

Mathematics 2022, 10, 2152. https://doi.org/10.3390/math10122152 www.mdpi.com/journal/mathematics

Article

An Improved Arithmetic Optimization Algorithm

for Numerical Optimization Problems

Mengnan Chen 1, Yongquan Zhou 1,2,* and Qifang Luo 1,2

1 College of Artificial Intelligence, Guangxi University for Nationalities, Nanning 530006, China;

2020210812000995@stu.gxmzu.edu.cn (M.C.); 20060043@gxun.edu.cn (Q.L.)
2 Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis, Nanning 530006, China

* Correspondence: zhouyongquan@gxun.edu.cn; Tel.: +86-136-0788-2594

Abstract: The arithmetic optimization algorithm is a recently proposed metaheuristic algorithm. In

this paper, an improved arithmetic optimization algorithm (IAOA) based on the population control

strategy is introduced to solve numerical optimization problems. By classifying the population and

adaptively controlling the number of individuals in the subpopulation, the information of each in-

dividual can be used effectively, which speeds up the algorithm to find the optimal value, avoids

falling into local optimum, and improves the accuracy of the solution. The performance of the pro-

posed IAOA algorithm is evaluated on six systems of nonlinear equations, ten integrations, and

engineering problems. The results show that the proposed algorithm outperforms other algorithms

in terms of convergence speed, convergence accuracy, stability, and robustness.

Keywords: arithmetic optimization algorithm; population control strategy; systems of nonlinear

equations; numerical integrals; metaheuristic

MSC: 68T20

1. Introduction

In the practical application calculations of science and engineering, many mathemat-

ical problems will be involved, such as nonlinear equation systems (NESs), numerical in-

tegration, etc. There are tremendous methods for solving NESs, including traditional tech-

niques and intelligent optimization algorithms. Traditional techniques to solve NESs use

gradient information [1], such as Newton’s method [2,3], quasi-Newton’s method [4],

steepest descent method, etc. Due to relying on the selection of initial points and being

prone to falling into optimal local one, these methods cannot obtain high-quality solutions

for some specific problems. The metaheuristic algorithms, however, have the characteris-

tics of low requirements for the initial point, a wide range of solutions, high efficiency,

and robustness. These break through the limitations of traditional methods in solving

problems. In recent years, metaheuristic algorithms have made great contributions in solv-

ing NESs (Karr et al. [5]; Ouyang et al. [6]; Jaberipour et al. [7]; Pourjafari et al. [8]; Jia et al. [9];

Ren et al. [10]; Cai et al. [11]; Abdollahi et al. [12]; Hirsch et al. [13]; Sacco et al. [14]; Gong et al.

[15]; Ariyaratne et al. [16]; Gong et al. [17]; Ibrahim et al. [18]; Liao et al. [19]; Ning et al. [20];

Rizk-Allah et al. [21]; Ji et al. [22]; Turgut et al. [23]).

Numerical integration is a very basic computational problem. It is well-known that,

when calculating the definite integral, the integrand is required to be easily given and

then solved by the Newton-Leibniz formula. However, this method has many limitations,

because in many practical problems, the original function of the integrand cannot be ex-

pressed, or the calculation is too complicated, so the definite integral of the integrand is

replaced by a suitable finite sum approximation. The traditional numerical integration

methods include the trapezoidal method, rectangle method, Romberg method, Gauss

method, Simpson’s method, Newton’s method, etc. The above methods all divide the

Citation: Chen, M.; Zhou, Y.; Luo, Q.

An Improved Arithmetic Optimization

Algorithm for Numerical Optimization

Problems. Mathematics 2022, 10, 2152.

https://doi.org/10.3390/math10122152

Academic Editor: Frank Werner

Received: 28 May 2022

Accepted: 17 June 2022

Published: 20 June 2022

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and institu-

tional affiliations.

Copyright: © 2022 by the author. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

Mathematics 2022, 10, 2152 2 of 27

integral interval into equal parts, and the calculation efficiency is not high. Therefore, it is

of great significance to find a new technique with a fast convergence speed, high precision,

and strong robustness for numerical integration. Zhou et al. [24], based on the evolution-

ary strategy method, worked to solve numerical integration. Wei et al. [25] researched the

numerical integration method based on particle swarm optimization. Wei et al. [26], based

on functional networks, worked to solve numerical integration. Deng et al. [27] solved the

numerical integration problems based on the differential evolution algorithm. Xiao et al. [28]

applied the improved bat algorithm in numerical integration. The quality of the solution ob-

tained by the above techniques was higher than the traditional methods.

All along, engineering optimization problems have been a popular area of research.

Metaheuristic algorithms have been widely applied to engineering optimization problems

due to their great practical significance, such as applied to the automatic adjustment of

controller coefficients (Szczepanski et al. [29]; Hu et al. [30]), applied to system identifica-

tion (Szczepanski et al. [31]; Liu et al. [32]), applied to global path planning (Szczepanski

et al. [33]; Brand et al. [34]), and applied to robotic arm scheduling (Szczepanski et al. [35];

Kolakowska et al. [36]).

The Arithmetic Optimization Algorithm (AOA) [37] is a novel metaheuristic algo-

rithm proposed by Abualigah et al. in 2021. AOA is a mathematical model technique that

simulates the behaviors of Arithmetic operators (i.e., Multiplication, Division, Subtrac-

tion, and Addition) and their influence on the best local solution. Some improvements and

practical applications of the algorithm have been made by scholars. Premkumar et al. [38]

proposed a multi-objective arithmetic optimization algorithm (MOAOA) for solving real-

world multi-objective CEC-2021-constrained optimization problems. Bansal. et al. [39]

used a binary arithmetic optimization algorithm for integrated features and feature selec-

tion. Agushaka et al. [40] introduced an advanced arithmetic optimization algorithm for

solving mechanical engineering design problems. Abualigah et al. [41] presented a novel

evolutionary arithmetic optimization algorithm for multilevel thresholding segmentation.

Xu et al. [42] hybridized an extreme learning machine and a developed version of the

arithmetic optimization algorithm for model identification of the proton exchange mem-

brane fuel cells. Izci et al. [43] introduced an improved arithmetic optimization algorithm

for the optimal design of controlled PID. Khatir et al. [44] proposed an improved artificial

neural network using the arithmetic optimization algorithm for damage assessments.

The basic AOA still has some drawbacks. For instance, it is easy to fall into a local

optimum due to the location update based on the optimal value, premature convergence,

and low solution accuracy, which need to be solved. Furthermore, in order to seek a more

efficient way to solve numerical problems, in this paper, an improved arithmetic optimi-

zation algorithm (IAOA) based on the population control strategy is proposed to solve

numerical optimization problems. By classifying the population and adaptively control-

ling the number of individuals in the subpopulation, the information of each individual

can be used effectively while increasing the population diversity. More individuals are

needed in the early iterations to perform a large-scale search that avoids falling into the

local optimum. The search around the optimal value later in the iterations by more indi-

viduals speeds up the algorithm to find the optimal value and improves the accuracy of

the solution. The performance of the proposed IAOA algorithm is evaluated on six sys-

tems of nonlinear equations, ten integrations, and engineering problems. The results show

that the proposed algorithm outperforms the other algorithms in terms of convergence

speed, convergence accuracy, stability, and robustness.

The main structure of this paper is as follows. Section 2 reviews the relevant

knowledge for the nonlinear equation systems, integration, and basic arithmetic optimi-

zation algorithm (AOA). Section 3 introduces the proposed IAOA in detail. Section 4 pre-

sents experimental results, comparisons, and analyses. Section 5 concludes the work and

proposes future research directions.

Mathematics 2022, 10, 2152 3 of 27

2. Preliminaries

2.1. Nonlinear Equation Systems

Generally, a nonlinear equation system can be formulated as follows.

0),...,,(

0),...,,(

0),...,,(

21

21

211

Dn

Di

D

xxxf

xxxf

xxxf

NES

 (1)

where x is a D-dimensional decision variable, and n is the number of equations. Some

equations are linear; the others are nonlinear. If x* satisfies fi (x*) = 0, then x* is a root of the

system of equations.

Before using the optimization algorithm to solve the NES, first is to convert it into a

single-objective optimization problem [17] as follows.

n

i
Dii xxxxxxfxf

1
21

2),...,,...,,(),()(min (2)

Finding the minimum of an optimization problem is equivalent to finding the root of

the NES.

2.2. Numerical Integration

Definite integrals are very basic mathematical calculation problems as follows.

 ()
b

a
f x dx (3)

where f(x) represents the integrand function, and a and b represent the upper and lower

bounds, respectively.

Usually, firstly, we find the original function F(x) of the integrand when finding a

definite integral and then use the Newton-Leibniz formula as follows:

b

a
xfxFaFbFdxxf))()((),()()('

 (4)

However, in many cases, it is difficult to obtain the original function F(x), so the New-

ton-Leibniz formula will not be able to be used.

In addition, the rest of the numerical quadrature methods are based on the quadra-

ture formula of equidistant node division and summation or stipulate that the equidistant

nodes remain unchanged during the whole process of calculating, as shown in Figure 1a.

There need more nodes to obtain a high accuracy. However, the best segmentation is not

the predetermined equidistant points, as shown in Figure 1b. Randomly generated subin-

tervals has unequal intervals according to the concave and convex changes of the function

curve, so the obtained value has a higher accuracy than the traditional methods. Based on

this idea, there is another integral method based on non-equidistant point division [24].

First, generate some points randomly on the integral interval, and then, the algorithm is

used to optimize these split points. Finally, a higher accuracy value will be obtained. This

not only calculates the definite integral of the function in the usual sense but also calcu-

lates the integral of the singular function and the integral of the oscillatory function for

this method [27]. The flow of the numerical integration algorithm based on unequal point

segmentation is as follows [24].

(1) Randomly initialize the population in the search space S.

(2) Arrange each individual in the integral interval in ascending order. The integral in-

terval has n(n = D + 2) nodes and n − 1 segments. Calculate the distance hi between

two adjacent nodes and the function f(xk) value of each node, then calculate the

Mathematics 2022, 10, 2152 4 of 27

function value corresponding to the D + 2 nodes and the function value of the middle

node of each subsection. Find the minimum value wj and the maximum value Wj (j =

1, 2, …, D + 1) among the function values of the left endpoint, middle node, and right

endpoint of each subsection.

(3) Calculate fitness value. F(i) =
�

�
∑ h��W�-w��
���
��� .

(4) Update individuals through an optimization algorithm.

(5) Repeat step 4 until reaching the stop condition.

(6) Get the accuracy and integral values.

(a) (b)

Figure 1. Two methods of segmentation when solving numerical integrals: (a) equidistant division

and (b) equidistant division.

The numerical integration method based on Hermite interpolation only needs to pro-

vide the value of the integral node functions and has high precision. However, this

method is based on equidistant segmentation. In this paper, the adaptability of unequal-

spaced partitioning and the numerical integration method based on Hermite interpolation

are combined to solve the numerical integration problem, and the formula is as follows:

1

)]4()4([
48

1

)]3()3([
9

1

)]2()2([
4

1

)]()([
3

1

)]()([
144

25

)]()([
2

)(

1

1

1

1

1

1

1

1

1

1

1
1

n

hbfhaf
h

n

hbfhaf
h

n

hbfhaf
h

n

hbfhaf
h

n

bfafh

xfxf
h

dxxf

n

i
ii

i
n

i
ii

i

n

i
ii

i
n

i
ii

i

n

k

n

i
i

kk
i

b

a

(5)

where n is the number of random split points, hi is the distance between two adjacent

points, and f(x) is the integrand function. The advantage of this method is that it does not

need to calculate the derivative value and only needs to provide the node function value.

Before using the optimization algorithm to solve the integration, the first step is to convert

it into a single-objective optimization problem as follows:

b

a
EdxxfxF)()(min (6)

where ∫ f(x)dx
�

�
 is obtained by Equation (5), and E means the exact value.

Combine the optimization algorithm with Equation (5), and the whole solution pro-

cess is as follows.

(1) Randomly initialize the population in the search space S.

Mathematics 2022, 10, 2152 5 of 27

(2) Arrange each individual in the integral interval in ascending order. The integral in-

terval has n(n = D + 2) nodes and n − 1 segments. Calculate the distance hi between

two adjacent nodes and the function f(xk) value of each node and then bring them

into Equation (5).

(3) Calculate the fitness value by Equation (6).

(4) Update individuals through an optimization algorithm.

(5) Repeat step 4 until reaching the stop condition.

(6) Get the accuracy and integral values.

2.3. The Arithmetic Optimization Algorithm (AOA)

The AOA algorithm is a population-based metaheuristic algorithm to solve optimi-

zation problems by utilizing mathematical operators (Multiplication (“×”), Division (“÷”),

Subtraction (“−”), and Addition (“+”)). The specific description is as follows.

2.3.1. Initialization Phase

Generate a candidate solution matrix randomly.

nNnNjNN

nNnNjNN

nnj

nnj

xxxx

xxxx

xxxx

xxxx

X

,1,,1,

,11,1,11,1

,21,2,21,2

,11,1,11,1

 (7)

After the initialization step, calculate the Math Optimizer Accelerated (MOA) func-

tion and use it to choose between exploration and exploitation. The function is as follows:

T

MinMax
tMintMOA)((8)

where Max = 0.9 denotes the maximum and Min = 0.2 denotes the minimum of the function

value, MOA (t) represents the function value of the current iteration, and T and t represent

the maximum number of iterations and current iteration, respectively.

2.3.2. Exploration Phase

During the exploration phase, the operators (Multiplication (“×”) and Division (“÷”))

are used to explore the space randomly when the MOA > 0.5. The mathematical model is

as follows:

otherwiseLBLBUBMOPxbest

rLBLBUBMOPxbest
tx

jjjj

jjjj

ji
),)(()(

5.0),)(()()(
)1(

2

,

 (9)

where r2 is a random number, xi,j(t + 1) represents the jth position of ith solution in the (t +

1)th iteration, best(xj) denotes the jth position in the global optimal solution, ε is a small

integer number that avoids the case where the denominator is zero in division, UBj and

LBj represents the upper and lower bounds of each dimension, respectively, and μ is equal

to 0.5. The Math Optimizer probability (MOP) is as follows:

1

1

1)(

T

t
tMOP (10)

where MOP(t) represents the function value for the current iteration, and α is a sensitive

parameter and equal to 5.

Mathematics 2022, 10, 2152 6 of 27

2.3.3. Exploitation Phase

During the exploration phase, the operators (Subtraction (“−”) and Addition (“+”))

are used to execute the exploitation. When MOA < 0.5, the mathematical model as follows:

otherwiseLBLBUBMOPxbest

rLBLBUBMOPxbest
tx

jjjj

jjjj

ji
),)(()(

5.0),)(()(
)1(

3

,

 (11)

where r3 is a random number. The pseudo-code of the AOA is as follows (Algorithm 1) [37].

Algorithm 1 AOA

1. Set up the initial parameters α, μ.

2. Initialize the population randomly.

3. for t = 1: T

4. Calculate the fitness function and select the best solution.

5. Update the MOA (using Equation (8)) and MOP (using Equation (10)).

6. for i = 1: N

7. for j = 1: Dim

8. Generate the random values between [0, 1] (r1, r2, r3)

9. if r1 > MOA

10. if r2 > 0.5

11. Update the position of the individual by Equation (9).

12. else

13. Update the position of the individual by Equation (9).

14. end

15. else

16. if r3 > 0.5

17. Update the position of the individual by Equation (11).

18. else

19. Update the position of the individual by Equation (11).

20. end

21. end

22. end

23. end

24. t = t + 1

25. end

26. Return the best solution (x).

3. Our Proposed IAOA

3.1. Motivation for Improving the AOA

In AOA, the population is updated based on the optimal global solution. Once it falls

into the optimal local one, the entire population will stagnate. There is premature cover-

age, in some cases [33]. In addition, this algorithm does not fully utilize the information

of the individuals in the population. Therefore, to make full use of the information of the

individuals and address the weakness of AOA, the improved arithmetic optimization al-

gorithm (IAOA) is proposed in this paper.

3.2. Population Control Mechanism

In the basic arithmetic optimization algorithm (AOA), the operators (Multiplication

(“×”), Division (“÷”), Subtraction (“−”), and Addition (“+”)) are used to wrap around an

optimal solution to search randomly in space, and it will lead to a loss of population di-

versity. Therefore, it is necessary to classify for the population.

Mathematics 2022, 10, 2152 7 of 27

3.2.1. The First Subpopulation

Sort the population according to the fitness value and select the first num_best indi-

viduals as the first subpopulation:

))1(5.01.0(_ TtNNroundbestnum (12)

where N is the number of individuals, and t and T represent the current iteration and

maximum iterations, respectively. Then, these individuals update their position by get-

ting information about each other. The mathematical model is as follows:

_ _

_ _

() ()
(1) () ()

2

best i best j

best i best i

x t x t
x t x t rand best x

 (13)

_ _

_ _

() ()
(1) () ()

2

best i best j

best j best j

x t x t
x t x t rand best x

 (14)

where xbest_i(t + 1) denotes the position of ith individual in the next iteration, the same as

xbest_j(t + 1), best(x) represents the global optimum that has been found through individuals

after t iterations, xbest_j is selected from the first class randomly, and ω means the infor-

mation acquisition rate and takes the value 1 or 2.

3.2.2. The Second Subpopulation

Select num_middle individuals from the population as the second subpopulation.

_ (0.3)num middle round N (15)

These individuals fall between num_best and num_worst in the population. Then,

these individuals update their position, and the updated model is as follows:

_ _ _(1) () (())mid i mid i mid jx t x t Levy best x x (16)

where xmid_i(t + 1) denotes the position of ith individual in the next iteration, Levy is the

Levy distribution function [45,46], and xmid_j is selected from the second class randomly.

3.2.3. The Third Subpopulation

Select num_worst individuals from the population as the final subpopulation.

)__(_ middlenumbestnumNworstnum (17)

In the final class, the individuals update their position by the following equation:

_ _ _(1) ()worst i worst i worst j

t
x t x best x x

T

 (18)

where xworst_i(t + 1) denotes the position of ith individual in the next iteration, and best(x)

represents the global optimum that has been found through individuals after t iterations.

At the early iteration of IAOA, there are more individuals in the first subpopulation

for speeding up the update of the global optimum. At the later iterations of the algorithm,

the number of individuals in the first subpopulation decreases, which solves the operator

crowding problem near the optimum. In addition, the number of individuals in the third

subpopulation increases, which effectively prevents the population from falling into the

local optimum. The second subpopulation utilizes the Levy flight for small-step updates

to find more promising areas. The above strategy can effectively overcome the weaknesses

of traditional AOA and improve its performance. The pseudo-code of the IAOA in algo-

rithm 2 is as follows (Algorithm 2). Figure 2 is the flowchart of the IAOA.

Mathematics 2022, 10, 2152 8 of 27

Algorithm 2 IAOA

1. Set up the initial parameters α, μ.

2. Initialize the population randomly.

3. for t = 1: T

4. Calculate the fitness function and select the best solution.

5. Calculate the number of the first subpopulation by Equation (12).

6. Update the first subpopulation by Equations (13) and (14).

7. Calculate the number of the second subpopulation by Equation (15).

8. Update the second subpopulation by Equation (16).

9. Calculate the number of the third subpopulation by Equation (17).

10. Update the third subpopulation by Equation (18).

11. Update the MOA (using Equation (8)) and MOP (using Equation (10)).

12. for i =1: N

13. for j = 1: Dim

14. Generate the random values between [0, 1] (r1, r2, r3)

15. if r1 > MOA

16. if r2 > 0.5

17. Update the position of the individual by Equation (9).

18. else

19. Update the position of the individual by Equation (9).

20. end

21. else

22. if r3 > 0.5

23. Update the position of the individual by Equation (11).

24. else

25. Update the position of the individual by Equation (11).

26. end

27. end

28. end

29. end

30. t = t + 1

31. end

32. Return the best solution (x).

Mathematics 2022, 10, 2152 9 of 27

Figure 2. Flowchart of the IAOA.

4. Numerical Experiments and Analysis

4.1. Parameter Settings

Here, six groups of NESs and ten groups of integration have been used to demon-

strate the efficiency of the IAOA. The IAOA compares several popular algorithms and

two improved arithmetic optimization algorithms (The Arithmetic Optimization Algo-

rithm (AOA) [37], Sine Cosine Algorithm (SCA) [47], Whale Optimization Algorithm

(WOA) [48], Grey Wolf Optimizer (GWO) [49], Harris hawks optimization (HHO) [50],

Slime mould algorithm (SMA) [51], Differential evolution(DE) [52], Cuckoo search algo-

rithm (CSA) [53], Advanced arithmetic optimization algorithm (nAOA) [40], and a devel-

oped version of Arithmetic Optimization Algorithm (dAOA) [42]) for tackling NES.

Among them, the parameters of these algorithms are all from the original version. These al-

gorithms are evaluated from four aspects: the average value, the optimal value, the worst

value, and the standard deviation. All algorithms are executed on MATLAB 2021a, running

on a computer with a Windows 10 operating system, Intel(R) Core (TM) i7-9700 CPU @ 3.00

GHz, 16 GB of Random Access Memory (RAM), and run 30 times independently for all test

problems. The flowchart for handling issues by the IAOA is shown in Figure 3.

Mathematics 2022, 10, 2152 10 of 27

Figure 3. Flowchart for handling issues.

4.2. Application in Solving NESs

Solving nonlinear problems often requires higher-precision solutions in many prac-

tical applications. In this section, six nonlinear systems of equations are chosen to evaluate

the performance of the IAOA. The characteristics of these equations are different from

each other, where problem01 [54] describes the interval arithmetic problem, problem02

[55] describes the multiple steady-states problem, and problem06 [56] describes the mo-

lecular conformation. These problems come from real-world applications. For fairness, set

the population to 50 and the maximum number of iterations to 200. Tables 1–6 show all

the test results of the NES. Best represents the best value, Worst represents the worst

value, Mean represents the mean value, Std represents the standard deviation, and p-

value stands for the Wilcoxon rank–sum test in Table 7. The Wilcoxon p-value test is used

to verify whether there is an obvious difference between the two sets of data.

Table 1. Comparison of the experimental results for problem01.

Variable
Algorithms

AOA IAOA SCA WOA

x1 0.006361583402960 0.257838650825518 0.186732591196869 0.260832096649832

x2 0.005731653837062 0.381098185347242 0.399818814038728 0.381680691118263

x3 0.010586282003880 0.278742562628776 0.008959145137085 0.258353295805450

x4 0.002593989505334 0.200665586275865 0.227237103605413 0.215307146397956

x5 0.033520558095432 0.445255928027431 0.003829239926320 0.448797960971748

x6 0.076424218265631 0.149188813621332 0.185905381801968 0.147397359179682

x7 0.038862694473151 0.432010769672038 0.368813050526818 0.442390776062597

x8 −0.000004007877210 0.073406152818720 0.037739989370997 0.137586270569043

x9 0.029054432130685 0.345966262513093 0.206476235144125 0.342058064566263

x10 0.013690425703394 0.427324518269459 0.363350844915327 0.401475021739693

f 8.45665838921712 × 10−1 4.73405913551646 × 10−10 1.22078391539763 × 10−1 9.59544885085295 × 10−4

Variable
Algorithms

GWO HHO DE CSO

x1 0.256851024248810 0.324317023967532 2.000000000000000 0.089951372914250

x2 0.383565743620699 0.303967192642514 1.948157453190990 0.309487131659014

x3 0.278312335483674 0.216191961411362 2.000000000000000 0.456410156556233

x4 0.198737300040942 0.305260974230829 1.815308511546580 0.356392775439902

Mathematics 2022, 10, 2152 11 of 27

x5 0.446311619177502 0.325255783591842 2.000000000000000 0.476086684751138

x6 0.145894138632280 0.223020351676054 2.000000000000000 0.078921332097133

x7 0.145894138632280 0.323185143014029 2.000000000000000 0.499580490394335

x8 −0.007832029555062 0.327973609353822 1.915762141824520 0.197756675883883

x9 0.343654620394334 0.333430854648433 2.000000000000000 0.228228833675487

x10 0.425902664080806 0.324142888370713 2.000000000000000 0.470195948900759

f 1.25544451911646 × 10−3 7.79220329211044 × 10−2 7.96261500819178 × 10−2 6.61705221934444 × 10−2

Variable
Algorithms

SMA nAOA dAOA

x1 0.249900132290417 0.035430633051580 1.840704485033870

x2 0.375428314977531 0.053983062784772 1.213421005935260

x3 0.272448580296318 0.072735305166021 1.203555993641700

x4 0.199698265955405 0.021399042985613 −0.393935624266822

x5 0.425934189445810 0.064655913970964 −0.249476549706985

x6 0.057699959645613 0.012570281350831 0.459915310960444

x7 0.431865275874618 0.057639809639213 −0.675754718182326

x8 0.015005640000641 0.005520004765830 −0.895856414267328

x9 0.347986992756388 0.041229484511092 0.359139808282465

x10 0.415304164782275 0.079595719921909 1.529188120361250

f 4.47411205566240 × 10−3 6.74563715208325 × 10−1 1.91503507134915

Table 2. Comparison of the experimental results for problem02.

Variable
Algorithms

AOA IAOA SCA WOA

x1 0.040781958181860 0.042124781715274 0.000000000000000 0.041561373108785

x2 0.268625655728691 0.061754610138946 0.266593748985495 0.268697327813652

f 2.01752031872803 × 10−7 9.24446373305873 × 10−34 8.82826387279195 × 10−5 6.92247231102962 × 10−9

Variable
Algorithms

GWO HHO DE CSO

x1 0.265622854930434 0.267855297066815 0.266589101862370 0.266620164671422

x2 0.178718146817611 0.458749279058429 0.327275026016101 0.178514261126008

f 1.13985864694418 × 10−7 6.55986405733090 × 10−8 1.31654979128584 × 10−18 1.49504500886345 × 10−9

Variable
Algorithms

SMA nAOA dAOA

x1 0.021419624272050 0.000000000000000 0.236558250181286

x2 0.048075232460874 0.719124811309122 0.508933311549167

f 2.89316821274146 × 10−5 3.07109081317222 × 10−5 3.22387407689191 × 10−4

Table 3. Comparison of the experimental results for problem03.

Variable
Algorithms

AOA IAOA SCA WOA

x1 1.990744078311880 −0.947268146986263 −0.225974226141413 −1.424482905343090

x2 0.220001522814532 −0.785020015568289 1.245763361231140 −0.543544840817441

f 5.61739095968327 × 10−3 4.02151576372412 × 10−32 7.95691890654021 × 10−4 1.06331568826728 × 10−3

Variable
Algorithms

GWO HHO DE CSO

x1 −1.794053112053940 −1.495480498807310 −1.791308474954350 −0.212779003619775

x2 −0.303905803005920 −0.420394691864127 0.301889327351144 −1.257141525856050

f 2.77808608355359 × 10−5 6.12298193031725 × 10−5 1.84881969881973 × 10−9 6.26348225916795 × 10−7

Variable Algorithms

Mathematics 2022, 10, 2152 12 of 27

SMA nAOA dAOA

x1 −1.791387180972800 −1.475077261850100 −1.580085715978880

x2 −0.302157020359872 −0.454673564762598 0.4651484d76848022

f 5.47910691165820 × 10−8 2.17709293383390 × 10−4 5.12705019470938 × 10−2

Table 4. Comparison of the experimental results for problem04.

Variable
Algorithms

AOA IAOA SCA WOA

x1 −0.000266868453558 −0.000000091835793 −0.120898772911816 −0.310246574315981

x2 −0.000267036157051 0.000013971597535 0.491167568359585 0.467564824328878

x3 −0.000267036274281 0.000030454051416 10.000000000000000 1.071469773086650

x4 0.000000025430197 0.000010000404353 −0.178108600809833 −0.404219784214681

x5 −0.000267039311495 0.000011275918099 5.423242568753400 3.552125620609660

x6 −0.000267036127224 0.000000019800029 −0.049710980654501 −1.834136698070800

x7 0.000000000091855 −0.000000000138437 0.445662462511328 0.286050311387620

x8 0.000267036101457 −0.000000454282127 −10.000000000000000 −2.931846497771810

x9 0.000267033832224 0.000000000736505 −0.144419405019169 −4.812450845354100

x10 0.000267043884482 −0.000002006069864 −0.518105971932846 3.756426716000660

f 1.08498006397337 × 10−9 7.03339003909689 × 10−16 4.13237426374674 × 10−1 6.47066501369328 × 10−1

Variable
Algorithms

GWO HHO DE CSO

x1 0.044653752694561 −0.000047703379713 0.160723693838569 −0.009650846541198

x2 −0.259567674882923 0.000075691075249 0.431923139718368 0.147278561202585

x3 −1.777013199398760 −0.000029713372367 0.072922517980119 −3.148557575646470

x4 0.042606334458592 −0.000050184914825 0.447403957744849 −0.512428980703464

x5 −4.935286036663600 0.000033675529531 −0.197972459731190 −4.175819684412100

x6 −8.146156623785810 0.000067989452634 1.490110445009050 −7.123183974281880

x7 −0.108125274969201 0.000031288762826 0.472265426079125 1.268663892956760

x8 1.747052457418910 0.000048491290536 0.509493705510866 3.198230908839320

x9 −0.311997778279745 0.000063892452193 1.142101578993260 −4.763105818868310

x10 8.430357427064680 −0.000123055431652 −2.110335475212350 9.463108408596410

f 7.56734706927375 × 10−3 6.11971561041781 × 10−10 9.87501536049260 × 10−1 2.18295386757873

Variable
Algorithms

SMA nAOA dAOA

x1 −0.000000000028677 0.000020144848903 −0.934997016811202

x2 0.000014644312649 −0.000060200695401 −1.295640443505010

x3 0.000038790339140 −0.000020118018817 −5.634966911723890

x4 −0.000000000221797 −0.000060200956330 −4.825343892476190

x5 0.000000055701981 −0.000020122803817 0.269511140973028

x6 −0.000000030051237 −0.000020134693956 −7.253398121182340

x7 0.000000595936232 0.000020123341500 7.557747336452660

x8 −0.000000000025333 0.000020925519435 −5.520361069927860

x9 0.000000799504725 0.000043615727680 −4.709534880735350

x10 0.000000000012983 0.000020120622373 8.954470788407880

f 1.30095438660555 × 10−10 1.50696700666871 × 10−9 2.07190542503982 × 102

Mathematics 2022, 10, 2152 13 of 27

Table 5. Comparison of the experimental results for problem05.

Variable
Algorithms

AOA IAOA SCA WOA

x1 0.371964486871792 0.500000000000000 0.471178994397267 0.503978268408352

x2 2.990337880814430 3.141592653589790 3.118271172186020 3.142976305563530

f 1.89048835343036 × 10−4 1.85873810048745 × 10−28 3.41504906318340 × 10−5 2.00099014478417 × 10−7

Variable
Algorithms

GWO HHO DE CSO

x1 0.495722089382004 0.503332577729795 0.299448692445072 0.500482294032500

x2 3.143566564341090 3.142753305279310 2.836927770362990 3.142098043614560

f 1.12835512797232 × 10−6 1.16071617155615 × 10−7 6.25300383824133 × 10−23 2.13609775136897 × 10−8

Variable
Algorithms

SMA nAOA dAOA

x1 0.298949061647857 0.354640044143990 2.956994389007600

x2 2.835691250750600 2.956994389007600 1.890717921128260

f 1.05189651760469 × 10−8 1.59376404093113 × 10−4 3.65946616757579 × 10−3

Table 6. Comparison of the experimental results for problem06.

Variable
Algorithms

AOA IAOA SCA WOA

x1 0.953663829653960 −0.779548045079158 11.147659127176500 1.516510183032980

x2 0.663112382731748 −0.779548045079158 0.900762400732728 0.694394649388567

x3 0.729782844271910 −0.779548045079158 0.919816117314499 10.556407054559600

f 3.35330112498813 × 10−1 1.00553388370096 × 10−20 2.75666643131973 8.65817545834561

Variable
Algorithms

GWO HHO DE CSO

x1 0.781303537791760 −0.782460718139219 −0.779277448448367 −0.765447632695953

x2 0.777872878718449 −0.789339702437282 −0.779700789186745 −0.784775197498564

x3 0.779780469890485 −0.766810453292313 −0.780020611467694 −0.735052686517780

f 5.49159538279891 × 10−4 1.00882211687459 × 10−2 6.71295836563811 × 10−6 2.92512803990831 × 10−1

Variable
Algorithms

SMA nAOA dAOA

x1 −0.779731780102931 −0.437772635064718 −1.056395480177350

x2 −0.779371556451744 −7.659741643877890 6.893981344148980

x3 −0.779303513685515 −2.620897335617900 −1.876924860155790

f 1.03517116885362 × 10−5 1.49720612584788 2.61017698945353 × 104

Table 7. Statistical results for the NES.

Algorithms
Systems of Nonlinear Equations

problem01 problem02 problem03 problem04 problem05 problem06

AOA best 7.02711 × 10−1 1.20198 × 10−8 8.30574 × 10−12 2.99534 × 10−10 5.32587 × 10−6 1.60969 × 10−8

 worst 9.05980 × 10−1 7.47231 × 10−7 9.55457 × 10−3 3.58264 × 10−9 5.96026 × 10−4 1.00599 × 10

 mean 8.45666 × 10−1 2.01752 × 10−7 3.18486 × 10−4 1.08498 × 10−9 1.89049 × 10−4 3.35330 × 10−1

 std 4.40686 × 10−2 1.78065 × 10−7 1.74442 × 10−3 8.49280 × 10−10 1.40374 × 10−4 1.83668

 p-value 3.01986 × 10−11 1.01490 × 10−11 1.07516 × 10−11 3.01986 × 10−11 1.49399 × 10−11 3.01230 × 10−11

IAOA best 1.05462 × 10−10 0.00000 4.93038 × 10−32 2.97972 × 10−19 0.00000 1.81191 × 10−30

 worst 1.25230 × 10−9 3.08149 × 10−33 2.09541 × 10−31 5.52546 × 10−15 5.57614 × 10−27 2.98754 × 10−19

 mean 4.73406 × 10−10 9.24446 × 10−34 7.27231 × 10−32 7.03339 × 10−16 1.85874 × 10−28 1.00553 × 10−20

 std 2.84371 × 10−10 1.43626 × 10−33 4.02152 × 10−32 1.22291 × 10−15 1.01806 × 10−27 5.45273 × 10−20

Mathematics 2022, 10, 2152 14 of 27

SCA best 4.64629 × 10−2 1.20156 × 10−8 8.29788 × 10−6 7.08592 × 10−4 7.53679 × 10−9 1.19890 × 10−1

 worst 2.98744 × 10−1 8.60445 × 10−4 3.13588 × 10−3 2.83503 2.00649 × 10−4 3.29896 × 10

 mean 1.22078 × 10−1 8.82826 × 10−5 5.47683 × 10−4 4.13237 × 10−1 3.41505 × 10−5 2.75667

 std 5.72692 × 10−2 2.61875 × 10−4 7.59630 × 10−4 6.58494 × 10−1 4.69615 × 10−5 6.25475

 p-value 3.01986 × 10−11 1.01490 × 10−11 1.07516 × 10−11 3.01986 × 10−11 1.49399 × 10−11 3.01230 × 10−11

WOA best 1.87873 × 10−4 6.72146 × 10−14 6.18945 × 10−13 4.04945 × 10−6 2.16928 × 10−11 1.76476 × 10−5

 worst 5.56233 × 10−3 1.30541 × 10−7 4.48907 × 10−2 4.99725 4.78904 × 10−6 7.91148 × 10

 mean 9.59545 × 10−4 6.92247 × 10−9 4.26773 × 10−3 6.47067 × 10−1 2.00099 × 10−7 8.65818

 std 1.06419 × 10−3 2.49080 × 10−8 1.24385 × 10−2 1.07197 8.71177 × 10−7 2.24136 × 10

 p-value 3.01986 × 10−11 1.01490 × 10−11 1.07516 × 10−11 3.01986 × 10−11 1.49399 × 10−11 3.01230 × 10−11

GWO best 2.65480 × 10−6 2.31886 × 10−12 1.77817 × 10−8 1.01688 × 10−6 2.21126 × 10−9 9.05730 × 10−5

 worst 6.59898 × 10−3 1.73256 × 10−6 9.94266 × 10−2 5.57604 × 10−2 1.70979 × 10−5 1.58625 × 10−3

 mean 1.25544 × 10−3 1.13986 × 10−7 3.33932 × 10−3 7.56735 × 10−3 1.12836 × 10−6 5.49160 × 10−4

 std 2.25868 × 10−3 4.16137 × 10−7 1.81481 × 10−2 1.36923 × 10−2 3.33417 × 10−6 3.69947 × 10−4

 p-value 3.01986 × 10−11 1.01490 × 10−11 1.07516 × 10−11 3.01986 × 10−11 1.49399 × 10−11 3.01230 × 10−11

HHO best 2.03768 × 10−2 8.99794 × 10−31 4.93038 × 10−32 1.21192 × 10−11 7.70372 × 10−34 3.83242 × 10−5

 worst 1.33302 × 10−1 1.91904 × 10−6 5.78702 × 10−4 1.00491 × 10−9 3.34700 × 10−6 7.08247 × 10−2

 mean 7.79220 × 10−2 6.55986 × 10−8 4.12782 × 10−5 6.11972 × 10−10 1.16072 × 10−7 1.00882 × 10−2

 std 2.90524 × 10−2 3.50117 × 10−7 1.19896 × 10−4 2.78236 × 10−10 6.10656 × 10−7 1.45023 × 10−2

 p-value 3.01986 × 10−11 1.01490 × 10−11 5.56066 × 10−8 3.01986 × 10−11 1.30542 × 10−10 3.01230 × 10−11

DE best 6.05782 × 10−3 8.15969 × 10−28 2.49399 × 10−20 2.59514 × 10−1 2.59615 × 10−31 4.23182 × 10−11

 worst 9.69921 × 10−1 1.19322 × 10−17 5.91181 × 10−7 2.58615 6.37964 × 10−22 1.17012 × 10−4

 mean 7.96262 × 10−2 1.31655 × 10−18 3.33313 × 10−8 9.87502 × 10−1 6.25300 × 10−23 6.71296 × 10−6

 std 2.40157 × 10−1 2.91169 × 10−18 1.26981 × 10−7 6.21653 × 10−1 1.66035 × 10−22 2.15862 × 10−5

 p-value 3.01986 × 10−11 1.01490 × 10−11 1.07516 × 10−11 3.01986 × 10−11 6.22236 × 10−11 3.01230 × 10−11

CSO best 2.82411 × 10−2 7.30711 × 10−11 2.92752 × 10−9 6.03864 × 10−1 2.67109 × 10−10 2.27267 × 10−2

 worst 1.34962 × 10−1 7.15408 × 10−9 2.57784 × 10−6 4.34942 1.32416 × 10−7 1.31894

 mean 6.61705 × 10−2 1.49505 × 10−9 6.53698 × 10−7 2.18295 2.13610 × 10−8 2.92513 × 10−1

 std 2.71383 × 10−2 1.66707 × 10−9 5.69101 × 10−7 1.05318 3.36401 × 10−8 3.41112 × 10−1

 p-value 3.01986 × 10−11 1.01490 × 10−11 1.07516 × 10−11 3.01986 × 10−11 1.49399 × 10−11 3.01230 × 10−11

SMA best 5.18988 × 10−4 1.26496 × 10−7 2.37253 × 10−11 2.08208 × 10−11 6.22359 × 10−11 3.95601 × 10−7

 worst 1.17331 × 10−2 2.46549 × 10−4 5.80093 × 10−7 2.89907 × 10−10 5.94920 × 10−8 4.75099 × 10−5

 mean 4.47411 × 10−3 2.89317 × 10−5 5.98652 × 10−8 1.30095 × 10−10 1.05190 × 10−8 1.03517 × 10−5

 std 3.00476 × 10−3 5.64857 × 10−5 1.28713 × 10−7 7.25135 × 10−11 1.30068 × 10−8 1.04158 × 10−5

 p-value 3.01986 × 10−11 1.01490 × 10−11 1.07516 × 10−11 3.01986 × 10−11 1.49399 × 10−11 3.01230 × 10−11

nAOA best 4.73537 × 10−1 1.16733 × 10−9 3.11364 × 10−12 3.28064 × 10−10 2.13953 × 10−5 7.56334 × 10−8

 worst 7.39125 × 10−1 9.06936 × 10−4 8.22290 × 10−1 2.69391 × 10−9 4.30978 × 10−4 4.49162 × 10

 mean 6.74564 × 10−1 3.07109 × 10−5 2.77064 × 10−2 1.50697 × 10−9 1.59376 × 10−4 1.49721

 std 5.68300 × 10−2 1.65502 × 10−4 1.50077 × 10−1 6.31248 × 10−10 7.06193 × 10−5 8.20053

 p-value 3.01986 × 10−11 1.01490 × 10−11 1.07516 × 10−11 3.01986 × 10−11 1.49399 × 10−11 3.01230 × 10−11

dAOA best 2.01052 × 10−1 8.99368 × 10−9 2.54429 × 10−4 3.09426 × 10−10 5.69606 × 10−6 8.50407 × 10−4

 worst 6.87872 1.28121 × 10−3 4.68145 × 10−1 9.87499 × 102 1.56431 × 10−2 3.78263 × 105

 mean 1.91504 3.22387 × 10−4 6.56368 × 10−2 2.07191 × 102 3.65947 × 10−3 2.61018 × 104

 std 2.16147 3.20053 × 10−4 1.21675 × 10−1 2.92259 × 102 5.26309 × 10−3 8.07193 × 104

 p-value 3.01986 × 10−11 1.01490 × 10−11 1.07516 × 10−11 3.01986 × 10−11 1.49399 × 10−11 3.01230 × 10−11

Problem 01. The description of the system is as follows [54]:

Mathematics 2022, 10, 2152 15 of 27

021466544.042651102.0

019612740.034504906.0

017081208.007056438.0

021180486.042937161.0

018922793.014654113.0

019950920.044166728.0

015585316.019807914.0

016955071.027162577.0

016275449.037842197.0

018324757.025428722.0

18410

86109

6718

8527

10586

3675

6174

10213

61012

9341

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

 (19)

There are ten equations in the system, where]2,2[ix , i = 1, …, n, and n = 10. The

aim was to obtain a higher precision solution x (x1, …, xn) through the proposed optimi-

zation method, and the results are recorded in Table 1. The IAOA is better than others

compared with several algorithms. The WOA ranks second, and the rest obtain competi-

tive results. The convergence curve for this problem shows in Figure 4a.

(a) (b)

(c) (d)

Mathematics 2022, 10, 2152 16 of 27

(e) (f)

Figure 4. Convergence curve for tackling the NES (problem01–06 (a–f)).

Problem 02. The description of the system is as follows [55]:

0)1(
10

1

10
exp)1(

10
)1(

0
10

1

10
exp

)1(10
)1(

221
2

2
2211

1
1

1
1

1

xx
x

x
xx

D
R

x
x

x
x

D
R

 (20)

There are two equations in system, where]1,0[ix , i = 1, …, n, and n = 2. In Table 2,

the experimental results for this problem proved that the proposed IAOA outperforms

the other methods. The DE ranks second, and the rest obtain competitive results. The

AOA, WOA, GWO, HHO, and CSO are in the third echelon. Furthermore, the rest are in

the fourth echelon. The convergence curve for this problem is shown in Figure 4b.

Problem 03. The description of the system is as follows [13]:

013cos

013sin

3
22

2
1

2
21

3
1

xxx

xxx
 (21)

There are two equations in the system, where]2,2[ix , i = 1, …, n, and n = 2. The

simulation results for this problem are shown in Table 3. It revealed that the IAOA is better

than the other algorithms. The DE, CSO, and SMA are in the second echelon. The rest are

in the third echelon. The convergence curve for this problem is shown in Figure 4c.

Problem 04. The description of the system is as follows [54]:

Mathematics 2022, 10, 2152 17 of 27

0102089296.0

0106194411.0

0101496236.0

0107816278.0

02101006932.0

0105140437.0

0102

010522

0103

01022

2
2110

14

219
7

318
6

2
47

15

2
26

6

2
15

7

5
74

5
1098531

5
83

5
10962

xxx

xxx

xxx

xx

xx

xx

xx

xxxxxx

xx

xxxx

 (22)

There are ten equations in the system:]10,10[ix , i = 1, …, n, and n = 10. Table 4

shows that the IAOA outperforms the others, and AOA, HHO, SMA, and nAOA obtain

the competitive results. The convergence curve for this problem is shown in Figure 4d.

Problem 05. The description of the system is as follows [17]:

02)2exp(
25.0

1

05.0
25.0

)sin(5.0

121

1221

exx
e

ex

xxxx

 (23)

There are two equations in the system, where]1,25.0[1x and]2,5.1[2 x . In

Table 5, the IAOA obtained the optimal solution, DE obtained the suboptimal solution,

and the rest of the algorithms obtained competitive results. The convergence curve for this

problem is shown in Figure 4e.

Problem 06. The description of the system is as follows [56]:

0

0

0

2
2

2
1352134

2
233

2
13231

2
1

2
3251324

2
123

2
32221

2
3

2
2153214

2
313

2
21211

xxxxxx

xxxxxx

xxxxxx

 (24)

There are three equations in the system, where the details about βij can be found in

the literature [56]:]20,20[ix , i = 1, …, n, and n = 3. In Table 6, the proposed IAOA

outperforms the other algorithms; the GWO, SMA, and DE get competitive results. The

convergence curve for this problem is shown in Figure 4f.

The statistical results show that the IAOA outperforms all algorithms on the remain-

ing problems in Table 7. These demonstrate that the IAOA has stronger ability and higher

stability than the other methods when solving a nonlinear system of equations. In Figure

4, IAOA’s convergence speed is slower than the others before the 110th iteration, but after

that, the IAOA still maintains a high convergence speed and achieves the optimum at the

200th iteration for problem01; for problem02 and problem03, the IAOA has the fastest

speed throughout the whole process and reaches the optimum at the 120th iteration and

before 120 iterations, respectively; for problem04, the IAOA is slower than the other algo-

rithms before 70 iterations; however it continues to converge after that and obtains the

optimal value after 200 iterations; for problem05, there is a close convergence rate for the

IAOA and DE, but a better value is obtained by the IAOA; for problem06, it has a slower

convergence speed than the others before 20 iterations, but after that, the fastest

Mathematics 2022, 10, 2152 18 of 27

convergence rate is obtained by the IAOA. All the experimental results prove that the

algorithm proposed in this paper has the characteristics that include a fast convergence

speed, high convergence accuracy, high solution quality, good stability, and strong ro-

bustness when dealing with nonlinear systems of equations. The p-values of almost all

test functions in the table are less than 0.05, indicating that the IAOA is significantly dif-

ferent from the other algorithms.

4.3. Numerical Integration

The performance of the proposed new method is evaluated in this section using the

ten numerical integration problems in Table 8, where F08 is a singular integral and F10 is

an oscillatory integral. The IAOA compared with the traditional methods and population-

based algorithms in tackling these cases. Tables 9–12 show the best integral values ob-

tained by solving ten problems in 30 independent runs, where the R-method, T-method,

S-method, H-method, G32, and 2n × L5 represent the traditional methods (rectangle

method, trapezoid method, Simpson method, Hermite interpolation method, the 32-point

Gaussian formula, and the 5-point Gauss-Roberto-Legendre formula). The rest are swarm

intelligence algorithms applied to solve numerical integration problems (evolutionary

strategy method [24], particle swarm optimization [25], differential evolution algorithm

[27], and improved bat algorithm [28]). The population size and the maximum number of

iterations are set to 30 and 200 during the process, respectively. In Table 9, for F01, the

solution accuracy of the IAOA is higher than the other methods, and then, the S-method,

FN, ES, DEBA, PSO, and DE obtain close results; for F02, the IAOA achieves the best re-

sult, and the FN, ES, DEBA, PSO, and DE are in the second echelon; for F03, the IAOA

achieves the better result compared to the FN, ES, and PSO. The MBFES, DEBA, and DE

rank third. In Table 10, for F04, the IAOA gets a perfect result, and the FN, ES, DEBA,

PSO, and DE obtain similar values; for F05, the IAOA ranks first, and the FN, ES, DEBA,

PSO, and DE rank second; for F06, the IAOA, FN, and DE achieve competitive results. For

F07–F09, the IAOA obtains the best value, and the FN, ES, and DEBA rank second in Table

11. The traditional methods (R-method, T-method, and S-method) fail to solve F10; there-

fore, G32 and 2n × L5 are utilized to tackle this problem. In Table 12, the IAOA and DEBA

obtain similar values and ranks first. Tables 13 and 14 are statistical results for the numer-

ical integration (F01–F10) are obtained by swarm intelligence algorithms. For F01–F09, the

IAOA is better than the other algorithms across all the assessment criteria (the best value,

the worst value, mean value, and standard deviation). However, for F10, the IAOA

achieves the only optimal result in the best value, and the rest rank second, in which the

DEBA obtains the best results. From Figure 5, the method proposed in this paper has the

fastest convergence speed and convergence accuracy for all the problems except F10. The

above experimental results prove that the IAOA has fast convergence speed, high solution

accuracy, and strong robustness. These enable the IAOA to handle numerical integration

problems; therefore, it is a worthwhile direction to apply the IAOA to solve the integration

solution problems in practical engineering applications.

Mathematics 2022, 10, 2152 19 of 27

(a) (b)

(c) (d)

(e) (f)

Mathematics 2022, 10, 2152 20 of 27

(g) (h)

(i) (j)

(k) (l)

Figure 5. Convergence curve for the numerical integrations (F01–F10 (a–l)).

Table 8. Details of the integrations F01–F10.

Integrations Details Range

F01
2)(xxf [0, 2]

F02
4)(xxf [0, 2]

F03 21)(xxf [0, 2]

Mathematics 2022, 10, 2152 21 of 27

F04
x

xf

1

1
)([0, 2]

F05 xxf sin)([0, 2]

F06
xexf)([0, 2]

F07 2)(cos1)(xxf [0, 48]

F08

32,

21,

10,

)(
3

2

xe

xe

xe

xf
x

x

x

 [0, 3]

F09
2

)(xexf [0, 1]

F10)30,20,10(,sincos)(mxmxxxxf [0, 2]

Table 9. Comparison of the experimental results for F01–F03.

Methods
Integrations

F01 F02 F03

R-method 2.000 2.000 2.828

T-method 4.000 16.000 3.236

S-method 2.667 6.667 2.964

H-method 2.830 7.066 3.048

FN [26] 2.667 6.3995 2.95789

MBFES [24] 2.659 6.338 2.956

ES [24] 2.666 6.398 2.9577

DEBA [28] 2.66698573 6.401201 2.958169

PSO [25] 2.666 6.398 2.9578

DE [27] 2.667 6.3995 2.958

AOA 2.61006134 6.20147125 2.94004382

IAOA 2.66661710 6.40000000 2.95788286

Exact 2.66666667 6.40000000 2.95788572

Table 10. Comparison of the experimental results for F04–F06.

Methods
Integrations

F04 F05 F06

R-method 1.000 1.683 5.437

T-method 1.333 0.909 8.389

S-method 1.111 1.425 6.421

H-method 1.112 1.452 6.691

FN [26] 1.0986 1.416 6.389

MBFES [24] 1.090 1.419 6.390

ES [24] 1.098 1.416 6.388

DEBA [28] 1.098754 1.416082 6.388921

PSO [25] 1.0985 1.416 6.3887

DE [27] 1.099 1.416 6.389

AOA 1.08923818 1.40101546 6.29531692

IAOA 1.09861229 1.41613957 6.38901606

Exact 1.09861229 1.41614684 6.38905610

Mathematics 2022, 10, 2152 22 of 27

Table 11. Comparison of the experimental results for F07–F09.

Methods
Integrations

F07 F08 F09

R-method 52.13975183 1.51349542 0.77782078

T-method 62.43737140 1.61179305 0.74621972

S-method 117.61490334 2.48720505 0.74683657

H-method 58.99776108 1.56164258 0.75403569

FN [26] 58.4705 1.54604 0.746823

MBFES [24] 58.48828 1.5455 0.74652

ES [24] 58.47065 1.5459805 0.74683

DEBA [28] 58.470505372351 1.5460388345767 0.7468269544604

PSO 56.80139775 1.52897330 0.74328459

DE 56.04598085 1.52425900 0.74202909

AOA 56.17497970 1.52641514 0.74223182

IAOA 58.47046915 1.54603603 0.74682413

Exact 58.47046915 1.54603603 0.74682413

Table 12. Comparison of the experimental results for F10.

Methods
Integrations

F10 (m = 10) F10 (m = 20) F10 (m = 30)

G32 −0.6340207 −1.2092524 −1.5822272

2n × L5 −0.55875940 −0.27789620 −0.18508448

H-method −0.21043575 0.17309499 −0.02945756

MBFES [24] −0.68134052 −0.37280425 −0.17305621

ES [24] −0.65034080 −0.30583435 −0.23556815

DEBA −0.63466518 −0.31494663 −0.20967248

PSO −1.50150183 −1.33949737 −1.10170197

DE [27] −0.63982173 −0.31035906 −0.21438251

AOA −3.07253909 −0.56489050 −0.42642997

IAOA −0.63466518 −0.31494663 −0.20967248

Exact −0.63466518 −0.31494663 −0.20967248

Table 13. Statistical results for the numerical integrations (F01–F06).

Algorithms
Integrations

F01 F02 F03 F04 F05 F06

AOA best 5.660532 × 10−2 1.985287 × 10−1 1.784189 × 10−2 9.374106 × 10−3 1.513137 × 10−2 9.373918 × 10−2

 worst 6.785842 × 10−2 2.466178 × 10−1 2.112411 × 10−2 1.103594 × 10−2 1.827849 × 10−2 1.105054 × 10−1

 mean 6.196485 × 10−2 2.238141 × 10−1 1.970905 × 10−2 1.041648 × 10−2 1.679104 × 10−2 1.013200 × 10−1

 std 2.473863 × 10−3 1.277362 × 10−2 6.790772 × 10−4 4.381854 × 10−4 7.886715 × 10−4 3.985235 × 10−3

IAOA best 4.956295 × 10−5 0.000000 2.855397 × 10−6 0.000000 7.267277 × 10−6 4.004088 × 10−5

 worst 1.070986 × 10−4 9.632589 × 10−6 1.471988 × 10−5 7.241931 × 10−6 3.035345 × 10−5 1.136393 × 10−4

 mean 7.267766 × 10−5 9.617999 × 10−7 6.357033 × 10−6 1.274560 × 10−6 1.595556 × 10−5 7.989662 × 10−5

 std 1.561025 × 10−5 2.672207 × 10−6 2.828416 × 10−6 1.942626 × 10−6 5.989208 × 10−6 2.032255 × 10−5

PSO [25] best 3.966996 × 10−2 1.282142 × 10−1 1.263049 × 10−2 6.772669 × 10−3 1.115352 × 10−2 6.495427 × 10−2

 worst 5.467546 × 10−2 1.880821 × 10−1 1.614274 × 10−2 9.112184 × 10−3 1.385859 × 10−2 9.718717 × 10−2

 mean 4.406724 × 10−2 1.593799 × 10−1 1.405265 × 10−2 7.745239 × 10−3 1.208230 × 10−2 7.327404 × 10−2

 std 3.262431 × 10−3 1.528260 × 10−2 9.707823 × 10−4 6.532329 × 10−4 7.146743 × 10−4 6.698801 × 10−3

DE [27] best 5.444535 × 10−2 1.776272 × 10−1 1.740389 × 10−2 9.410606 × 10−3 1.537737 × 10−2 9.229490 × 10−2

 worst 6.223208 × 10−2 1.992612 × 10−1 1.943564 × 10−2 1.043440 × 10−2 1.668422 × 10−2 1.003285 × 10−1

 mean 5.887766 × 10−2 1.887098 × 10−1 1.881844 × 10−2 1.003350 × 10−2 1.606658 × 10−2 9.665791 × 10−2

Mathematics 2022, 10, 2152 23 of 27

 std 1.717478 × 10−3 5.056921 × 10−3 4.230737 × 10−4 2.412656 × 10−4 3.636407 × 10−4 1.886442 × 10−3

DEBA [28] best 5.858312 × 10−2 1.958779 × 10−1 1.797733 × 10−2 9.632554 × 10−3 1.541447 × 10−2 9.078063 × 10−2

 worst 6.805128 × 10−2 2.566962 × 10−1 2.194973 × 10−2 1.144459 × 10−2 1.824156 × 10−2 1.096576 × 10−1

 mean 6.306158 × 10−2 2.287206 × 10−1 2.005007 × 10−2 1.048558 × 10−2 1.700868 × 10−2 1.008133 × 10−1

 std 2.059708 × 10−3 1.384008 × 10−2 8.428458 × 10−4 4.319549 × 10−4 7.193521 × 10−4 4.457879 × 10−3

ES [24] best 3.634854 × 10−2 1.053634 × 10−1 1.178783 × 10−2 6.152581 × 10−3 9.742411 × 10−3 6.028495 × 10−2

 worst 3.704455 × 10−2 1.076016 × 10−1 1.197536 × 10−2 6.272540 × 10−3 9.921388 × 10−3 6.120127 × 10−2

 mean 3.662145 × 10−2 1.064150 × 10−1 1.189432 × 10−2 6.206519 × 10−3 9.813727 × 10−3 6.070549 × 10−2

 std 1.618502 × 10−4 4.726931 × 10−4 4.687831 × 10−5 2.718416 × 10−5 4.560503 × 10−5 2.303572 × 10−4

Table 14. Statistical results for numerical integrations (F07–F10).

Algorithms
Integrations

F07 F08 F09 F10 (m = 10) F10 (m = 20) F10 (m = 30)

AOA best 2.295489 1.962088 × 10−2 4.592313 × 10−3 2.437873 2.499438 × 10−1 2.167574 × 10−1

 worst 2.524012 2.400262 × 10−2 5.421672 × 10−3 3.611012 3.429053 3.115022

 mean 2.424997 2.226327 × 10−2 5.031127 × 10−3 3.225836 1.617425 9.721188 × 10−1

 std 5.634089 × 10−2 1.017542 × 10−3 2.167135 × 10−4 2.620454 × 10−1 9.081448 × 10−1 7.417795 × 10−1

IAOA best 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

 worst 4.285648 × 10−4 9.665730 × 10−6 7.650313 × 10−9 4.941453 × 10−4 8.932970 × 10−4 4.121824 × 10−4

 mean 5.817808 × 10−5 1.079836 × 10−6 1.094646 × 10−9 6.843408 × 10−5 9.159354 × 10−5 6.487479 × 10−5

 std 9.331558 × 10−5 2.377176 × 10−6 2.051844 × 10−9 1.219906 × 10−4 1.972260 × 10−4 9.370544 × 10−5

PSO [25] best 1.093717 1.499542 × 10−2 3.212480 × 10−3 5.688245 × 10−1 1.024550 8.920294 × 10−1

 worst 2.077297 2.010782 × 10−2 4.674802 × 10−3 1.599995 1.485451 1.953066

 mean 1.669071 1.706272 × 10−2 3.539538 × 10−3 8.668366 × 10−1 1.219538 1.489201

 std 2.419795 × 10−1 1.205259 × 10−3 3.409595 × 10−4 2.759571 × 10−1 1.216184 × 10−1 2.065585 × 10−1

DE [27] best 2.255785 2.091958 × 10−2 4.575317 × 10−3 2.543013 3.461794 3.889322

 worst 2.522405 2.254710 × 10−2 5.009106 × 10−3 3.236645 4.684467 5.201887

 mean 2.424488 2.177702 × 10−2 4.795040 × 10−3 3.015091 4.242609 4.687029

 std 5.766110 × 10−2 4.602533 × 10−4 1.146454 × 10−4 1.967397 × 10−1 2.313007 × 10−1 2.923496 × 10−1

DEBA [28] best 2.361570 × 10−1 2.057410 × 10−2 4.776881 × 10−3 6.043389 × 10−14 1.208677 × 10−13 5.319404 × 10−13

 worst 2.468831 2.474051 × 10−2 5.441200 × 10−3 6.043389 × 10−14 1.208677 × 10−13 5.319404 × 10−13

 mean 1.163514 2.294436 × 10−2 5.157892 × 10−3 6.043389 × 10−14 1.208677 × 10−13 5.319404 × 10−13

 std 6.919695 × 10−1 9.765442 × 10−4 1.475304 × 10−4 3.851264 × 10−29 7.702528 × 10−29 3.081011 × 10−28

ES [24] best 1.298269 1.319474 × 10−2 3.051746 × 10−3 1.460773 1.634373 1.152204

 worst 1.321623 1.341748 × 10−2 3.121709 × 10−3 1.665912 2.355153 2.380726

 mean 1.308546 1.331615 × 10−2 3.081151 × 10−3 1.568781 1.869004 1.719830

 std 5.523404 × 10−3 5.640941 × 10−5 1.521690 × 10−5 4.627499 × 10−2 1.831224 × 10−1 2.898513 × 10−1

4.4. Sovling Engineering Problem

Compared with three-dimensional motion, planar motion restricts the robot to a sin-

gle plane and is simpler to calculate. However, most robot mechanisms can simplify plane

mechanisms or planes for tackling. Now, the robotic arm plays an increasingly important

role, which has also attracted the extensive attention of researchers. Improving the work-

ing efficiency of the robotic arm under the premise of low energy consumption is a chal-

lenging problem facing the industrial field [57]. The kinematics of the robotic arm mainly

include forward kinematics and inverse kinematics. One is the pose of the end effector

determined according to the rotation angle of each joint based on the base coordinates;

the other is taking the end joint as the starting point and, finally, back-to-base coordinates.

The inverse kinematics problem is essentially a nonlinear equation problem. The tasks

performed by the robotic arm are usually described by its base coordinate system in prac-

tical applications. Therefore, the inverse kinematics solution is particularly important in

Mathematics 2022, 10, 2152 24 of 27

the field of the control. The robotic arm model [58] is shown in Figure 6a, and the mathe-

matical model in coordinates is shown in Figure 6b. The nonlinear equation system for

this model is as follows.

2
2 2 2 2 2 2

2
2 2 2 2 2 2

2 1 2 1 2 1

10,000 ((sin() sin() sin())) 0

10,000 ((cos() cos() cos())) 0

0

a A b A B c A B C X

h a A b A B c A B C Y

A A B B C C

 (25)

where a = 16.5 cm; b = 7.9 cm; c = 5.3 cm; and h = 7.4 cm (1A = 150°, 1B = 132.7026°, and

1C = 127.0177°) are the initial angles of the three joints; (X = 10 cm, Y = 10 cm) is the coor-

dinate of the end effector; and (2A , 2B , and 2C) are the aims required to obtain three joint

angles in the final stage. The first two equations in the nonlinear equation system find the

three joint angles when the end effector reaches the target position (X, Y), and the third

equation ensures that the change of the joint angle is the smallest to meet the requirements

for saving energy.

(a) (b)

Figure 6. (a) The model of a robotic arm, and (b) a mathematical model for a robotic arm.

Tables 15–18 demonstrate that the IAOA obtains the closest results to the initial angle

compared with the PSO, GA and PSSA in solving the inverse kinematics problem of the

robotic arm. This shows that the method proposed in this paper allows the robotic arm to

consume less energy during movement. In Table 19, f represents the fitness value obtain

by Equation (25) and is the difference between the final angle and initial angle of the joint.

Obviously, the IAOA achieves the best results for both evaluations. Therefore, it is a great

significance to the stability, operation efficiency, operation accuracy, and energy con-

sumption of the robotic arm trajectory control. A new method is provided for the inverse

motion solution, which makes up for the deficiency of the traditional method.

Table 15. The results obtained by the IAOA for the engineering problem.

Algorithm
Joint Angles

A2 B2 C2

IAOA initial angle 150 132.7026 127.0177

 Result 145.7291 139.0180 123.9864

Mathematics 2022, 10, 2152 25 of 27

Table 16. The results obtained by the PSO for the engineering problem.

Algorithm
Joint Angles

A2 B2 C2

PSO initial angle 150 132.7026 127.0177

 result 139.6534 68.2235 96.4886

Table 17. The results obtained by the GA for the engineering problem.

Algorithm
Joint Angles

A2 B2 C2

GA initial angle 150 132.7026 127.0177

 result 129.8653 118.9625 52.6691

Table 18. The results obtained by the PSSA for the engineering problem.

Algorithm
Joint Angles

A2 B2 C2

PSSA [58] initial angle 150 132.7026 127.0177

 result 147.1015 92.5371 89.5116

Table 19. Comparison of the experimental results for the IAOA, PSO, GA, and PSSA.

Objective Funtions
Algorithms

IAOA PSO GA PSSA

f 1.3618 × 10 3.0608 × 106 3.2329 × 106 2.0199 × 105

2 1 2 1 2 1A A B B C C 13.6176 105.3548 118.2234 80.5701

5. Conclusions and Future Works

In this paper, the shortcomings are analyzed of the traditional AOA so that an im-

proved AOA based on a population control strategy is proposed to overcome the weak-

ness. The algorithm can find the best global value faster by classifying the population and

adaptively controlling the number of individuals in each subpopulation. This method ef-

fectively enhances the information sharing strength between individuals, can better

search the space, avoids falling into the local optimum, accelerates the convergence pro-

cess, and improves the optimization accuracy. The AOA, IAOA, and some other algo-

rithms are compared based on solving 6 nonlinear systems of equations, 10 numerical

integrations, and an engineering problem. The experimental results show that the IAOA

can solve these problems well and outperform the other algorithms. In the future, the

IAOA can be used to solve more nonlinear problems in practical engineering applications.

Secondly, it can try to solve multiple integrals. Finally, the algorithm can be further im-

proved and enhanced in its performance.

Author Contributions: Conceptualization and methodology, M.C. and Y.Z.; software, M.C.; writ-

ing—original draft preparation, M.C.; writing—review and editing, Y.Z. and Q.L.; and funding ac-

quisition, Y.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, Grant

No. U21A20464 and 62066005.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

Mathematics 2022, 10, 2152 26 of 27

References

1. Broyden, C.G. A class of methods for solving nonlinear simultaneous equations. Math. Comput. 1965, 19, 577–593.

2. Ramos, H.; Monteiro, M.T.T. A new approach based on the newton’s method to solve systems of nonlinear equations. J. Comput.

Appl. Math. 2017, 318, 3–13.

3. Hueso, J.L.; Martínez, E.; Torregrosa, J.R. Modified newton’s method for systems of nonlinear equations with singular Jacobian.

J. Comput. Appl. Math. 2009, 224, 77–83.

4. Luo, Y.Z.; Tang, G.J.; Zhou, L.N. Hybrid approach for solving systems of nonlinear equations using chaos optimization and

quasi-newton method. Appl. Soft Comput. 2008, 8, 1068–1073.

5. Karr, C.L.; Weck, B.; Freeman, L.M. Solutions to systems of nonlinear equations via a genetic algorithm. Eng. Appl. Artif. Intell.

1998, 11, 369–375.

6. Ouyang, A.J.; Zhou, Y.Q.; Luo, Q.F. Hybrid particle swarm optimization algorithm for solving systems of nonlinear equations.

In Proceedings of the 2009 IEEE International Conference on Granular Computing, Nanchang, China, 17–19 August 2009; pp.

460–465.

7. Jaberipour, M.; Khorram, E.; Karimi, B. Particle swarm algorithm for solving systems of nonlinear equations. Comput. Math.

Appl. 2011, 62, 566–576.

8. Pourjafari, E.; Mojallali, H. Solving nonlinear equations systems with a new approach based on invasive weed optimization

algorithm and clustering. Swarm Evol. Comput. 2012, 4, 33–43.

9. Jia, R.M.; He, D.X. Hybrid artificial bee colony algorithm for solving nonlinear system of equations. In Proceedings of the 2012 Eighth

International Conference on Computational Intelligence and Security, Guangzhou, China, 17–18 November 2012; pp. 56–60.

10. Ren, H.M.; Wu, L.; Bi, W.H.; Argyros, I.K. Solving nonlinear equations system via an efficient genetic algorithm with symmetric

and harmonious individuals. Appl. Math. Comput. 2013, 219, 10967–10973.

11. Cai, R.Z.; Yue, G.L. A novel firefly algorithm of solving nonlinear equation group. Appl. Mech. Mater. 2013, 389, 918–923.

12. Abdollahi, M.; Isazadeh, A.; Abdollahi, D. Imperialist competitive algorithm for solving systems of nonlinear equations. Com-

put. Math. Appl. 2013, 65, 1894–1908.

13. Hirsch, M.J.; Pardalos, P.M.; Resende, M.G.C. Solving systems of nonlinear equations with continuous GRASP. Nonlinear Anal.

Real World Appl. 2009, 10, 2000–2006.

14. Sacco, W.F.; Henderson, N. Finding all solutions of nonlinear systems using a hybrid metaheuristic with fuzzy clustering means.

Appl. Soft Comput. 2011, 11, 5424–5432.

15. Gong, W.Y.; Wang, Y.; Cai, Z.H.; Yang, S. A weighted bi-objective transformation technique for locating multiple optimal solu-

tions of nonlinear equation systems. IEEE Trans. Evol. Comput. 2017, 21, 697–713.

16. Ariyaratne, M.K.A.; Fernando, T.G.I.; Weerakoon, S. Solving systems of nonlinear equations using a modified firefly algorithm

(MODFA). Swarm Evol. Comput. 2019, 48, 72–92.

17. Gong, W.Y.; Wang, Y.; Cai, Z.H.; Wang, L. Finding multiple roots of nonlinear equation systems via a repulsion-based adaptive

differential evolution. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 1499–1513.

18. Ibrahim, A.M.; Tawhid, M.A. A hybridization of differential evolution and monarch butterfly optimization for solving systems

of nonlinear equations. J. Comput. Des. Eng. 2019, 6, 354–367.

19. Liao, Z.W.; Gong, W.Y.; Wang, L. Memetic niching-based evolutionary algorithms for solving nonlinear equation system. Expert

Syst. Appl. 2020, 149, 113–261.

20. Ning, G.Y.; Zhou, Y.Q. Application of improved differential evolution algorithm in solving equations. Int. J. Comput. Intell. Syst.

2021, 14, 199.

21. Rizk-Allah, R.M. A quantum-based sine cosine algorithm for solving general systems of nonlinear equations. Artif. Intell. Rev.

2021, 54, 3939–3990.

22. Ji, J.Y.; Man, L.W. An improved dynamic multi-objective optimization approach for nonlinear equation systems. Inf. Sci. 2021,

576, 204–227.

23. Turgut, O.E.; Turgut, M.S.; Coban, M.T. Chaotic quantum behaved particle swarm optimization algorithm for solving nonlinear

system of equations. Comput. Math. Appl. 2014, 68, 508–530.

24. Zhou, Y.Q.; Zhang, M.; Zhao, B. Numerical integration of arbitrary functions based on evolutionary strategy method. Chin. J.

Comput. 2008, 21, 196–206.

25. Wei, X.Q.; Zhou, Y.Q. Research on numerical integration method based on particle swarm optimization. Microelectron. Comput.

2009, 26, 117–119.

26. Wei, X.X.; Zhou, Y.Q.; Lan, X.L. Research on a numerical integration method based on functional networks. Comput. Sci. 2009,

36, 224–226.

27. Deng, Z.X.; Huang, F.D.; Liu, X.J. A differential evolution algorithm for solving numerical integration problems. Comput. Eng.

2011, 37, 206–207.

28. Xiao, H.H.; Duan, Y.M. Application of improved bat algorithm in numerical integration. J. Intell. Syst. 2014, 9, 364–371.

29. Szczepanski, R.; Kaminski, M.; Tarczewski, T. Auto-tuning process of state feedback speed controller applied for two-mass

system. Energies 2020, 13, 3067.

30. Hu, H.B.; Hu, Q.B.; Lu, Z.Y.; Xu, D. Optimal PID controller design in PMSM servo system via particle swarm optimization. In

Proceedings of the 31st Annual Conference of IEEE Industrial Electronics Society, IECON 2005, Raleigh, NC, USA, 6–10 No-

vember 2005; p. 5.

Mathematics 2022, 10, 2152 27 of 27

31. Szczepanski, R.; Tarczewski, T.; Niewiara, L.J.; Stojic, D. Isdentification of mechanical parameters in servo-drive system. In

Proceedings of the 2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC), Gliwice, Poland,

25–29 April 2021; pp. 566–573.

32. Liu, L.; Cartes, D.A.; Liu, W. Particle Swarm Optimization Based Parameter Identification Applied to PMSM. In Proceedings of

the 2007 American Control Conference, New York, NY, USA, 9–13 July 2007; pp. 2955–2960.

33. Szczepanski, R.; Tarczewski, T. Global path planning for mobile robot based on artificial bee colony and Dijkstra’s algorithms.

In Proceedings of the 2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC), Gliwice, Poland,

25–29 April 2021; pp. 724–730.

34. Brand, M.; Masuda, M.; Wehner, N.; Yu, X.H. Ant colony optimization algorithm for robot path planning. In Proceedings of the

2010 International Conference on Computer Design and Applications, Qinhuangdao, China, 25–27 June 2010; pp. 436–440.

35. Szczepanski, R.; Erwinski, K.; Tejer, M.; Bereit, A.; Tarczewski, T. Optimal scheduling for palletizing task using robotic arm and

artificial bee colony algorithm. Eng. Appl. Artif. Intell. 2022, 113, 104976.

36. Kolakowska, E.; Smith, S.F.; Kristiansen, M. Constraint optimization model of a scheduling problem for a robotic arm in auto-

matic systems. Robot. Auton. Syst. 2014, 62, 267–280.

37. Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The arithmetic optimization algorithm. Comput. Methods

Appl. Mech. Eng. 2021, 376, 113609.

38. Premkumar, M.; Jangir, P.; Kumar, D.S.; Sowmya, R.; Alhelou, H.H.; Abualigah, L.; Yildiz, A.R.; Mirjalili, S. A new arithmetic

optimization algorithm for solving real-world multi-objective CEC-2021 constrained optimization problems: Diversity analysis

and validations. IEEE Access 2021, 9, 84263–84295.

39. Bansal, P.; Gehlot, K.; Singhal, A.; Gupta, A. Automatic detection of osteosarcoma based on integrated features and feature

selection using binary arithmetic optimization algorithm. Multimed. Tools Appl. 2022, 81, 8807–8834.

40. Agushaka, J.O.; Ezugwu, A.E. Advanced arithmetic optimization algorithm for solving mechanical engineering design prob-

lems. PLoS ONE 2021, 16, e0255703.

41. Abualigah, L.; Diabat, A.; Sumari, P.; Gandomi, A. A novel evolutionary arithmetic optimization algorithm for multilevel

thresholding segmentation of COVID-19 CT images. Processes 2021, 9, 1155.

42. Xu, Y.P.; Tan, J.W.; Zhu, D.J.; Ouyang, P.; Taheri, B. Model identification of the proton exchange membrane fuel cells by extreme

learning machine and a developed version of arithmetic optimization algorithm. Energy Rep. 2021, 7, 2332–2342.

43. Izci, D.; Ekinci, S.; Kayri, M.; Eker, E. A novel improved arithmetic optimization algorithm for optimal design of PID controlled

and Bode’s ideal transfer function-based automobile cruise control system. Evol. Syst. 2021, 13, 453–468.

44. Khatir, S.; Tiachacht, S.; Thanh, C.L.; Ghandourah, E.; Mirjalili, S.; Wahab, M.A. An improved artificial neural network using

arithmetic optimization algorithm for damage assessment in FGM composite plates. Compos. Struct. 2021, 273, 114–287.

45. Viswanathan, G.M.; Afanasyev, V.; Buldyrev, S.; Murphy, E.J.; Prince, P.A.; Stanley, H.E. Lévy flight search patterns of wan-

dering albatrosses. Nature 1996, 381, 413–415.

46. Humphries, N.; Queiroz, N.; Dyer, J. et al. Environmental context explains Lévy and Brownian movement patterns of marine

predators. Nature 2010, 465, 1066–1069.

47. Mirjalili, S. A sine cosine Algorithm for solving optimization problems. Knowl. Based Syst. 2016, 96, 120–133.

48. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67.

49. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61.

50. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.

Future Gener. Comput. Syst. 2019, 97, 849–872.

51. Li, S.M.; Chen, H.L.; Wang, M.J.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization.

Future Gener. Comput. Syst. 2020, 111, 300–323.

52. Price, K.V. Differential evolution: A fast and simple numerical optimizer. In Proceeding of the North American Fuzzy Infor-

mation Processing, Berkeley, CA, USA, 19–22 June 1996; pp. 524–527.

53. Gandomi, A.H.; Yang, X.S.; Alavi, A.H. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization

problems. Eng. Comput. 2013, 29, 17–35.

54. Grosan, C.; Abraham, A. A new approach for solving nonlinear equations systems. IEEE Trans. Syst. Man Cybern. Part A Syst.

Hum. 2008, 38, 698–714.

55. Floudas, C.A. Recent advances in global optimization for process synthesis, design and control: Enclosure of all solutions. Com-

put. Chem. Eng. 1999, 23, S963–S973.

56. Nikkhah-Bahrami, M.; Oftadeh, R. An effective iterative method for computing real and complex roots of systems of nonlinear

equations. Appl. Math. Comput. 2009, 215, 1813–1820.

57. Ding, X. Robot Control Research; Zhejiang University Press: Hangzhou, China, 2006; pp. 37–38.

58. Xiang, Z.H.; Zhou, Y.Q.; Luo, Q.F.; Wen, C. PSSA: Polar coordinate salp swarm algorithm for curve design problems. Neural

Process Lett. 2020, 52, 615–645.

