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Abstract

:

The arithmetic optimization algorithm is a recently proposed metaheuristic algorithm. In this paper, an improved arithmetic optimization algorithm (IAOA) based on the population control strategy is introduced to solve numerical optimization problems. By classifying the population and adaptively controlling the number of individuals in the subpopulation, the information of each individual can be used effectively, which speeds up the algorithm to find the optimal value, avoids falling into local optimum, and improves the accuracy of the solution. The performance of the proposed IAOA algorithm is evaluated on six systems of nonlinear equations, ten integrations, and engineering problems. The results show that the proposed algorithm outperforms other algorithms in terms of convergence speed, convergence accuracy, stability, and robustness.
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1. Introduction


In the practical application calculations of science and engineering, many mathematical problems will be involved, such as nonlinear equation systems (NESs), numerical integration, etc. There are tremendous methods for solving NESs, including traditional techniques and intelligent optimization algorithms. Traditional techniques to solve NESs use gradient information [1], such as Newton’s method [2,3], quasi-Newton’s method [4], steepest descent method, etc. Due to relying on the selection of initial points and being prone to falling into optimal local one, these methods cannot obtain high-quality solutions for some specific problems. The metaheuristic algorithms, however, have the characteristics of low requirements for the initial point, a wide range of solutions, high efficiency, and robustness. These break through the limitations of traditional methods in solving problems. In recent years, metaheuristic algorithms have made great contributions in solving NESs (Karr et al. [5]; Ouyang et al. [6]; Jaberipour et al. [7]; Pourjafari et al. [8]; Jia et al. [9]; Ren et al. [10]; Cai et al. [11]; Abdollahi et al. [12]; Hirsch et al. [13]; Sacco et al. [14]; Gong et al. [15]; Ariyaratne et al. [16]; Gong et al. [17]; Ibrahim et al. [18]; Liao et al. [19]; Ning et al. [20]; Rizk-Allah et al. [21]; Ji et al. [22]; Turgut et al. [23]).



Numerical integration is a very basic computational problem. It is well-known that, when calculating the definite integral, the integrand is required to be easily given and then solved by the Newton-Leibniz formula. However, this method has many limitations, because in many practical problems, the original function of the integrand cannot be expressed, or the calculation is too complicated, so the definite integral of the integrand is replaced by a suitable finite sum approximation. The traditional numerical integration methods include the trapezoidal method, rectangle method, Romberg method, Gauss method, Simpson’s method, Newton’s method, etc. The above methods all divide the integral interval into equal parts, and the calculation efficiency is not high. Therefore, it is of great significance to find a new technique with a fast convergence speed, high precision, and strong robustness for numerical integration. Zhou et al. [24], based on the evolutionary strategy method, worked to solve numerical integration. Wei et al. [25] researched the numerical integration method based on particle swarm optimization. Wei et al. [26], based on functional networks, worked to solve numerical integration. Deng et al. [27] solved the numerical integration problems based on the differential evolution algorithm. Xiao et al. [28] applied the improved bat algorithm in numerical integration. The quality of the solution obtained by the above techniques was higher than the traditional methods.



All along, engineering optimization problems have been a popular area of research. Metaheuristic algorithms have been widely applied to engineering optimization problems due to their great practical significance, such as applied to the automatic adjustment of controller coefficients (Szczepanski et al. [29]; Hu et al. [30]), applied to system identification (Szczepanski et al. [31]; Liu et al. [32]), applied to global path planning (Szczepanski et al. [33]; Brand et al. [34]), and applied to robotic arm scheduling (Szczepanski et al. [35]; Kolakowska et al. [36]).



The Arithmetic Optimization Algorithm (AOA) [37] is a novel metaheuristic algorithm proposed by Abualigah et al. in 2021. AOA is a mathematical model technique that simulates the behaviors of Arithmetic operators (i.e., Multiplication, Division, Subtraction, and Addition) and their influence on the best local solution. Some improvements and practical applications of the algorithm have been made by scholars. Premkumar et al. [38] proposed a multi-objective arithmetic optimization algorithm (MOAOA) for solving real-world multi-objective CEC-2021-constrained optimization problems. Bansal. et al. [39] used a binary arithmetic optimization algorithm for integrated features and feature selection. Agushaka et al. [40] introduced an advanced arithmetic optimization algorithm for solving mechanical engineering design problems. Abualigah et al. [41] presented a novel evolutionary arithmetic optimization algorithm for multilevel thresholding segmentation. Xu et al. [42] hybridized an extreme learning machine and a developed version of the arithmetic optimization algorithm for model identification of the proton exchange membrane fuel cells. Izci et al. [43] introduced an improved arithmetic optimization algorithm for the optimal design of controlled PID. Khatir et al. [44] proposed an improved artificial neural network using the arithmetic optimization algorithm for damage assessments.



The basic AOA still has some drawbacks. For instance, it is easy to fall into a local optimum due to the location update based on the optimal value, premature convergence, and low solution accuracy, which need to be solved. Furthermore, in order to seek a more efficient way to solve numerical problems, in this paper, an improved arithmetic optimization algorithm (IAOA) based on the population control strategy is proposed to solve numerical optimization problems. By classifying the population and adaptively controlling the number of individuals in the subpopulation, the information of each individual can be used effectively while increasing the population diversity. More individuals are needed in the early iterations to perform a large-scale search that avoids falling into the local optimum. The search around the optimal value later in the iterations by more individuals speeds up the algorithm to find the optimal value and improves the accuracy of the solution. The performance of the proposed IAOA algorithm is evaluated on six systems of nonlinear equations, ten integrations, and engineering problems. The results show that the proposed algorithm outperforms the other algorithms in terms of convergence speed, convergence accuracy, stability, and robustness.



The main structure of this paper is as follows. Section 2 reviews the relevant knowledge for the nonlinear equation systems, integration, and basic arithmetic optimization algorithm (AOA). Section 3 introduces the proposed IAOA in detail. Section 4 presents experimental results, comparisons, and analyses. Section 5 concludes the work and proposes future research directions.




2. Preliminaries


2.1. Nonlinear Equation Systems


Generally, a nonlinear equation system can be formulated as follows.


  N E S =        f 1  (  x 1  ,  x 2  , … ,  x D  ) = 0      ⋮       f i  (  x 1  ,  x 2  , … ,  x D  ) = 0      ⋮       f n  (  x 1  ,  x 2  , … ,  x D  ) = 0        



(1)




where x is a D-dimensional decision variable, and n is the number of equations. Some equations are linear; the others are nonlinear. If x* satisfies fi (x*) = 0, then x* is a root of the system of equations.



Before using the optimization algorithm to solve the NES, first is to convert it into a single-objective optimization problem [17] as follows.


  min f ( x ) =   ∑  i = 1  n    f i 2  ( x ) , x = (  x 1  ,  x 2  , … ,  x i  , … ,  x D  )    



(2)







Finding the minimum of an optimization problem is equivalent to finding the root of the NES.




2.2. Numerical Integration


Definite integrals are very basic mathematical calculation problems as follows.


     ∫ a b   f ( x ) d x     



(3)




where f(x) represents the integrand function, and a and b represent the upper and lower bounds, respectively.



Usually, firstly, we find the original function F(x) of the integrand when finding a definite integral and then use the Newton-Leibniz formula as follows:


     ∫ a b   f ( x ) d x = F ( b ) − F ( a ) , (  F ’  ( x ) = f ( x ) )     



(4)







However, in many cases, it is difficult to obtain the original function F(x), so the Newton-Leibniz formula will not be able to be used.



In addition, the rest of the numerical quadrature methods are based on the quadrature formula of equidistant node division and summation or stipulate that the equidistant nodes remain unchanged during the whole process of calculating, as shown in Figure 1a. There need more nodes to obtain a high accuracy. However, the best segmentation is not the predetermined equidistant points, as shown in Figure 1b. Randomly generated subintervals has unequal intervals according to the concave and convex changes of the function curve, so the obtained value has a higher accuracy than the traditional methods. Based on this idea, there is another integral method based on non-equidistant point division [24]. First, generate some points randomly on the integral interval, and then, the algorithm is used to optimize these split points. Finally, a higher accuracy value will be obtained. This not only calculates the definite integral of the function in the usual sense but also calculates the integral of the singular function and the integral of the oscillatory function for this method [27]. The flow of the numerical integration algorithm based on unequal point segmentation is as follows [24].




	(1)

	
Randomly initialize the population in the search space S.




	(2)

	
Arrange each individual in the integral interval in ascending order. The integral interval has n(n = D + 2) nodes and n − 1 segments. Calculate the distance hi between two adjacent nodes and the function f(xk) value of each node, then calculate the function value corresponding to the D + 2 nodes and the function value of the middle node of each subsection. Find the minimum value wj and the maximum value Wj (j = 1, 2, …, D + 1) among the function values of the left endpoint, middle node, and right endpoint of each subsection.




	(3)

	
Calculate fitness value.   F ( i )  1 2   ∑  j = 1   D + 1    h j  |  W j  −  w j  |  .




	(4)

	
Update individuals through an optimization algorithm.




	(5)

	
Repeat step 4 until reaching the stop condition.




	(6)

	
Get the accuracy and integral values.









The numerical integration method based on Hermite interpolation only needs to provide the value of the integral node functions and has high precision. However, this method is based on equidistant segmentation. In this paper, the adaptability of unequal-spaced partitioning and the numerical integration method based on Hermite interpolation are combined to solve the numerical integration problem, and the formula is as follows:


       ∫ a b   f ( x ) d x    =   ∑  k = 1  n      h i   2  [ f (  x k  ) + f (  x  k + 1   ) ] −     ∑  i = 1   n − 1      25   144    h i  [ f ( a ) + f ( b ) ]     n − 1   +           ∑  i = 1   n − 1       h i   3  [ f ( a +  h i  ) + f ( b −  h i  ) ]     n − 1   −     ∑  i = 1   n − 1       h i   4  [ f ( a + 2  h i  ) + f ( b − 2  h i  ) ]     n − 1   +         ∑  i = 1   n − 1       h i   9  [ f ( a + 3  h i  ) + f ( b − 3  h i  ) ]     n − 1   −     ∑  i = 1   n − 1       h i    48   [ f ( a + 4  h i  ) + f ( b − 4  h i  ) ]     n − 1      



(5)




where n is the number of random split points, hi is the distance between two adjacent points, and f(x) is the integrand function. The advantage of this method is that it does not need to calculate the derivative value and only needs to provide the node function value. Before using the optimization algorithm to solve the integration, the first step is to convert it into a single-objective optimization problem as follows:


  min F ( x ) =      ∫ a b   f ( x ) d x − E       



(6)




where    ∫ a b  f ( x ) d x   is obtained by Equation (5), and E means the exact value.



Combine the optimization algorithm with Equation (5), and the whole solution process is as follows.




	(1)

	
Randomly initialize the population in the search space S.




	(2)

	
Arrange each individual in the integral interval in ascending order. The integral interval has n(n = D + 2) nodes and n − 1 segments. Calculate the distance hi between two adjacent nodes and the function f(xk) value of each node and then bring them into Equation (5).




	(3)

	
Calculate the fitness value by Equation (6).




	(4)

	
Update individuals through an optimization algorithm.




	(5)

	
Repeat step 4 until reaching the stop condition.




	(6)

	
Get the accuracy and integral values.










2.3. The Arithmetic Optimization Algorithm (AOA)


The AOA algorithm is a population-based metaheuristic algorithm to solve optimization problems by utilizing mathematical operators (Multiplication (“×”), Division (“÷”), Subtraction (“−”), and Addition (“+”)). The specific description is as follows.



2.3.1. Initialization Phase


Generate a candidate solution matrix randomly.


  X =        x  1 , 1      ⋯   ⋯     x  1 , j        x  1 , n − 1        x  1 , n          x  2 , 1      ⋯   ⋯     x  2 , j        x  2 , n − 1        x  2 , n        ⋯   ⋯   ⋯   ⋯   ⋯   ⋯     ⋮   ⋮   ⋮   ⋮   ⋮   ⋮       x  N − 1 , 1      ⋯   ⋯     x  N − 1 , j        x  N − 1 , n − 1        x  N − 1 , n          x  N , 1      ⋯   ⋯     x  N , j        x  N , n − 1        x  N , n          



(7)







After the initialization step, calculate the Math Optimizer Accelerated (MOA) function and use it to choose between exploration and exploitation. The function is as follows:


  M O A ( t ) = M i n + t ×     M a x − M i n  T     



(8)




where Max = 0.9 denotes the maximum and Min = 0.2 denotes the minimum of the function value, MOA (t) represents the function value of the current iteration, and T and t represent the maximum number of iterations and current iteration, respectively.




2.3.2. Exploration Phase


During the exploration phase, the operators (Multiplication (“×”) and Division (“÷”)) are used to explore the space randomly when the MOA > 0.5. The mathematical model is as follows:


   x  i , j   ( t + 1 ) =     b e s t (  x j  ) ÷ ( M O P + ε ) × ( ( U  B j  − L  B j  ) × μ + L  B j  ) ,  r 2  < 0.5     b e s t (  x j  ) × M O P × ( ( U  B j  − L  B j  ) × μ + L  B j  ) , o t h e r w i s e      



(9)




where r2 is a random number, xi,j(t + 1) represents the jth position of ith solution in the (t + 1)th iteration, best(xj) denotes the jth position in the global optimal solution, ε is a small integer number that avoids the case where the denominator is zero in division, UBj and LBj represents the upper and lower bounds of each dimension, respectively, and μ is equal to 0.5. The Math Optimizer probability (MOP) is as follows:


  M O P ( t ) = 1 −    t   1 α       T   1 α       



(10)




where MOP(t) represents the function value for the current iteration, and α is a sensitive parameter and equal to 5.




2.3.3. Exploitation Phase


During the exploration phase, the operators (Subtraction (“−”) and Addition (“+”)) are used to execute the exploitation. When MOA < 0.5, the mathematical model as follows:


   x  i , j   ( t + 1 ) =     b e s t (  x j  ) − M O P × ( ( U  B j  − L  B j  ) × μ + L  B j  ) ,  r 3  < 0.5     b e s t (  x j  ) + M O P × ( ( U  B j  − L  B j  ) × μ + L  B j  ) , o t h e r w i s e      



(11)




where r3 is a random number. The pseudo-code of the AOA is as follows (Algorithm 1) [37].



	Algorithm 1 AOA



	1. Set up the initial parameters α, μ.

2. Initialize the population randomly.

3. for t = 1: T

4.   Calculate the fitness function and select the best solution.

5.   Update the MOA (using Equation (8)) and MOP (using Equation (10)).

6.   for i = 1: N

7.     for j = 1: Dim

8.        Generate the random values between [0, 1] (r1, r2, r3)

9.        if r1 > MOA

10.           if r2 > 0.5

11.             Update the position of the individual by Equation (9).

12.           else

13.             Update the position of the individual by Equation (9).

14.           end

15.         else

16.           if r3 > 0.5

17.             Update the position of the individual by Equation (11).

18.           else

19.             Update the position of the individual by Equation (11).

20.           end

21.         end

22.    end

23. end

24. t = t + 1

25. end

26. Return the best solution (x).











3. Our Proposed IAOA


3.1. Motivation for Improving the AOA


In AOA, the population is updated based on the optimal global solution. Once it falls into the optimal local one, the entire population will stagnate. There is premature coverage, in some cases [33]. In addition, this algorithm does not fully utilize the information of the individuals in the population. Therefore, to make full use of the information of the individuals and address the weakness of AOA, the improved arithmetic optimization algorithm (IAOA) is proposed in this paper.




3.2. Population Control Mechanism


In the basic arithmetic optimization algorithm (AOA), the operators (Multiplication (“×”), Division (“÷”), Subtraction (“−”), and Addition (“+”)) are used to wrap around an optimal solution to search randomly in space, and it will lead to a loss of population diversity. Therefore, it is necessary to classify for the population.



3.2.1. The First Subpopulation


Sort the population according to the fitness value and select the first num_best individuals as the first subpopulation:


  n u m _ b e s t = r o u n d ( 0.1 N + 0.5 N ( 1 −  t / T  ) )  



(12)




where N is the number of individuals, and t and T represent the current iteration and maximum iterations, respectively. Then, these individuals update their position by getting information about each other. The mathematical model is as follows:


   x  b e s t _ i   ( t + 1 ) =  x  b e s t _ i   ( t ) + r a n d ×   b e s t ( x ) −    x  b e s t _ i   ( t ) +  x  b e s t _ j   ( t )  2  × ω    



(13)






   x  b e s t _ j   ( t + 1 ) =  x  b e s t _ j   ( t ) + r a n d ×   b e s t ( x ) −    x  b e s t _ i    ( t )  +  x  b e s t _ j   ( t )  2  × ω    



(14)




where xbest_i(t + 1) denotes the position of ith individual in the next iteration, the same as xbest_j(t + 1), best(x) represents the global optimum that has been found through individuals after t iterations, xbest_j is selected from the first class randomly, and ω means the information acquisition rate and takes the value 1 or 2.




3.2.2. The Second Subpopulation


Select num_middle individuals from the population as the second subpopulation.


  n u m _ m i d d l e = r o u n d ( 0.3 × N )  



(15)







These individuals fall between num_best and num_worst in the population. Then, these individuals update their position, and the updated model is as follows:


   x  m i d _ i   ( t + 1 ) =  x  m i d _ i   ( t ) + L e v y × ( b e s t ( x ) −  x  m i d _ j   )  



(16)




where xmid_i(t + 1) denotes the position of ith individual in the next iteration, Levy is the Levy distribution function [45,46], and xmid_j is selected from the second class randomly.




3.2.3. The Third Subpopulation


Select num_worst individuals from the population as the final subpopulation.


  n u m _ w o r s t = N − ( n u m _ b e s t + n u m _ m i d d l e )  



(17)







In the final class, the individuals update their position by the following equation:


   x  w o r s t _ i   ( t + 1 ) =  x  w o r s t _ i   +    t T  × b e s t ( x ) −  x  w o r s t _ j      



(18)




where xworst_i(t + 1) denotes the position of ith individual in the next iteration, and best(x) represents the global optimum that has been found through individuals after t iterations.



At the early iteration of IAOA, there are more individuals in the first subpopulation for speeding up the update of the global optimum. At the later iterations of the algorithm, the number of individuals in the first subpopulation decreases, which solves the operator crowding problem near the optimum. In addition, the number of individuals in the third subpopulation increases, which effectively prevents the population from falling into the local optimum. The second subpopulation utilizes the Levy flight for small-step updates to find more promising areas. The above strategy can effectively overcome the weaknesses of traditional AOA and improve its performance. The pseudo-code of the IAOA in Algorithm 2 is as follows (Algorithm 2). Figure 2 is the flowchart of the IAOA.



	Algorithm 2 IAOA



	1. Set up the initial parameters α, μ.

2. Initialize the population randomly.

3. for t = 1: T

4.   Calculate the fitness function and select the best solution.

5.   Calculate the number of the first subpopulation by Equation (12).

6.   Update the first subpopulation by Equations (13) and (14).

7.   Calculate the number of the second subpopulation by Equation (15).

8.   Update the second subpopulation by Equation (16).

9.   Calculate the number of the third subpopulation by Equation (17).

10.    Update the third subpopulation by Equation (18).

11.    Update the MOA (using Equation (8)) and MOP (using Equation (10)).

12.    for i = 1: N

13.      for j = 1: Dim

14.        Generate the random values between [0, 1] (r1, r2, r3)

15.        if r1 > MOA

16.           if r2 > 0.5

17.               Update the position of the individual by Equation (9).

18.           else

19.               Update the position of the individual by Equation (9).

20.           end

21.        else

22.           if r3 > 0.5

23.               Update the position of the individual by Equation (11).

24.           else

25.               Update the position of the individual by Equation (11).

26.           end

27.        end

28.     end

29. end

30. t = t + 1

31. end

32. Return the best solution (x).











4. Numerical Experiments and Analysis


4.1. Parameter Settings


Here, six groups of NESs and ten groups of integration have been used to demonstrate the efficiency of the IAOA. The IAOA compares several popular algorithms and two improved arithmetic optimization algorithms (The Arithmetic Optimization Algorithm (AOA) [37], Sine Cosine Algorithm (SCA) [47], Whale Optimization Algorithm (WOA) [48], Grey Wolf Optimizer (GWO) [49], Harris hawks optimization (HHO) [50], Slime mould algorithm (SMA) [51], Differential evolution(DE) [52], Cuckoo search algorithm (CSA) [53], Advanced arithmetic optimization algorithm (nAOA) [40], and a developed version of Arithmetic Optimization Algorithm (dAOA) [42]) for tackling NES. Among them, the parameters of these algorithms are all from the original version. These algorithms are evaluated from four aspects: the average value, the optimal value, the worst value, and the standard deviation. All algorithms are executed on MATLAB 2021a, running on a computer with a Windows 10 operating system, Intel(R) Core (TM) i7-9700 CPU @ 3.00 GHz, 16 GB of Random Access Memory (RAM), and run 30 times independently for all test problems. The flowchart for handling issues by the IAOA is shown in Figure 3.




4.2. Application in Solving NESs


Solving nonlinear problems often requires higher-precision solutions in many practical applications. In this section, six nonlinear systems of equations are chosen to evaluate the performance of the IAOA. The characteristics of these equations are different from each other, where problem01 [54] describes the interval arithmetic problem, problem02 [55] describes the multiple steady-states problem, and problem06 [56] describes the molecular conformation. These problems come from real-world applications. For fairness, set the population to 50 and the maximum number of iterations to 200. Table 1, Table 2, Table 3, Table 4, Table 5 and Table 6 show all the test results of the NES. Best represents the best value, Worst represents the worst value, Mean represents the mean value, Std represents the standard deviation, and p-value stands for the Wilcoxon rank–sum test in Table 7. The Wilcoxon p-value test is used to verify whether there is an obvious difference between the two sets of data.



Problem 01. The description of the system is as follows [54]:


       x 1  − 0.25428722 − 0.18324757  x 4   x 3   x 9  = 0      x 2  − 0.37842197 − 0.16275449  x 1   x  10    x 6  = 0      x 3  − 0.27162577 − 0.16955071  x 1   x 2   x  10   = 0      x 4  − 0.19807914 − 0.15585316  x 7   x 1   x 6  = 0      x 5  − 0.44166728 − 0.19950920  x 7   x 6   x 3  = 0      x 6  − 0.14654113 − 0.18922793  x 8   x 5   x  10   = 0      x 7  − 0.42937161 − 0.21180486  x 2   x 5   x 8  = 0      x 8  − 0.07056438 − 0.17081208  x 1   x 7   x 6  = 0      x 9  − 0.34504906 − 0.19612740  x  10    x 6   x 8  = 0      x  10   − 0.42651102 − 0.21466544  x 4   x 8   x 1  = 0      



(19)







There are ten equations in the system, where    x i  ∈ [ − 2 , 2 ]  , i = 1, …, n, and n = 10. The aim was to obtain a higher precision solution x (x1, …, xn) through the proposed optimization method, and the results are recorded in Table 1. The IAOA is better than others compared with several algorithms. The WOA ranks second, and the rest obtain competitive results. The convergence curve for this problem shows in Figure 4a.



Problem 02. The description of the system is as follows [55]:


      ( 1 − R )      D  10 ( 1 +  β 1  )   −  x 1    ⋅ exp     10  x 1    1 +   10  x 1   γ        −  x 1  = 0     ( 1 − R )      D  10   −  β 1   x 1  − ( 1 +  β 2  )  x 2    ⋅ exp     10  x 2    1 +   10  x 2   γ        +  x 1  − ( 1 +  β 2  )  x 2  = 0      



(20)







There are two equations in system, where    x i  ∈ [ 0 , 1 ]  , i = 1, …, n, and n = 2. In Table 2, the experimental results for this problem proved that the proposed IAOA outperforms the other methods. The DE ranks second, and the rest obtain competitive results. The AOA, WOA, GWO, HHO, and CSO are in the third echelon. Furthermore, the rest are in the fourth echelon. The convergence curve for this problem is shown in Figure 4b.



Problem 03. The description of the system is as follows [13]:


      sin    x 1 3    − 3  x 1   x 2 2  − 1 = 0     cos   3  x 1 2   x 2    −    x 2 3    + 1 = 0      



(21)







There are two equations in the system, where    x i  ∈ [ − 2 , 2 ]  , i = 1, …, n, and n = 2. The simulation results for this problem are shown in Table 3. It revealed that the IAOA is better than the other algorithms. The DE, CSO, and SMA are in the second echelon. The rest are in the third echelon. The convergence curve for this problem is shown in Figure 4c.



Problem 04. The description of the system is as follows [54]:


       x 2  + 2  x 6  +  x 9  + 2  x  10   −  10  − 5   = 0      x 3  +  x 8  − 3 ⋅  10  − 5   = 0      x 1  +  x 3  + 2  x 5  + 2  x 8  +  x 9  +  x  10   − 5 ⋅  10  − 5   = 0      x 4  + 2  x 7  −  10  − 5   = 0     0.5140437 ⋅  10  − 7    x 5  −  x 1 2  = 0     0.1006932 ⋅  10  − 6    x 6  − 2  x 2 2  = 0     0.7816278 ⋅  10  − 15    x 7  −  x 4 2  = 0     0.1496236 ⋅  10  − 6    x 8  −  x 1   x 3  = 0     0.6194411 ⋅  10  − 7    x 9  −  x 1   x 2  = 0     0.2089296 ⋅  10  − 14    x  10   −  x 1   x 2 2  = 0      



(22)







There are ten equations in the system:   x i  ∈ [ − 10 , 10 ]  , i = 1, …, n, and n = 10. Table 4 shows that the IAOA outperforms the others, and AOA, HHO, SMA, and nAOA obtain the competitive results. The convergence curve for this problem is shown in Figure 4d.



Problem 05. The description of the system is as follows [17]:


      0.5 sin (  x 1   x 2  ) −   0.25  π   x 2  − 0.5  x 1  = 0       1 −   0.25  π      exp ( 2  x 1  ) − e   +  e π   x 2  − 2 e  x 1  = 0      



(23)







There are two equations in the system, where    x 1  ∈ [ 0.25 , 1 ]   and    x 2  ∈ [ 1.5 , 2 π ]  . In Table 5, the IAOA obtained the optimal solution, DE obtained the suboptimal solution, and the rest of the algorithms obtained competitive results. The convergence curve for this problem is shown in Figure 4e.



Problem 06. The description of the system is as follows [56]:


       β  11   +  β  12    x 2 2  +  β  13    x 3 2  +  β  14    x 2   x 3  +  β  15    x 2 2   x 3 2  = 0      β  21   +  β  22    x 3 2  +  β  23    x 1 2  +  β  24    x 3   x 1  +  β  25    x 3 2   x 1 2  = 0      β  31   +  β  32    x 1 2  +  β  33    x 2 2  +  β  34    x 1   x 2  +  β  35    x 1 2   x 2 2  = 0      



(24)







There are three equations in the system, where the details about βij can be found in the literature [56]:    x i  ∈ [ − 20 , 20 ]  , i = 1, …, n, and n = 3. In Table 6, the proposed IAOA outperforms the other algorithms; the GWO, SMA, and DE get competitive results. The convergence curve for this problem is shown in Figure 4f.



The statistical results show that the IAOA outperforms all algorithms on the remaining problems in Table 7. These demonstrate that the IAOA has stronger ability and higher stability than the other methods when solving a nonlinear system of equations. In Figure 4, IAOA’s convergence speed is slower than the others before the 110th iteration, but after that, the IAOA still maintains a high convergence speed and achieves the optimum at the 200th iteration for problem01; for problem02 and problem03, the IAOA has the fastest speed throughout the whole process and reaches the optimum at the 120th iteration and before 120 iterations, respectively; for problem04, the IAOA is slower than the other algorithms before 70 iterations; however it continues to converge after that and obtains the optimal value after 200 iterations; for problem05, there is a close convergence rate for the IAOA and DE, but a better value is obtained by the IAOA; for problem06, it has a slower convergence speed than the others before 20 iterations, but after that, the fastest convergence rate is obtained by the IAOA. All the experimental results prove that the algorithm proposed in this paper has the characteristics that include a fast convergence speed, high convergence accuracy, high solution quality, good stability, and strong robustness when dealing with nonlinear systems of equations. The p-values of almost all test functions in the table are less than 0.05, indicating that the IAOA is significantly different from the other algorithms.




4.3. Numerical Integration


The performance of the proposed new method is evaluated in this section using the ten numerical integration problems in Table 8, where F08 is a singular integral and F10 is an oscillatory integral. The IAOA compared with the traditional methods and population-based algorithms in tackling these cases. Table 9, Table 10, Table 11 and Table 12 show the best integral values obtained by solving ten problems in 30 independent runs, where the R-method, T-method, S-method, H-method, G32, and 2n × L5 represent the traditional methods (rectangle method, trapezoid method, Simpson method, Hermite interpolation method, the 32-point Gaussian formula, and the 5-point Gauss-Roberto-Legendre formula). The rest are swarm intelligence algorithms applied to solve numerical integration problems (evolutionary strategy method [24], particle swarm optimization [25], differential evolution algorithm [27], and improved bat algorithm [28]). The population size and the maximum number of iterations are set to 30 and 200 during the process, respectively. In Table 9, for F01, the solution accuracy of the IAOA is higher than the other methods, and then, the S-method, FN, ES, DEBA, PSO, and DE obtain close results; for F02, the IAOA achieves the best result, and the FN, ES, DEBA, PSO, and DE are in the second echelon; for F03, the IAOA achieves the better result compared to the FN, ES, and PSO. The MBFES, DEBA, and DE rank third. In Table 10, for F04, the IAOA gets a perfect result, and the FN, ES, DEBA, PSO, and DE obtain similar values; for F05, the IAOA ranks first, and the FN, ES, DEBA, PSO, and DE rank second; for F06, the IAOA, FN, and DE achieve competitive results. For F07–F09, the IAOA obtains the best value, and the FN, ES, and DEBA rank second in Table 11. The traditional methods (R-method, T-method, and S-method) fail to solve F10; therefore, G32 and 2n × L5 are utilized to tackle this problem. In Table 12, the IAOA and DEBA obtain similar values and ranks first. Table 13 and Table 14 are statistical results for the numerical integration (F01–F10) are obtained by swarm intelligence algorithms. For F01–F09, the IAOA is better than the other algorithms across all the assessment criteria (the best value, the worst value, mean value, and standard deviation). However, for F10, the IAOA achieves the only optimal result in the best value, and the rest rank second, in which the DEBA obtains the best results. From Figure 5, the method proposed in this paper has the fastest convergence speed and convergence accuracy for all the problems except F10. The above experimental results prove that the IAOA has fast convergence speed, high solution accuracy, and strong robustness. These enable the IAOA to handle numerical integration problems; therefore, it is a worthwhile direction to apply the IAOA to solve the integration solution problems in practical engineering applications.




4.4. Sovling Engineering Problem


Compared with three-dimensional motion, planar motion restricts the robot to a single plane and is simpler to calculate. However, most robot mechanisms can simplify plane mechanisms or planes for tackling. Now, the robotic arm plays an increasingly important role, which has also attracted the extensive attention of researchers. Improving the working efficiency of the robotic arm under the premise of low energy consumption is a challenging problem facing the industrial field [57]. The kinematics of the robotic arm mainly include forward kinematics and inverse kinematics. One is the pose of the end effector determined according to the rotation angle of each joint based on the base coordinates; the other is taking the end joint as the starting point and, finally, back-to-base coordinates. The inverse kinematics problem is essentially a nonlinear equation problem. The tasks performed by the robotic arm are usually described by its base coordinate system in practical applications. Therefore, the inverse kinematics solution is particularly important in the field of the control. The robotic arm model [58] is shown in Figure 6a, and the mathematical model in coordinates is shown in Figure 6b. The nonlinear equation system for this model is as follows.


      10 , 000 × (   ( a × sin (  A 2  ) − b × sin (  A 2  +  B 2  ) + c × sin (  A 2  +  B 2  +  C 2  ) − X )  2  ) = 0     10 , 000 × (   ( h − a × cos (  A 2  ) − b × cos (  A 2  +  B 2  ) + c × cos (  A 2  +  B 2  +  C 2  ) − Y )  2  ) = 0        A 2  −  A 1    +    B 2  −  B 1    +    C 2  −  C 1    = 0      



(25)




where a = 16.5 cm; b = 7.9 cm; c = 5.3 cm; and h = 7.4 cm (   A 1    = 150°,    B 1    = 132.7026°, and    C 1    = 127.0177°) are the initial angles of the three joints; (X = 10 cm, Y = 10 cm) is the coordinate of the end effector; and (   A 2   ,    B 2   , and    C 2   ) are the aims required to obtain three joint angles in the final stage. The first two equations in the nonlinear equation system find the three joint angles when the end effector reaches the target position (X, Y), and the third equation ensures that the change of the joint angle is the smallest to meet the requirements for saving energy.



Table 15, Table 16, Table 17 and Table 18 demonstrate that the IAOA obtains the closest results to the initial angle compared with the PSO, GA and PSSA in solving the inverse kinematics problem of the robotic arm. This shows that the method proposed in this paper allows the robotic arm to consume less energy during movement. In Table 19, f represents the fitness value obtain by Equation (25) and is the difference between the final angle and initial angle of the joint. Obviously, the IAOA achieves the best results for both evaluations. Therefore, it is a great significance to the stability, operation efficiency, operation accuracy, and energy consumption of the robotic arm trajectory control. A new method is provided for the inverse motion solution, which makes up for the deficiency of the traditional method.





5. Conclusions and Future Works


In this paper, the shortcomings are analyzed of the traditional AOA so that an improved AOA based on a population control strategy is proposed to overcome the weakness. The algorithm can find the best global value faster by classifying the population and adaptively controlling the number of individuals in each subpopulation. This method effectively enhances the information sharing strength between individuals, can better search the space, avoids falling into the local optimum, accelerates the convergence process, and improves the optimization accuracy. The AOA, IAOA, and some other algorithms are compared based on solving 6 nonlinear systems of equations, 10 numerical integrations, and an engineering problem. The experimental results show that the IAOA can solve these problems well and outperform the other algorithms. In the future, the IAOA can be used to solve more nonlinear problems in practical engineering applications. Secondly, it can try to solve multiple integrals. Finally, the algorithm can be further improved and enhanced in its performance.
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Figure 1. Two methods of segmentation when solving numerical integrals: (a) equidistant division and (b) equidistant division. 
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Figure 2. Flowchart of the IAOA. 
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Figure 3. Flowchart for handling issues. 
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Figure 4. Convergence curve for tackling the NES (problem01–06 (a–f)). 
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Figure 5. Convergence curve for the numerical integrations (F01–F10 (a–l)). 
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Figure 6. (a) The model of a robotic arm, and (b) a mathematical model for a robotic arm. 
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Table 1. Comparison of the experimental results for problem01.
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Variable

	
Algorithms




	
AOA

	
IAOA

	
SCA

	
WOA






	
x1

	
0.006361583402960

	
0.257838650825518

	
0.186732591196869

	
0.260832096649832




	
x2

	
0.005731653837062

	
0.381098185347242

	
0.399818814038728

	
0.381680691118263




	
x3

	
0.010586282003880

	
0.278742562628776

	
0.008959145137085

	
0.258353295805450




	
x4

	
0.002593989505334

	
0.200665586275865

	
0.227237103605413

	
0.215307146397956




	
x5

	
0.033520558095432

	
0.445255928027431

	
0.003829239926320

	
0.448797960971748




	
x6

	
0.076424218265631

	
0.149188813621332

	
0.185905381801968

	
0.147397359179682




	
x7

	
0.038862694473151

	
0.432010769672038

	
0.368813050526818

	
0.442390776062597




	
x8

	
−0.000004007877210

	
0.073406152818720

	
0.037739989370997

	
0.137586270569043




	
x9

	
0.029054432130685

	
0.345966262513093

	
0.206476235144125

	
0.342058064566263




	
x10

	
0.013690425703394

	
0.427324518269459

	
0.363350844915327

	
0.401475021739693




	
f

	
8.45665838921712 × 10−1

	
4.73405913551646 × 10−10

	
1.22078391539763 × 10−1

	
9.59544885085295 × 10−4




	
Variable

	
Algorithms




	
GWO

	
HHO

	
DE

	
CSO




	
x1

	
0.256851024248810

	
0.324317023967532

	
2.000000000000000

	
0.089951372914250




	
x2

	
0.383565743620699

	
0.303967192642514

	
1.948157453190990

	
0.309487131659014




	
x3

	
0.278312335483674

	
0.216191961411362

	
2.000000000000000

	
0.456410156556233




	
x4

	
0.198737300040942

	
0.305260974230829

	
1.815308511546580

	
0.356392775439902




	
x5

	
0.446311619177502

	
0.325255783591842

	
2.000000000000000

	
0.476086684751138




	
x6

	
0.145894138632280

	
0.223020351676054

	
2.000000000000000

	
0.078921332097133




	
x7

	
0.145894138632280

	
0.323185143014029

	
2.000000000000000

	
0.499580490394335




	
x8

	
−0.007832029555062

	
0.327973609353822

	
1.915762141824520

	
0.197756675883883




	
x9

	
0.343654620394334

	
0.333430854648433

	
2.000000000000000

	
0.228228833675487




	
x10

	
0.425902664080806

	
0.324142888370713

	
2.000000000000000

	
0.470195948900759




	
f

	
1.25544451911646 × 10−3

	
7.79220329211044 × 10−2

	
7.96261500819178 × 10−2

	
6.61705221934444 × 10−2




	
Variable

	
Algorithms




	
SMA

	
nAOA

	
dAOA




	
x1

	
0.249900132290417

	
0.035430633051580

	
1.840704485033870




	
x2

	
0.375428314977531

	
0.053983062784772

	
1.213421005935260




	
x3

	
0.272448580296318

	
0.072735305166021

	
1.203555993641700




	
x4

	
0.199698265955405

	
0.021399042985613

	
−0.393935624266822




	
x5

	
0.425934189445810

	
0.064655913970964

	
−0.249476549706985




	
x6

	
0.057699959645613

	
0.012570281350831

	
0.459915310960444




	
x7

	
0.431865275874618

	
0.057639809639213

	
−0.675754718182326




	
x8

	
0.015005640000641

	
0.005520004765830

	
−0.895856414267328




	
x9

	
0.347986992756388

	
0.041229484511092

	
0.359139808282465




	
x10

	
0.415304164782275

	
0.079595719921909

	
1.529188120361250




	
f

	
4.47411205566240 × 10−3

	
6.74563715208325 × 10−1

	
1.91503507134915
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Table 2. Comparison of the experimental results for problem02.
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Variable

	
Algorithms




	
AOA

	
IAOA

	
SCA

	
WOA






	
x1

	
0.040781958181860

	
0.042124781715274

	
0.000000000000000

	
0.041561373108785




	
x2

	
0.268625655728691

	
0.061754610138946

	
0.266593748985495

	
0.268697327813652




	
f

	
2.01752031872803 × 10−7

	
9.24446373305873 × 10−34

	
8.82826387279195 × 10−5

	
6.92247231102962 × 10−9




	
Variable

	
Algorithms




	
GWO

	
HHO

	
DE

	
CSO




	
x1

	
0.265622854930434

	
0.267855297066815

	
0.266589101862370

	
0.266620164671422




	
x2

	
0.178718146817611

	
0.458749279058429

	
0.327275026016101

	
0.178514261126008




	
f

	
1.13985864694418 × 10−7

	
6.55986405733090 × 10−8

	
1.31654979128584 × 10−18

	
1.49504500886345 × 10−9




	
Variable

	
Algorithms




	
SMA

	
nAOA

	
dAOA




	
x1

	
0.021419624272050

	
0.000000000000000

	
0.236558250181286




	
x2

	
0.048075232460874

	
0.719124811309122

	
0.508933311549167




	
f

	
2.89316821274146 × 10−5

	
3.07109081317222 × 10−5

	
3.22387407689191 × 10−4
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Table 3. Comparison of the experimental results for problem03.
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Variable

	
Algorithms




	
AOA

	
IAOA

	
SCA

	
WOA






	
x1

	
1.990744078311880

	
−0.947268146986263

	
−0.225974226141413

	
−1.424482905343090




	
x2

	
0.220001522814532

	
−0.785020015568289

	
1.245763361231140

	
−0.543544840817441




	
f

	
5.61739095968327 × 10−3

	
4.02151576372412 × 10−32

	
7.95691890654021 × 10−4

	
1.06331568826728 × 10−3




	
Variable

	
Algorithms




	
GWO

	
HHO

	
DE

	
CSO




	
x1

	
−1.794053112053940

	
−1.495480498807310

	
−1.791308474954350

	
−0.212779003619775




	
x2

	
−0.303905803005920

	
−0.420394691864127

	
0.301889327351144

	
−1.257141525856050




	
f

	
2.77808608355359 × 10−5

	
6.12298193031725 × 10−5

	
1.84881969881973 × 10−9

	
6.26348225916795 × 10−7




	
Variable

	
Algorithms




	
SMA

	
nAOA

	
dAOA




	
x1

	
−1.791387180972800

	
−1.475077261850100

	
−1.580085715978880




	
x2

	
−0.302157020359872

	
−0.454673564762598

	
0.4651484d76848022




	
f

	
5.47910691165820 × 10−8

	
2.17709293383390 × 10−4

	
5.12705019470938 × 10−2
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Table 4. Comparison of the experimental results for problem04.
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Variable

	
Algorithms




	
AOA

	
IAOA

	
SCA

	
WOA






	
x1

	
−0.000266868453558

	
−0.000000091835793

	
−0.120898772911816

	
−0.310246574315981




	
x2

	
−0.000267036157051

	
0.000013971597535

	
0.491167568359585

	
0.467564824328878




	
x3

	
−0.000267036274281

	
0.000030454051416

	
10.000000000000000

	
1.071469773086650




	
x4

	
0.000000025430197

	
0.000010000404353

	
−0.178108600809833

	
−0.404219784214681




	
x5

	
−0.000267039311495

	
0.000011275918099

	
5.423242568753400

	
3.552125620609660




	
x6

	
−0.000267036127224

	
0.000000019800029

	
−0.049710980654501

	
−1.834136698070800




	
x7

	
0.000000000091855

	
−0.000000000138437

	
0.445662462511328

	
0.286050311387620




	
x8

	
0.000267036101457

	
−0.000000454282127

	
−10.000000000000000

	
−2.931846497771810




	
x9

	
0.000267033832224

	
0.000000000736505

	
−0.144419405019169

	
−4.812450845354100




	
x10

	
0.000267043884482

	
−0.000002006069864

	
−0.518105971932846

	
3.756426716000660




	
f

	
1.08498006397337 × 10−9

	
7.03339003909689 × 10−16

	
4.13237426374674 × 10−1

	
6.47066501369328 × 10−1




	
Variable

	
Algorithms




	
GWO

	
HHO

	
DE

	
CSO




	
x1

	
0.044653752694561

	
−0.000047703379713

	
0.160723693838569

	
−0.009650846541198




	
x2

	
−0.259567674882923

	
0.000075691075249

	
0.431923139718368

	
0.147278561202585




	
x3

	
−1.777013199398760

	
−0.000029713372367

	
0.072922517980119

	
−3.148557575646470




	
x4

	
0.042606334458592

	
−0.000050184914825

	
0.447403957744849

	
−0.512428980703464




	
x5

	
−4.935286036663600

	
0.000033675529531

	
−0.197972459731190

	
−4.175819684412100




	
x6

	
−8.146156623785810

	
0.000067989452634

	
1.490110445009050

	
−7.123183974281880




	
x7

	
−0.108125274969201

	
0.000031288762826

	
0.472265426079125

	
1.268663892956760




	
x8

	
1.747052457418910

	
0.000048491290536

	
0.509493705510866

	
3.198230908839320




	
x9

	
−0.311997778279745

	
0.000063892452193

	
1.142101578993260

	
−4.763105818868310




	
x10

	
8.430357427064680

	
−0.000123055431652

	
−2.110335475212350

	
9.463108408596410




	
f

	
7.56734706927375 × 10−3

	
6.11971561041781 × 10−10

	
9.87501536049260 × 10−1

	
2.18295386757873




	
Variable

	
Algorithms




	
SMA

	
nAOA

	
dAOA




	
x1

	
−0.000000000028677

	
0.000020144848903

	
−0.934997016811202




	
x2

	
0.000014644312649

	
−0.000060200695401

	
−1.295640443505010




	
x3

	
0.000038790339140

	
−0.000020118018817

	
−5.634966911723890




	
x4

	
−0.000000000221797

	
−0.000060200956330

	
−4.825343892476190




	
x5

	
0.000000055701981

	
−0.000020122803817

	
0.269511140973028




	
x6

	
−0.000000030051237

	
−0.000020134693956

	
−7.253398121182340




	
x7

	
0.000000595936232

	
0.000020123341500

	
7.557747336452660




	
x8

	
−0.000000000025333

	
0.000020925519435

	
−5.520361069927860




	
x9

	
0.000000799504725

	
0.000043615727680

	
−4.709534880735350




	
x10

	
0.000000000012983

	
0.000020120622373

	
8.954470788407880




	
f

	
1.30095438660555 × 10−10

	
1.50696700666871 × 10−9

	
2.07190542503982 × 102
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Table 5. Comparison of the experimental results for problem05.






Table 5. Comparison of the experimental results for problem05.





	
Variable

	
Algorithms




	
AOA

	
IAOA

	
SCA

	
WOA






	
x1

	
0.371964486871792

	
0.500000000000000

	
0.471178994397267

	
0.503978268408352




	
x2

	
2.990337880814430

	
3.141592653589790

	
3.118271172186020

	
3.142976305563530




	
f

	
1.89048835343036 × 10−4

	
1.85873810048745 × 10−28

	
3.41504906318340 × 10−5

	
2.00099014478417 × 10−7




	
Variable

	
Algorithms




	
GWO

	
HHO

	
DE

	
CSO




	
x1

	
0.495722089382004

	
0.503332577729795

	
0.299448692445072

	
0.500482294032500




	
x2

	
3.143566564341090

	
3.142753305279310

	
2.836927770362990

	
3.142098043614560




	
f

	
1.12835512797232 × 10−6

	
1.16071617155615 × 10−7

	
6.25300383824133 × 10−23

	
2.13609775136897 × 10−8




	
Variable

	
Algorithms




	
SMA

	
nAOA

	
dAOA




	
x1

	
0.298949061647857

	
0.354640044143990

	
2.956994389007600




	
x2

	
2.835691250750600

	
2.956994389007600

	
1.890717921128260




	
f

	
1.05189651760469 × 10−8

	
1.59376404093113 × 10−4

	
3.65946616757579 × 10−3
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Table 6. Comparison of the experimental results for problem06.
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Variable

	
Algorithms




	
AOA

	
IAOA

	
SCA

	
WOA






	
x1

	
0.953663829653960

	
−0.779548045079158

	
11.147659127176500

	
1.516510183032980




	
x2

	
0.663112382731748

	
−0.779548045079158

	
0.900762400732728

	
0.694394649388567




	
x3

	
0.729782844271910

	
−0.779548045079158

	
0.919816117314499

	
10.556407054559600




	
f

	
3.35330112498813 × 10−1

	
1.00553388370096 × 10−20

	
2.75666643131973

	
8.65817545834561




	
Variable

	
Algorithms




	
GWO

	
HHO

	
DE

	
CSO




	
x1

	
0.781303537791760

	
−0.782460718139219

	
−0.779277448448367

	
−0.765447632695953




	
x2

	
0.777872878718449

	
−0.789339702437282

	
−0.779700789186745

	
−0.784775197498564




	
x3

	
0.779780469890485

	
−0.766810453292313

	
−0.780020611467694

	
−0.735052686517780




	
f

	
5.49159538279891 × 10−4

	
1.00882211687459 × 10−2

	
6.71295836563811 × 10−6

	
2.92512803990831 × 10−1




	
Variable

	
Algorithms




	
SMA

	
nAOA

	
dAOA




	
x1

	
−0.779731780102931

	
−0.437772635064718

	
−1.056395480177350




	
x2

	
−0.779371556451744

	
−7.659741643877890

	
6.893981344148980




	
x3

	
−0.779303513685515

	
−2.620897335617900

	
−1.876924860155790




	
f

	
1.03517116885362 × 10−5

	
1.49720612584788

	
2.61017698945353 × 104
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Table 7. Statistical results for the NES.
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Algorithms

	

	
Systems of Nonlinear Equations




	
problem01

	
problem02

	
problem03

	
problem04

	
problem05

	
problem06






	
AOA

	
best

	
7.02711 × 10−1

	
1.20198 × 10−8

	
8.30574 × 10−12

	
2.99534 × 10−10

	
5.32587 × 10−6

	
1.60969 × 10−8




	

	
worst

	
9.05980 × 10−1

	
7.47231 × 10−7

	
9.55457 × 10−3

	
3.58264 × 10−9

	
5.96026 × 10−4

	
1.00599 × 10




	

	
mean

	
8.45666 × 10−1

	
2.01752 × 10−7

	
3.18486 × 10−4

	
1.08498 × 10−9

	
1.89049 × 10−4

	
3.35330 × 10−1




	

	
std

	
4.40686 × 10−2

	
1.78065 × 10−7

	
1.74442 × 10−3

	
8.49280 × 10−10

	
1.40374 × 10−4

	
1.83668




	

	
p-value

	
3.01986 × 10−11

	
1.01490 × 10−11

	
1.07516 × 10−11

	
3.01986 × 10−11

	
1.49399 × 10−11

	
3.01230 × 10−11




	
IAOA

	
best

	
1.05462 × 10−10

	
0.00000

	
4.93038 × 10−32

	
2.97972 × 10−19

	
0.00000

	
1.81191 × 10−30




	

	
worst

	
1.25230 × 10−9

	
3.08149 × 10−33

	
2.09541 × 10−31

	
5.52546 × 10−15

	
5.57614 × 10−27

	
2.98754 × 10−19




	

	
mean

	
4.73406 × 10−10

	
9.24446 × 10−34

	
7.27231 × 10−32

	
7.03339 × 10−16

	
1.85874 × 10−28

	
1.00553 × 10−20




	

	
std

	
2.84371 × 10−10

	
1.43626 × 10−33

	
4.02152 × 10−32

	
1.22291 × 10−15

	
1.01806 × 10−27

	
5.45273 × 10−20




	
SCA

	
best

	
4.64629 × 10−2

	
1.20156 × 10−8

	
8.29788 × 10−6

	
7.08592 × 10−4

	
7.53679 × 10−9

	
1.19890 × 10−1




	

	
worst

	
2.98744 × 10−1

	
8.60445 × 10−4

	
3.13588 × 10−3

	
2.83503

	
2.00649 × 10−4

	
3.29896 × 10




	

	
mean

	
1.22078 × 10−1

	
8.82826 × 10−5

	
5.47683 × 10−4

	
4.13237 × 10−1

	
3.41505 × 10−5

	
2.75667




	

	
std

	
5.72692 × 10−2

	
2.61875 × 10−4

	
7.59630 × 10−4

	
6.58494 × 10−1

	
4.69615 × 10−5

	
6.25475




	

	
p-value

	
3.01986 × 10−11

	
1.01490 × 10−11

	
1.07516 × 10−11

	
3.01986 × 10−11

	
1.49399 × 10−11

	
3.01230 × 10−11




	
WOA

	
best

	
1.87873 × 10−4

	
6.72146 × 10−14

	
6.18945 × 10−13

	
4.04945 × 10−6

	
2.16928 × 10−11

	
1.76476 × 10−5




	

	
worst

	
5.56233 × 10−3

	
1.30541 × 10−7

	
4.48907 × 10−2

	
4.99725

	
4.78904 × 10−6

	
7.91148 × 10




	

	
mean

	
9.59545 × 10−4

	
6.92247 × 10−9

	
4.26773 × 10−3

	
6.47067 × 10−1

	
2.00099 × 10−7

	
8.65818




	

	
std

	
1.06419 × 10−3

	
2.49080 × 10−8

	
1.24385 × 10−2

	
1.07197

	
8.71177 × 10−7

	
2.24136 × 10




	

	
p-value

	
3.01986 × 10−11

	
1.01490 × 10−11

	
1.07516 × 10−11

	
3.01986 × 10−11

	
1.49399 × 10−11

	
3.01230 × 10−11




	
GWO

	
best

	
2.65480 × 10−6

	
2.31886 × 10−12

	
1.77817 × 10−8

	
1.01688 × 10−6

	
2.21126 × 10−9

	
9.05730 × 10−5




	

	
worst

	
6.59898 × 10−3

	
1.73256 × 10−6

	
9.94266 × 10−2

	
5.57604 × 10−2

	
1.70979 × 10−5

	
1.58625 × 10−3




	

	
mean

	
1.25544 × 10−3

	
1.13986 × 10−7

	
3.33932 × 10−3

	
7.56735 × 10−3

	
1.12836 × 10−6

	
5.49160 × 10−4




	

	
std

	
2.25868 × 10−3

	
4.16137 × 10−7

	
1.81481 × 10−2

	
1.36923 × 10−2

	
3.33417 × 10−6

	
3.69947 × 10−4




	

	
p-value

	
3.01986 × 10−11

	
1.01490 × 10−11

	
1.07516 × 10−11

	
3.01986 × 10−11

	
1.49399 × 10−11

	
3.01230 × 10−11




	
HHO

	
best

	
2.03768 × 10−2

	
8.99794 × 10−31

	
4.93038 × 10−32

	
1.21192 × 10−11

	
7.70372 × 10−34

	
3.83242 × 10−5




	

	
worst

	
1.33302 × 10−1

	
1.91904 × 10−6

	
5.78702 × 10−4

	
1.00491 × 10−9

	
3.34700 × 10−6

	
7.08247 × 10−2




	

	
mean

	
7.79220 × 10−2

	
6.55986 × 10−8

	
4.12782 × 10−5

	
6.11972 × 10−10

	
1.16072 × 10−7

	
1.00882 × 10−2




	

	
std

	
2.90524 × 10−2

	
3.50117 × 10−7

	
1.19896 × 10−4

	
2.78236 × 10−10

	
6.10656 × 10−7

	
1.45023 × 10−2




	

	
p-value

	
3.01986 × 10−11

	
1.01490 × 10−11

	
5.56066 × 10−8

	
3.01986 × 10−11

	
1.30542 × 10−10

	
3.01230 × 10−11




	
DE

	
best

	
6.05782 × 10−3

	
8.15969 × 10−28

	
2.49399 × 10−20

	
2.59514 × 10−1

	
2.59615 × 10−31

	
4.23182 × 10−11




	

	
worst

	
9.69921 × 10−1

	
1.19322 × 10−17

	
5.91181 × 10−7

	
2.58615

	
6.37964 × 10−22

	
1.17012 × 10−4




	

	
mean

	
7.96262 × 10−2

	
1.31655 × 10−18

	
3.33313 × 10−8

	
9.87502 × 10−1

	
6.25300 × 10−23

	
6.71296 × 10−6




	

	
std

	
2.40157 × 10−1

	
2.91169 × 10−18

	
1.26981 × 10−7

	
6.21653 × 10−1

	
1.66035 × 10−22

	
2.15862 × 10−5




	

	
p-value

	
3.01986 × 10−11

	
1.01490 × 10−11

	
1.07516 × 10−11

	
3.01986 × 10−11

	
6.22236 × 10−11

	
3.01230 × 10−11




	
CSO

	
best

	
2.82411 × 10−2

	
7.30711 × 10−11

	
2.92752 × 10−9

	
6.03864 × 10−1

	
2.67109 × 10−10

	
2.27267 × 10−2




	

	
worst

	
1.34962 × 10−1

	
7.15408 × 10−9

	
2.57784 × 10−6

	
4.34942

	
1.32416 × 10−7

	
1.31894




	

	
mean

	
6.61705 × 10−2

	
1.49505 × 10−9

	
6.53698 × 10−7

	
2.18295

	
2.13610 × 10−8

	
2.92513 × 10−1




	

	
std

	
2.71383 × 10−2

	
1.66707 × 10−9

	
5.69101 × 10−7

	
1.05318

	
3.36401 × 10−8

	
3.41112 × 10−1




	

	
p-value

	
3.01986 × 10−11

	
1.01490 × 10−11

	
1.07516 × 10−11

	
3.01986 × 10−11

	
1.49399 × 10−11

	
3.01230 × 10−11




	
SMA

	
best

	
5.18988 × 10−4

	
1.26496 × 10−7

	
2.37253 × 10−11

	
2.08208 × 10−11

	
6.22359 × 10−11

	
3.95601 × 10−7




	

	
worst

	
1.17331 × 10−2

	
2.46549 × 10−4

	
5.80093 × 10−7

	
2.89907 × 10−10

	
5.94920 × 10−8

	
4.75099 × 10−5




	

	
mean

	
4.47411 × 10−3

	
2.89317 × 10−5

	
5.98652 × 10−8

	
1.30095 × 10−10

	
1.05190 × 10−8

	
1.03517 × 10−5




	

	
std

	
3.00476 × 10−3

	
5.64857 × 10−5

	
1.28713 × 10−7

	
7.25135 × 10−11

	
1.30068 × 10−8

	
1.04158 × 10−5




	

	
p-value

	
3.01986 × 10−11

	
1.01490 × 10−11

	
1.07516 × 10−11

	
3.01986 × 10−11

	
1.49399 × 10−11

	
3.01230 × 10−11




	
nAOA

	
best

	
4.73537 × 10−1

	
1.16733 × 10−9

	
3.11364 × 10−12

	
3.28064 × 10−10

	
2.13953 × 10−5

	
7.56334 × 10−8




	

	
worst

	
7.39125 × 10−1

	
9.06936 × 10−4

	
8.22290 × 10−1

	
2.69391 × 10−9

	
4.30978 × 10−4

	
4.49162 × 10




	

	
mean

	
6.74564 × 10−1

	
3.07109 × 10−5

	
2.77064 × 10−2

	
1.50697 × 10−9

	
1.59376 × 10−4

	
1.49721




	

	
std

	
5.68300 × 10−2

	
1.65502 × 10−4

	
1.50077 × 10−1

	
6.31248 × 10−10

	
7.06193 × 10−5

	
8.20053




	

	
p-value

	
3.01986 × 10−11

	
1.01490 × 10−11

	
1.07516 × 10−11

	
3.01986 × 10−11

	
1.49399 × 10−11

	
3.01230 × 10−11




	
dAOA

	
best

	
2.01052 × 10−1

	
8.99368 × 10−9

	
2.54429 × 10−4

	
3.09426 × 10−10

	
5.69606 × 10−6

	
8.50407 × 10−4




	

	
worst

	
6.87872

	
1.28121 × 10−3

	
4.68145 × 10−1

	
9.87499 × 102

	
1.56431 × 10−2

	
3.78263 × 105




	

	
mean

	
1.91504

	
3.22387 × 10−4

	
6.56368 × 10−2

	
2.07191 × 102

	
3.65947 × 10−3

	
2.61018 × 104




	

	
std

	
2.16147

	
3.20053 × 10−4

	
1.21675 × 10−1

	
2.92259 × 102

	
5.26309 × 10−3

	
8.07193 × 104




	

	
p-value

	
3.01986 × 10−11

	
1.01490 × 10−11

	
1.07516 × 10−11

	
3.01986 × 10−11

	
1.49399 × 10−11

	
3.01230 × 10−11
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Table 8. Details of the integrations F01–F10.






Table 8. Details of the integrations F01–F10.





	Integrations
	Details
	Range





	F01
	   f ( x ) =  x 2    
	[0, 2]



	F02
	   f ( x ) =  x 4    
	[0, 2]



	F03
	   f ( x ) =   1 +  x 2      
	[0, 2]



	F04
	   f ( x ) =  1  1 + x     
	[0, 2]



	F05
	   f ( x ) = sin x   
	[0, 2]



	F06
	   f ( x ) =  e x    
	[0, 2]



	F07
	   f ( x ) =   1 +   ( cos x )  2      
	[0, 48]



	F08
	   f ( x ) =      e  − x   , 0 ≤ x < 1      e    − x  / 2    , 1 ≤ x < 2      e    − x  / 3    , 2 ≤ x ≤ 3       
	[0, 3]



	F09
	   f ( x ) =  e  −  x 2      
	[0, 1]



	F10
	   f ( x ) = x cos x sin x m x , ( m = 10 , 20 , 30 )   
	[0, 2  π  ]
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Table 9. Comparison of the experimental results for F01–F03.






Table 9. Comparison of the experimental results for F01–F03.





	
Methods

	
Integrations




	
F01

	
F02

	
F03






	
R-method

	
2.000

	
2.000

	
2.828




	
T-method

	
4.000

	
16.000

	
3.236




	
S-method

	
2.667

	
6.667

	
2.964




	
H-method

	
2.830

	
7.066

	
3.048




	
FN [26]

	
2.667

	
6.3995

	
2.95789




	
MBFES [24]

	
2.659

	
6.338

	
2.956




	
ES [24]

	
2.666

	
6.398

	
2.9577




	
DEBA [28]

	
2.66698573

	
6.401201

	
2.958169




	
PSO [25]

	
2.666

	
6.398

	
2.9578




	
DE [27]

	
2.667

	
6.3995

	
2.958




	
AOA

	
2.61006134

	
6.20147125

	
2.94004382




	
IAOA

	
2.66661710

	
6.40000000

	
2.95788286




	
Exact

	
2.66666667

	
6.40000000

	
2.95788572
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Table 10. Comparison of the experimental results for F04–F06.






Table 10. Comparison of the experimental results for F04–F06.





	
Methods

	
Integrations




	
F04

	
F05

	
F06






	
R-method

	
1.000

	
1.683

	
5.437




	
T-method

	
1.333

	
0.909

	
8.389




	
S-method

	
1.111

	
1.425

	
6.421




	
H-method

	
1.112

	
1.452

	
6.691




	
FN [26]

	
1.0986

	
1.416

	
6.389




	
MBFES [24]

	
1.090

	
1.419

	
6.390




	
ES [24]

	
1.098

	
1.416

	
6.388




	
DEBA [28]

	
1.098754

	
1.416082

	
6.388921




	
PSO [25]

	
1.0985

	
1.416

	
6.3887




	
DE [27]

	
1.099

	
1.416

	
6.389




	
AOA

	
1.08923818

	
1.40101546

	
6.29531692




	
IAOA

	
1.09861229

	
1.41613957

	
6.38901606




	
Exact

	
1.09861229

	
1.41614684

	
6.38905610
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Table 11. Comparison of the experimental results for F07–F09.






Table 11. Comparison of the experimental results for F07–F09.





	
Methods

	
Integrations




	
F07

	
F08

	
F09






	
R-method

	
52.13975183

	
1.51349542

	
0.77782078




	
T-method

	
62.43737140

	
1.61179305

	
0.74621972




	
S-method

	
117.61490334

	
2.48720505

	
0.74683657




	
H-method

	
58.99776108

	
1.56164258

	
0.75403569




	
FN [26]

	
58.4705

	
1.54604

	
0.746823




	
MBFES [24]

	
58.48828

	
1.5455

	
0.74652




	
ES [24]

	
58.47065

	
1.5459805

	
0.74683




	
DEBA [28]

	
58.470505372351

	
1.5460388345767

	
0.7468269544604




	
PSO

	
56.80139775

	
1.52897330

	
0.74328459




	
DE

	
56.04598085

	
1.52425900

	
0.74202909




	
AOA

	
56.17497970

	
1.52641514

	
0.74223182




	
IAOA

	
58.47046915

	
1.54603603

	
0.74682413




	
Exact

	
58.47046915

	
1.54603603

	
0.74682413
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Table 12. Comparison of the experimental results for F10.






Table 12. Comparison of the experimental results for F10.





	
Methods

	
Integrations




	
F10 (m = 10)

	
F10 (m = 20)

	
F10 (m = 30)






	
G32

	
−0.6340207

	
−1.2092524

	
−1.5822272




	
2n × L5

	
−0.55875940

	
−0.27789620

	
−0.18508448




	
H-method

	
−0.21043575

	
0.17309499

	
−0.02945756




	
MBFES [24]

	
−0.68134052

	
−0.37280425

	
−0.17305621




	
ES [24]

	
−0.65034080

	
−0.30583435

	
−0.23556815




	
DEBA

	
−0.63466518

	
−0.31494663

	
−0.20967248




	
PSO

	
−1.50150183

	
−1.33949737

	
−1.10170197




	
DE [27]

	
−0.63982173

	
−0.31035906

	
−0.21438251




	
AOA

	
−3.07253909

	
−0.56489050

	
−0.42642997




	
IAOA

	
−0.63466518

	
−0.31494663

	
−0.20967248




	
Exact

	
−0.63466518

	
−0.31494663

	
−0.20967248
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Table 13. Statistical results for the numerical integrations (F01–F06).






Table 13. Statistical results for the numerical integrations (F01–F06).





	
Algorithms

	

	
Integrations




	
F01

	
F02

	
F03

	
F04

	
F05

	
F06






	
AOA

	
best

	
5.660532 × 10−2

	
1.985287 × 10−1

	
1.784189 × 10−2

	
9.374106 × 10−3

	
1.513137 × 10−2

	
9.373918 × 10−2




	

	
worst

	
6.785842 × 10−2

	
2.466178 × 10−1

	
2.112411 × 10−2

	
1.103594 × 10−2

	
1.827849 × 10−2

	
1.105054 × 10−1




	

	
mean

	
6.196485 × 10−2

	
2.238141 × 10−1

	
1.970905 × 10−2

	
1.041648 × 10−2

	
1.679104 × 10−2

	
1.013200 × 10−1




	

	
std

	
2.473863 × 10−3

	
1.277362 × 10−2

	
6.790772 × 10−4

	
4.381854 × 10−4

	
7.886715 × 10−4

	
3.985235 × 10−3




	
IAOA

	
best

	
4.956295 × 10−5

	
0.000000

	
2.855397 × 10−6

	
0.000000

	
7.267277 × 10−6

	
4.004088 × 10−5




	

	
worst

	
1.070986 × 10−4

	
9.632589 × 10−6

	
1.471988 × 10−5

	
7.241931 × 10−6

	
3.035345 × 10−5

	
1.136393 × 10−4




	

	
mean

	
7.267766 × 10−5

	
9.617999 × 10−7

	
6.357033 × 10−6

	
1.274560 × 10−6

	
1.595556 × 10−5

	
7.989662 × 10−5




	

	
std

	
1.561025 × 10−5

	
2.672207 × 10−6

	
2.828416 × 10−6

	
1.942626 × 10−6

	
5.989208 × 10−6

	
2.032255 × 10−5




	
PSO [25]

	
best

	
3.966996 × 10−2

	
1.282142 × 10−1

	
1.263049 × 10−2

	
6.772669 × 10−3

	
1.115352 × 10−2

	
6.495427 × 10−2




	

	
worst

	
5.467546 × 10−2

	
1.880821 × 10−1

	
1.614274 × 10−2

	
9.112184 × 10−3

	
1.385859 × 10−2

	
9.718717 × 10−2




	

	
mean

	
4.406724 × 10−2

	
1.593799 × 10−1

	
1.405265 × 10−2

	
7.745239 × 10−3

	
1.208230 × 10−2

	
7.327404 × 10−2




	

	
std

	
3.262431 × 10−3

	
1.528260 × 10−2

	
9.707823 × 10−4

	
6.532329 × 10−4

	
7.146743 × 10−4

	
6.698801 × 10−3




	
DE [27]

	
best

	
5.444535 × 10−2

	
1.776272 × 10−1

	
1.740389 × 10−2

	
9.410606 × 10−3

	
1.537737 × 10−2

	
9.229490 × 10−2




	

	
worst

	
6.223208 × 10−2

	
1.992612 × 10−1

	
1.943564 × 10−2

	
1.043440 × 10−2

	
1.668422 × 10−2

	
1.003285 × 10−1




	

	
mean

	
5.887766 × 10−2

	
1.887098 × 10−1

	
1.881844 × 10−2

	
1.003350 × 10−2

	
1.606658 × 10−2

	
9.665791 × 10−2




	

	
std

	
1.717478 × 10−3

	
5.056921 × 10−3

	
4.230737 × 10−4

	
2.412656 × 10−4

	
3.636407 × 10−4

	
1.886442 × 10−3




	
DEBA [28]

	
best

	
5.858312 × 10−2

	
1.958779 × 10−1

	
1.797733 × 10−2

	
9.632554 × 10−3

	
1.541447 × 10−2

	
9.078063 × 10−2




	

	
worst

	
6.805128 × 10−2

	
2.566962 × 10−1

	
2.194973 × 10−2

	
1.144459 × 10−2

	
1.824156 × 10−2

	
1.096576 × 10−1




	

	
mean

	
6.306158 × 10−2

	
2.287206 × 10−1

	
2.005007 × 10−2

	
1.048558 × 10−2

	
1.700868 × 10−2

	
1.008133 × 10−1




	

	
std

	
2.059708 × 10−3

	
1.384008 × 10−2

	
8.428458 × 10−4

	
4.319549 × 10−4

	
7.193521 × 10−4

	
4.457879 × 10−3




	
ES [24]

	
best

	
3.634854 × 10−2

	
1.053634 × 10−1

	
1.178783 × 10−2

	
6.152581 × 10−3

	
9.742411 × 10−3

	
6.028495 × 10−2




	

	
worst

	
3.704455 × 10−2

	
1.076016 × 10−1

	
1.197536 × 10−2

	
6.272540 × 10−3

	
9.921388 × 10−3

	
6.120127 × 10−2




	

	
mean

	
3.662145 × 10−2

	
1.064150 × 10−1

	
1.189432 × 10−2

	
6.206519 × 10−3

	
9.813727 × 10−3

	
6.070549 × 10−2




	

	
std

	
1.618502 × 10−4

	
4.726931 × 10−4

	
4.687831 × 10−5

	
2.718416 × 10−5

	
4.560503 × 10−5

	
2.303572 × 10−4
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Table 14. Statistical results for numerical integrations (F07–F10).






Table 14. Statistical results for numerical integrations (F07–F10).





	
Algorithms

	

	
Integrations




	
F07

	
F08

	
F09

	
F10 (m = 10)

	
F10 (m = 20)

	
F10 (m = 30)






	
AOA

	
best

	
2.295489

	
1.962088 × 10−2

	
4.592313 × 10−3

	
2.437873

	
2.499438 × 10−1

	
2.167574 × 10−1




	

	
worst

	
2.524012

	
2.400262 × 10−2

	
5.421672 × 10−3

	
3.611012

	
3.429053

	
3.115022




	

	
mean

	
2.424997

	
2.226327 × 10−2

	
5.031127 × 10−3

	
3.225836

	
1.617425

	
9.721188 × 10−1




	

	
std

	
5.634089 × 10−2

	
1.017542 × 10−3

	
2.167135 × 10−4

	
2.620454 × 10−1

	
9.081448 × 10−1

	
7.417795 × 10−1




	
IAOA

	
best

	
0.000000

	
0.000000

	
0.000000

	
0.000000

	
0.000000

	
0.000000




	

	
worst

	
4.285648 × 10−4

	
9.665730 × 10−6

	
7.650313 × 10−9

	
4.941453 × 10−4

	
8.932970 × 10−4

	
4.121824 × 10−4




	

	
mean

	
5.817808 × 10−5

	
1.079836 × 10−6

	
1.094646 × 10−9

	
6.843408 × 10−5

	
9.159354 × 10−5

	
6.487479 × 10−5




	

	
std

	
9.331558 × 10−5

	
2.377176 × 10−6

	
2.051844 × 10−9

	
1.219906 × 10−4

	
1.972260 × 10−4

	
9.370544 × 10−5




	
PSO [25]

	
best

	
1.093717

	
1.499542 × 10−2

	
3.212480 × 10−3

	
5.688245 × 10−1

	
1.024550

	
8.920294 × 10−1




	

	
worst

	
2.077297

	
2.010782 × 10−2

	
4.674802 × 10−3

	
1.599995

	
1.485451

	
1.953066




	

	
mean

	
1.669071

	
1.706272 × 10−2

	
3.539538 × 10−3

	
8.668366 × 10−1

	
1.219538

	
1.489201




	

	
std

	
2.419795 × 10−1

	
1.205259 × 10−3

	
3.409595 × 10−4

	
2.759571 × 10−1

	
1.216184 × 10−1

	
2.065585 × 10−1




	
DE [27]

	
best

	
2.255785

	
2.091958 × 10−2

	
4.575317 × 10−3

	
2.543013

	
3.461794

	
3.889322




	

	
worst

	
2.522405

	
2.254710 × 10−2

	
5.009106 × 10−3

	
3.236645

	
4.684467

	
5.201887




	

	
mean

	
2.424488

	
2.177702 × 10−2

	
4.795040 × 10−3

	
3.015091

	
4.242609

	
4.687029




	

	
std

	
5.766110 × 10−2

	
4.602533 × 10−4

	
1.146454 × 10−4

	
1.967397 × 10−1

	
2.313007 × 10−1

	
2.923496 × 10−1




	
DEBA [28]

	
best

	
2.361570 × 10−1

	
2.057410 × 10−2

	
4.776881 × 10−3

	
6.043389 × 10−14

	
1.208677 × 10−13

	
5.319404 × 10−13




	

	
worst

	
2.468831

	
2.474051 × 10−2

	
5.441200 × 10−3

	
6.043389 × 10−14

	
1.208677 × 10−13

	
5.319404 × 10−13




	

	
mean

	
1.163514

	
2.294436 × 10−2

	
5.157892 × 10−3

	
6.043389 × 10−14

	
1.208677 × 10−13

	
5.319404 × 10−13




	

	
std

	
6.919695 × 10−1

	
9.765442 × 10−4

	
1.475304 × 10−4

	
3.851264 × 10−29

	
7.702528 × 10−29

	
3.081011 × 10−28




	
ES [24]

	
best

	
1.298269

	
1.319474 × 10−2

	
3.051746 × 10−3

	
1.460773

	
1.634373

	
1.152204




	

	
worst

	
1.321623

	
1.341748 × 10−2

	
3.121709 × 10−3

	
1.665912

	
2.355153

	
2.380726




	

	
mean

	
1.308546

	
1.331615 × 10−2

	
3.081151 × 10−3

	
1.568781

	
1.869004

	
1.719830




	

	
std

	
5.523404 × 10−3

	
5.640941 × 10−5

	
1.521690 × 10−5

	
4.627499 × 10−2

	
1.831224 × 10−1

	
2.898513 × 10−1
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Table 15. The results obtained by the IAOA for the engineering problem.






Table 15. The results obtained by the IAOA for the engineering problem.





	
Algorithm

	

	
Joint Angles




	
A2

	
B2

	
C2






	
IAOA

	
initial angle

	
150

	
132.7026

	
127.0177




	

	
Result

	
145.7291

	
139.0180

	
123.9864
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Table 16. The results obtained by the PSO for the engineering problem.






Table 16. The results obtained by the PSO for the engineering problem.





	
Algorithm

	

	
Joint Angles




	
A2

	
B2

	
C2






	
PSO

	
initial angle

	
150

	
132.7026

	
127.0177




	

	
result

	
139.6534

	
68.2235

	
96.4886
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Table 17. The results obtained by the GA for the engineering problem.






Table 17. The results obtained by the GA for the engineering problem.





	
Algorithm

	

	
Joint Angles




	
A2

	
B2

	
C2






	
GA

	
initial angle

	
150

	
132.7026

	
127.0177




	

	
result

	
129.8653

	
118.9625

	
52.6691
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Table 18. The results obtained by the PSSA for the engineering problem.






Table 18. The results obtained by the PSSA for the engineering problem.





	
Algorithm

	

	
Joint Angles




	
A2

	
B2

	
C2






	
PSSA [58]

	
initial angle

	
150

	
132.7026

	
127.0177




	

	
result

	
147.1015

	
92.5371

	
89.5116
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Table 19. Comparison of the experimental results for the IAOA, PSO, GA, and PSSA.






Table 19. Comparison of the experimental results for the IAOA, PSO, GA, and PSSA.





	
Objective Funtions

	
Algorithms




	
IAOA

	
PSO

	
GA

	
PSSA






	
f

	
1.3618 × 10

	
3.0608 × 106

	
3.2329 × 106

	
2.0199 × 105




	
      A 2  −  A 1    +    B 2  −  B 1    +    C 2  −  C 1      

	
13.6176

	
105.3548

	
118.2234

	
80.5701
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