−11 3.01230 × 10−11 

IAOA best 1.05462 × 10−10 0.00000 4.93038 × 10−32 2.97972 × 10−19 0.00000 1.81191 × 10−30 

 worst 1.25230 × 10−9 3.08149 × 10−33 2.09541 × 10−31 5.52546 × 10−15 5.57614 × 10−27 2.98754 × 10−19 

 mean 4.73406 × 10−10 9.24446 × 10−34 7.27231 × 10−32 7.03339 × 10−16 1.85874 × 10−28 1.00553 × 10−20 

 std 2.84371 × 10−10 1.43626 × 10−33 4.02152 × 10−32 1.22291 × 10−15 1.01806 × 10−27 5.45273 × 10−20 
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SCA best 4.64629 × 10−2 1.20156 × 10−8 8.29788 × 10−6 7.08592 × 10−4 7.53679 × 10−9 1.19890 × 10−1 

 worst 2.98744 × 10−1 8.60445 × 10−4 3.13588 × 10−3 2.83503 2.00649 × 10−4 3.29896 × 10 

 mean 1.22078 × 10−1 8.82826 × 10−5 5.47683 × 10−4 4.13237 × 10−1 3.41505 × 10−5 2.75667 

 std 5.72692 × 10−2 2.61875 × 10−4 7.59630 × 10−4 6.58494 × 10−1 4.69615 × 10−5 6.25475 

 p-value 3.01986 × 10−11 1.01490 × 10−11 1.07516 × 10−11 3.01986 × 10−11 1.49399 × 10−11 3.01230 × 10−11 

WOA best 1.87873 × 10−4 6.72146 × 10−14 6.18945 × 10−13 4.04945 × 10−6 2.16928 × 10−11 1.76476 × 10−5 

 worst 5.56233 × 10−3 1.30541 × 10−7 4.48907 × 10−2 4.99725 4.78904 × 10−6 7.91148 × 10 

 mean 9.59545 × 10−4 6.92247 × 10−9 4.26773 × 10−3 6.47067 × 10−1 2.00099 × 10−7 8.65818 

 std 1.06419 × 10−3 2.49080 × 10−8 1.24385 × 10−2 1.07197 8.71177 × 10−7 2.24136 × 10 

 p-value 3.01986 × 10−11 1.01490 × 10−11 1.07516 × 10−11 3.01986 × 10−11 1.49399 × 10−11 3.01230 × 10−11 

GWO best 2.65480 × 10−6 2.31886 × 10−12 1.77817 × 10−8 1.01688 × 10−6 2.21126 × 10−9 9.05730 × 10−5 

 worst 6.59898 × 10−3 1.73256 × 10−6 9.94266 × 10−2 5.57604 × 10−2 1.70979 × 10−5 1.58625 × 10−3 

 mean 1.25544 × 10−3 1.13986 × 10−7 3.33932 × 10−3 7.56735 × 10−3 1.12836 × 10−6 5.49160 × 10−4 

 std 2.25868 × 10−3 4.16137 × 10−7 1.81481 × 10−2 1.36923 × 10−2 3.33417 × 10−6 3.69947 × 10−4 

 p-value 3.01986 × 10−11 1.01490 × 10−11 1.07516 × 10−11 3.01986 × 10−11 1.49399 × 10−11 3.01230 × 10−11 

HHO best 2.03768 × 10−2 8.99794 × 10−31 4.93038 × 10−32 1.21192 × 10−11 7.70372 × 10−34 3.83242 × 10−5 

 worst 1.33302 × 10−1 1.91904 × 10−6 5.78702 × 10−4 1.00491 × 10−9 3.34700 × 10−6 7.08247 × 10−2 

 mean 7.79220 × 10−2 6.55986 × 10−8 4.12782 × 10−5 6.11972 × 10−10 1.16072 × 10−7 1.00882 × 10−2 

 std 2.90524 × 10−2 3.50117 × 10−7 1.19896 × 10−4 2.78236 × 10−10 6.10656 × 10−7 1.45023 × 10−2 

 p-value 3.01986 × 10−11 1.01490 × 10−11 5.56066 × 10−8 3.01986 × 10−11 1.30542 × 10−10 3.01230 × 10−11 

DE best 6.05782 × 10−3 8.15969 × 10−28 2.49399 × 10−20 2.59514 × 10−1 2.59615 × 10−31 4.23182 × 10−11 

 worst 9.69921 × 10−1 1.19322 × 10−17 5.91181 × 10−7 2.58615 6.37964 × 10−22 1.17012 × 10−4 

 mean 7.96262 × 10−2 1.31655 × 10−18 3.33313 × 10−8 9.87502 × 10−1 6.25300 × 10−23 6.71296 × 10−6 

 std 2.40157 × 10−1 2.91169 × 10−18 1.26981 × 10−7 6.21653 × 10−1 1.66035 × 10−22 2.15862 × 10−5 

 p-value 3.01986 × 10−11 1.01490 × 10−11 1.07516 × 10−11 3.01986 × 10−11 6.22236 × 10−11 3.01230 × 10−11 

CSO best 2.82411 × 10−2 7.30711 × 10−11 2.92752 × 10−9 6.03864 × 10−1 2.67109 × 10−10 2.27267 × 10−2 

 worst 1.34962 × 10−1 7.15408 × 10−9 2.57784 × 10−6 4.34942 1.32416 × 10−7 1.31894 

 mean 6.61705 × 10−2 1.49505 × 10−9 6.53698 × 10−7 2.18295 2.13610 × 10−8 2.92513 × 10−1 

 std 2.71383 × 10−2 1.66707 × 10−9 5.69101 × 10−7 1.05318 3.36401 × 10−8 3.41112 × 10−1 

 p-value 3.01986 × 10−11 1.01490 × 10−11 1.07516 × 10−11 3.01986 × 10−11 1.49399 × 10−11 3.01230 × 10−11 

SMA best 5.18988 × 10−4 1.26496 × 10−7 2.37253 × 10−11 2.08208 × 10−11 6.22359 × 10−11 3.95601 × 10−7 

 worst 1.17331 × 10−2 2.46549 × 10−4 5.80093 × 10−7 2.89907 × 10−10 5.94920 × 10−8 4.75099 × 10−5 

 mean 4.47411 × 10−3 2.89317 × 10−5 5.98652 × 10−8 1.30095 × 10−10 1.05190 × 10−8 1.03517 × 10−5 

 std 3.00476 × 10−3 5.64857 × 10−5 1.28713 × 10−7 7.25135 × 10−11 1.30068 × 10−8 1.04158 × 10−5 

 p-value 3.01986 × 10−11 1.01490 × 10−11 1.07516 × 10−11 3.01986 × 10−11 1.49399 × 10−11 3.01230 × 10−11 

nAOA best 4.73537 × 10−1 1.16733 × 10−9 3.11364 × 10−12 3.28064 × 10−10 2.13953 × 10−5 7.56334 × 10−8 

 worst 7.39125 × 10−1 9.06936 × 10−4 8.22290 × 10−1 2.69391 × 10−9 4.30978 × 10−4 4.49162 × 10 

 mean 6.74564 × 10−1 3.07109 × 10−5 2.77064 × 10−2 1.50697 × 10−9 1.59376 × 10−4 1.49721 

 std 5.68300 × 10−2 1.65502 × 10−4 1.50077 × 10−1 6.31248 × 10−10 7.06193 × 10−5 8.20053 

 p-value 3.01986 × 10−11 1.01490 × 10−11 1.07516 × 10−11 3.01986 × 10−11 1.49399 × 10−11 3.01230 × 10−11 

dAOA best 2.01052 × 10−1 8.99368 × 10−9 2.54429 × 10−4 3.09426 × 10−10 5.69606 × 10−6 8.50407 × 10−4 

 worst 6.87872 1.28121 × 10−3 4.68145 × 10−1 9.87499 × 102 1.56431 × 10−2 3.78263 × 105 

 mean 1.91504 3.22387 × 10−4 6.56368 × 10−2 2.07191 × 102 3.65947 × 10−3 2.61018 × 104 

 std 2.16147 3.20053 × 10−4 1.21675 × 10−1 2.92259 × 102 5.26309 × 10−3 8.07193 × 104 

 p-value 3.01986 × 10−11 1.01490 × 10−11 1.07516 × 10−11 3.01986 × 10−11 1.49399 × 10−11 3.01230 × 10−11 

Problem 01. The description of the system is as follows [54]: 
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 (19)

There are ten equations in the system, where ]2,2[ix , i = 1, …, n, and n = 10. The 

aim was to obtain a higher precision solution x (x1, …, xn) through the proposed optimi-

zation method, and the results are recorded in Table 1. The IAOA is better than others 

compared with several algorithms. The WOA ranks second, and the rest obtain competi-

tive results. The convergence curve for this problem shows in Figure 4a. 
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Figure 4. Convergence curve for tackling the NES (problem01–06 (a–f)). 

Problem 02. The description of the system is as follows [55]: 
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There are two equations in system, where ]1,0[ix , i = 1, …, n, and n = 2. In Table 2, 

the experimental results for this problem proved that the proposed IAOA outperforms 

the other methods. The DE ranks second, and the rest obtain competitive results. The 

AOA, WOA, GWO, HHO, and CSO are in the third echelon. Furthermore, the rest are in 

the fourth echelon. The convergence curve for this problem is shown in Figure 4b. 

Problem 03. The description of the system is as follows [13]: 
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 (21)

There are two equations in the system, where ]2,2[ix , i = 1, …, n, and n = 2. The 

simulation results for this problem are shown in Table 3. It revealed that the IAOA is better 

than the other algorithms. The DE, CSO, and SMA are in the second echelon. The rest are 

in the third echelon. The convergence curve for this problem is shown in Figure 4c. 

Problem 04. The description of the system is as follows [54]: 
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There are ten equations in the system: ]10,10[ix , i = 1, …, n, and n = 10. Table 4 

shows that the IAOA outperforms the others, and AOA, HHO, SMA, and nAOA obtain 

the competitive results. The convergence curve for this problem is shown in Figure 4d. 

Problem 05. The description of the system is as follows [17]: 
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There are two equations in the system, where ]1,25.0[1x  and ]2,5.1[2 x . In 

Table 5, the IAOA obtained the optimal solution, DE obtained the suboptimal solution, 

and the rest of the algorithms obtained competitive results. The convergence curve for this 

problem is shown in Figure 4e. 

Problem 06. The description of the system is as follows [56]: 
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There are three equations in the system, where the details about βij can be found in 

the literature [56]: ]20,20[ix , i = 1, …, n, and n = 3. In Table 6, the proposed IAOA 

outperforms the other algorithms; the GWO, SMA, and DE get competitive results. The 

convergence curve for this problem is shown in Figure 4f. 

The statistical results show that the IAOA outperforms all algorithms on the remain-

ing problems in Table 7. These demonstrate that the IAOA has stronger ability and higher 

stability than the other methods when solving a nonlinear system of equations. In Figure 

4, IAOA’s convergence speed is slower than the others before the 110th iteration, but after 

that, the IAOA still maintains a high convergence speed and achieves the optimum at the 

200th iteration for problem01; for problem02 and problem03, the IAOA has the fastest 

speed throughout the whole process and reaches the optimum at the 120th iteration and 

before 120 iterations, respectively; for problem04, the IAOA is slower than the other algo-

rithms before 70 iterations; however it continues to converge after that and obtains the 

optimal value after 200 iterations; for problem05, there is a close convergence rate for the 

IAOA and DE, but a better value is obtained by the IAOA; for problem06, it has a slower 

convergence speed than the others before 20 iterations, but after that, the fastest 
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convergence rate is obtained by the IAOA. All the experimental results prove that the 

algorithm proposed in this paper has the characteristics that include a fast convergence 

speed, high convergence accuracy, high solution quality, good stability, and strong ro-

bustness when dealing with nonlinear systems of equations. The p-values of almost all 

test functions in the table are less than 0.05, indicating that the IAOA is significantly dif-

ferent from the other algorithms. 

4.3. Numerical Integration 

The performance of the proposed new method is evaluated in this section using the 

ten numerical integration problems in Table 8, where F08 is a singular integral and F10 is 

an oscillatory integral. The IAOA compared with the traditional methods and population-

based algorithms in tackling these cases. Tables 9–12 show the best integral values ob-

tained by solving ten problems in 30 independent runs, where the R-method, T-method, 

S-method, H-method, G32, and 2n × L5 represent the traditional methods (rectangle 

method, trapezoid method, Simpson method, Hermite interpolation method, the 32-point 

Gaussian formula, and the 5-point Gauss-Roberto-Legendre formula). The rest are swarm 

intelligence algorithms applied to solve numerical integration problems (evolutionary 

strategy method [24], particle swarm optimization [25], differential evolution algorithm 

[27], and improved bat algorithm [28]). The population size and the maximum number of 

iterations are set to 30 and 200 during the process, respectively. In Table 9, for F01, the 

solution accuracy of the IAOA is higher than the other methods, and then, the S-method, 

FN, ES, DEBA, PSO, and DE obtain close results; for F02, the IAOA achieves the best re-

sult, and the FN, ES, DEBA, PSO, and DE are in the second echelon; for F03, the IAOA 

achieves the better result compared to the FN, ES, and PSO. The MBFES, DEBA, and DE 

rank third. In Table 10, for F04, the IAOA gets a perfect result, and the FN, ES, DEBA, 

PSO, and DE obtain similar values; for F05, the IAOA ranks first, and the FN, ES, DEBA, 

PSO, and DE rank second; for F06, the IAOA, FN, and DE achieve competitive results. For 

F07–F09, the IAOA obtains the best value, and the FN, ES, and DEBA rank second in Table 

11. The traditional methods (R-method, T-method, and S-method) fail to solve F10; there-

fore, G32 and 2n × L5 are utilized to tackle this problem. In Table 12, the IAOA and DEBA 

obtain similar values and ranks first. Tables 13 and 14 are statistical results for the numer-

ical integration (F01–F10) are obtained by swarm intelligence algorithms. For F01–F09, the 

IAOA is better than the other algorithms across all the assessment criteria (the best value, 

the worst value, mean value, and standard deviation). However, for F10, the IAOA 

achieves the only optimal result in the best value, and the rest rank second, in which the 

DEBA obtains the best results. From Figure 5, the method proposed in this paper has the 

fastest convergence speed and convergence accuracy for all the problems except F10. The 

above experimental results prove that the IAOA has fast convergence speed, high solution 

accuracy, and strong robustness. These enable the IAOA to handle numerical integration 

problems; therefore, it is a worthwhile direction to apply the IAOA to solve the integration 

solution problems in practical engineering applications. 
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Figure 5. Convergence curve for the numerical integrations (F01–F10 (a–l)). 

Table 8. Details of the integrations F01–F10. 

Integrations Details Range 

F01 
2)( xxf   [0, 2] 

F02 
4)( xxf   [0, 2] 

F03 21)( xxf   [0, 2] 
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1
)(  [0, 2] 

F05 xxf sin)(   [0, 2] 

F06 
xexf )(  [0, 2] 

F07 2)(cos1)( xxf   [0, 48] 

F08 






















32,

21,

10,

)(
3

2

xe

xe

xe

xf
x

x

x

 [0, 3] 

F09 
2

)( xexf   [0, 1] 

F10 )30,20,10(,sincos)(  mxmxxxxf  [0, 2 ] 

Table 9. Comparison of the experimental results for F01–F03. 

Methods 
Integrations 

F01 F02 F03 

R-method 2.000 2.000 2.828 

T-method 4.000 16.000 3.236 

S-method 2.667 6.667 2.964 

H-method 2.830 7.066 3.048 

FN [26] 2.667 6.3995 2.95789 

MBFES [24] 2.659 6.338 2.956 

ES [24] 2.666 6.398 2.9577 

DEBA [28] 2.66698573 6.401201 2.958169 

PSO [25] 2.666 6.398 2.9578 

DE [27] 2.667 6.3995 2.958 

AOA 2.61006134 6.20147125 2.94004382 

IAOA 2.66661710 6.40000000 2.95788286 

Exact 2.66666667 6.40000000 2.95788572 

Table 10. Comparison of the experimental results for F04–F06. 

Methods 
Integrations 

F04 F05 F06 

R-method 1.000 1.683 5.437 

T-method 1.333 0.909 8.389 

S-method 1.111 1.425 6.421 

H-method 1.112 1.452 6.691 

FN [26] 1.0986 1.416 6.389 

MBFES [24] 1.090 1.419 6.390 

ES [24] 1.098 1.416 6.388 

DEBA [28] 1.098754 1.416082 6.388921 

PSO [25] 1.0985 1.416 6.3887 

DE [27] 1.099 1.416 6.389 

AOA 1.08923818 1.40101546 6.29531692 

IAOA 1.09861229 1.41613957 6.38901606 

Exact 1.09861229 1.41614684 6.38905610 
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Table 11. Comparison of the experimental results for F07–F09. 

Methods 
Integrations 

F07 F08 F09 

R-method 52.13975183 1.51349542 0.77782078 

T-method 62.43737140 1.61179305 0.74621972 

S-method 117.61490334 2.48720505 0.74683657 

H-method 58.99776108 1.56164258 0.75403569 

FN [26] 58.4705 1.54604 0.746823 

MBFES [24] 58.48828 1.5455 0.74652 

ES [24] 58.47065 1.5459805 0.74683 

DEBA [28] 58.470505372351 1.5460388345767 0.7468269544604 

PSO 56.80139775 1.52897330 0.74328459 

DE 56.04598085 1.52425900 0.74202909 

AOA 56.17497970 1.52641514 0.74223182 

IAOA 58.47046915 1.54603603 0.74682413 

Exact 58.47046915 1.54603603 0.74682413 

Table 12. Comparison of the experimental results for F10. 

Methods 
Integrations 

F10 (m = 10) F10 (m = 20) F10 (m = 30) 

G32 −0.6340207 −1.2092524 −1.5822272 

2n × L5 −0.55875940 −0.27789620 −0.18508448 

H-method −0.21043575 0.17309499 −0.02945756 

MBFES [24] −0.68134052 −0.37280425 −0.17305621 

ES [24] −0.65034080 −0.30583435 −0.23556815 

DEBA −0.63466518 −0.31494663 −0.20967248 

PSO  −1.50150183 −1.33949737 −1.10170197 

DE [27] −0.63982173 −0.31035906 −0.21438251 

AOA −3.07253909 −0.56489050 −0.42642997 

IAOA −0.63466518 −0.31494663 −0.20967248 

Exact −0.63466518 −0.31494663 −0.20967248 

Table 13. Statistical results for the numerical integrations (F01–F06). 

Algorithms  
Integrations 

F01 F02 F03 F04 F05 F06 

AOA best 5.660532 × 10−2 1.985287 × 10−1 1.784189 × 10−2 9.374106 × 10−3 1.513137 × 10−2 9.373918 × 10−2 

 worst 6.785842 × 10−2 2.466178 × 10−1 2.112411 × 10−2 1.103594 × 10−2 1.827849 × 10−2 1.105054 × 10−1 

 mean 6.196485 × 10−2 2.238141 × 10−1 1.970905 × 10−2 1.041648 × 10−2 1.679104 × 10−2 1.013200 × 10−1 

 std 2.473863 × 10−3 1.277362 × 10−2 6.790772 × 10−4 4.381854 × 10−4 7.886715 × 10−4 3.985235 × 10−3 

IAOA best 4.956295 × 10−5 0.000000 2.855397 × 10−6 0.000000 7.267277 × 10−6 4.004088 × 10−5 

 worst 1.070986 × 10−4 9.632589 × 10−6 1.471988 × 10−5 7.241931 × 10−6 3.035345 × 10−5 1.136393 × 10−4 

 mean 7.267766 × 10−5 9.617999 × 10−7 6.357033 × 10−6 1.274560 × 10−6 1.595556 × 10−5 7.989662 × 10−5 

 std 1.561025 × 10−5 2.672207 × 10−6 2.828416 × 10−6 1.942626 × 10−6 5.989208 × 10−6 2.032255 × 10−5 

PSO [25] best 3.966996 × 10−2 1.282142 × 10−1 1.263049 × 10−2 6.772669 × 10−3 1.115352 × 10−2 6.495427 × 10−2 

 worst 5.467546 × 10−2 1.880821 × 10−1 1.614274 × 10−2 9.112184 × 10−3 1.385859 × 10−2 9.718717 × 10−2 

 mean 4.406724 × 10−2 1.593799 × 10−1 1.405265 × 10−2 7.745239 × 10−3 1.208230 × 10−2 7.327404 × 10−2 

 std 3.262431 × 10−3 1.528260 × 10−2 9.707823 × 10−4 6.532329 × 10−4 7.146743 × 10−4 6.698801 × 10−3 

DE [27] best 5.444535 × 10−2 1.776272 × 10−1 1.740389 × 10−2 9.410606 × 10−3 1.537737 × 10−2 9.229490 × 10−2 

 worst 6.223208 × 10−2 1.992612 × 10−1 1.943564 × 10−2 1.043440 × 10−2 1.668422 × 10−2 1.003285 × 10−1 

 mean 5.887766 × 10−2 1.887098 × 10−1 1.881844 × 10−2 1.003350 × 10−2 1.606658 × 10−2 9.665791 × 10−2 
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 std 1.717478 × 10−3 5.056921 × 10−3 4.230737 × 10−4 2.412656 × 10−4 3.636407 × 10−4 1.886442 × 10−3 

DEBA [28] best 5.858312 × 10−2 1.958779 × 10−1 1.797733 × 10−2 9.632554 × 10−3 1.541447 × 10−2 9.078063 × 10−2 

 worst 6.805128 × 10−2 2.566962 × 10−1 2.194973 × 10−2 1.144459 × 10−2 1.824156 × 10−2 1.096576 × 10−1 

 mean 6.306158 × 10−2 2.287206 × 10−1 2.005007 × 10−2 1.048558 × 10−2 1.700868 × 10−2 1.008133 × 10−1 

 std 2.059708 × 10−3 1.384008 × 10−2 8.428458 × 10−4 4.319549 × 10−4 7.193521 × 10−4 4.457879 × 10−3 

ES [24] best 3.634854 × 10−2 1.053634 × 10−1 1.178783 × 10−2 6.152581 × 10−3 9.742411 × 10−3 6.028495 × 10−2 

 worst 3.704455 × 10−2 1.076016 × 10−1 1.197536 × 10−2 6.272540 × 10−3 9.921388 × 10−3 6.120127 × 10−2 

 mean 3.662145 × 10−2 1.064150 × 10−1 1.189432 × 10−2 6.206519 × 10−3 9.813727 × 10−3 6.070549 × 10−2 

 std 1.618502 × 10−4 4.726931 × 10−4 4.687831 × 10−5 2.718416 × 10−5 4.560503 × 10−5 2.303572 × 10−4 

Table 14. Statistical results for numerical integrations (F07–F10). 

Algorithms  
Integrations 

F07 F08 F09 F10 (m = 10) F10 (m = 20) F10 (m = 30) 

AOA best 2.295489 1.962088 × 10−2 4.592313 × 10−3 2.437873 2.499438 × 10−1 2.167574 × 10−1 

 worst 2.524012 2.400262 × 10−2 5.421672 × 10−3 3.611012 3.429053 3.115022 

 mean 2.424997 2.226327 × 10−2 5.031127 × 10−3 3.225836 1.617425 9.721188 × 10−1 

 std 5.634089 × 10−2 1.017542 × 10−3 2.167135 × 10−4 2.620454 × 10−1 9.081448 × 10−1 7.417795 × 10−1 

IAOA best 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

 worst 4.285648 × 10−4 9.665730 × 10−6 7.650313 × 10−9 4.941453 × 10−4 8.932970 × 10−4 4.121824 × 10−4 

 mean 5.817808 × 10−5 1.079836 × 10−6 1.094646 × 10−9 6.843408 × 10−5 9.159354 × 10−5 6.487479 × 10−5 

 std 9.331558 × 10−5 2.377176 × 10−6 2.051844 × 10−9 1.219906 × 10−4 1.972260 × 10−4 9.370544 × 10−5 

PSO [25] best 1.093717 1.499542 × 10−2 3.212480 × 10−3 5.688245 × 10−1 1.024550 8.920294 × 10−1 

 worst 2.077297 2.010782 × 10−2 4.674802 × 10−3 1.599995 1.485451 1.953066 

 mean 1.669071 1.706272 × 10−2 3.539538 × 10−3 8.668366 × 10−1 1.219538 1.489201 

 std 2.419795 × 10−1 1.205259 × 10−3 3.409595 × 10−4 2.759571 × 10−1 1.216184 × 10−1 2.065585 × 10−1 

DE [27] best 2.255785 2.091958 × 10−2 4.575317 × 10−3 2.543013 3.461794 3.889322 

 worst 2.522405 2.254710 × 10−2 5.009106 × 10−3 3.236645 4.684467 5.201887 

 mean 2.424488 2.177702 × 10−2 4.795040 × 10−3 3.015091 4.242609 4.687029 

 std 5.766110 × 10−2 4.602533 × 10−4 1.146454 × 10−4 1.967397 × 10−1 2.313007 × 10−1 2.923496 × 10−1 

DEBA [28] best 2.361570 × 10−1 2.057410 × 10−2 4.776881 × 10−3 6.043389 × 10−14 1.208677 × 10−13 5.319404 × 10−13 

 worst 2.468831 2.474051 × 10−2 5.441200 × 10−3 6.043389 × 10−14 1.208677 × 10−13 5.319404 × 10−13 

 mean 1.163514 2.294436 × 10−2 5.157892 × 10−3 6.043389 × 10−14 1.208677 × 10−13 5.319404 × 10−13 

 std 6.919695 × 10−1 9.765442 × 10−4 1.475304 × 10−4 3.851264 × 10−29 7.702528 × 10−29 3.081011 × 10−28 

ES [24] best 1.298269 1.319474 × 10−2 3.051746 × 10−3 1.460773 1.634373 1.152204 

 worst 1.321623 1.341748 × 10−2 3.121709 × 10−3 1.665912 2.355153 2.380726 

 mean 1.308546 1.331615 × 10−2 3.081151 × 10−3 1.568781 1.869004 1.719830 

 std 5.523404 × 10−3 5.640941 × 10−5 1.521690 × 10−5 4.627499 × 10−2 1.831224 × 10−1 2.898513 × 10−1 

4.4. Sovling Engineering Problem 

Compared with three-dimensional motion, planar motion restricts the robot to a sin-

gle plane and is simpler to calculate. However, most robot mechanisms can simplify plane 

mechanisms or planes for tackling. Now, the robotic arm plays an increasingly important 

role, which has also attracted the extensive attention of researchers. Improving the work-

ing efficiency of the robotic arm under the premise of low energy consumption is a chal-

lenging problem facing the industrial field [57]. The kinematics of the robotic arm mainly 

include forward kinematics and inverse kinematics. One is the pose of the end effector 

determined according to the rotation angle of each joint based on the base coordinates; 

the other is taking the end joint as the starting point and, finally, back-to-base coordinates. 

The inverse kinematics problem is essentially a nonlinear equation problem. The tasks 

performed by the robotic arm are usually described by its base coordinate system in prac-

tical applications. Therefore, the inverse kinematics solution is particularly important in 
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the field of the control. The robotic arm model [58] is shown in Figure 6a, and the mathe-

matical model in coordinates is shown in Figure 6b. The nonlinear equation system for 

this model is as follows. 

2
2 2 2 2 2 2

2
2 2 2 2 2 2

2 1 2 1 2 1

10,000 (( sin( ) sin( ) sin( ) ) ) 0

10,000 (( cos( ) cos( ) cos( ) ) ) 0

0

a A b A B c A B C X

h a A b A B c A B C Y

A A B B C C

           


           
      

 (25)

where a = 16.5 cm; b = 7.9 cm; c = 5.3 cm; and h = 7.4 cm ( 1A  = 150°, 1B  = 132.7026°, and 

1C  = 127.0177°) are the initial angles of the three joints; (X = 10 cm, Y = 10 cm) is the coor-

dinate of the end effector; and ( 2A , 2B , and 2C ) are the aims required to obtain three joint 

angles in the final stage. The first two equations in the nonlinear equation system find the 

three joint angles when the end effector reaches the target position (X, Y), and the third 

equation ensures that the change of the joint angle is the smallest to meet the requirements 

for saving energy. 

  

(a) (b) 

Figure 6. (a) The model of a robotic arm, and (b) a mathematical model for a robotic arm. 

Tables 15–18 demonstrate that the IAOA obtains the closest results to the initial angle 

compared with the PSO, GA and PSSA in solving the inverse kinematics problem of the 

robotic arm. This shows that the method proposed in this paper allows the robotic arm to 

consume less energy during movement. In Table 19, f represents the fitness value obtain 

by Equation (25) and is the difference between the final angle and initial angle of the joint. 

Obviously, the IAOA achieves the best results for both evaluations. Therefore, it is a great 

significance to the stability, operation efficiency, operation accuracy, and energy con-

sumption of the robotic arm trajectory control. A new method is provided for the inverse 

motion solution, which makes up for the deficiency of the traditional method. 

Table 15. The results obtained by the IAOA for the engineering problem. 

Algorithm  
Joint Angles 

A2 B2 C2 

IAOA initial angle 150 132.7026 127.0177 

 Result 145.7291 139.0180 123.9864 
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Table 16. The results obtained by the PSO for the engineering problem. 

Algorithm  
Joint Angles 

A2 B2 C2 

PSO initial angle 150 132.7026 127.0177 

 result 139.6534 68.2235 96.4886 

Table 17. The results obtained by the GA for the engineering problem. 

Algorithm  
Joint Angles 

A2 B2 C2 

GA initial angle 150 132.7026 127.0177 

 result 129.8653 118.9625 52.6691 

Table 18. The results obtained by the PSSA for the engineering problem. 

Algorithm  
Joint Angles 

A2 B2 C2 

PSSA [58] initial angle 150 132.7026 127.0177 

 result 147.1015 92.5371 89.5116 

Table 19. Comparison of the experimental results for the IAOA, PSO, GA, and PSSA. 

Objective Funtions 
Algorithms 

IAOA PSO GA PSSA 

f 1.3618 × 10 3.0608 × 106 3.2329 × 106 2.0199 × 105 

2 1 2 1 2 1A A B B C C      13.6176 105.3548 118.2234 80.5701 

5. Conclusions and Future Works 

In this paper, the shortcomings are analyzed of the traditional AOA so that an im-

proved AOA based on a population control strategy is proposed to overcome the weak-

ness. The algorithm can find the best global value faster by classifying the population and 

adaptively controlling the number of individuals in each subpopulation. This method ef-

fectively enhances the information sharing strength between individuals, can better 

search the space, avoids falling into the local optimum, accelerates the convergence pro-

cess, and improves the optimization accuracy. The AOA, IAOA, and some other algo-

rithms are compared based on solving 6 nonlinear systems of equations, 10 numerical 

integrations, and an engineering problem. The experimental results show that the IAOA 

can solve these problems well and outperform the other algorithms. In the future, the 

IAOA can be used to solve more nonlinear problems in practical engineering applications. 

Secondly, it can try to solve multiple integrals. Finally, the algorithm can be further im-

proved and enhanced in its performance. 
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